Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
NoSQL DB ϵÁнâ¶Á£ºÒ»ÎÄ¿´¶® Neo4j ¨C Graph DB
 
×÷ÕߣºÕÔº£
  3547  次浏览      28
2022-1-6
 
±à¼­ÍƼö:
±¾ÎĽéÉÜÁËNeo4j µÄÊý¾ÝÄ£Ðͽṹ¡¢Êý¾Ý²Ù×÷ÀàÐÍ¡¢±éÀúËã·¨¡¢Âß¼­¼Ü¹¹¡¢¼¯Èº¼Ü¹¹¡¢ÊÊÓó¡¾°£¬Äܹ»°ïÖú¶ÁÕß¿ìËÙÁ˽âNeo4j¡£
±¾ÎÄÀ´×Ô΢ÐŹ«ÖÚºÅtwtÆóÒµITÉçÇø£¬ÓÉ»ðÁú¹ûÈí¼þLinda±à¼­¡¢ÍƼö¡£

1. Neo4j ÊÇʲô£¿

°´ÕÕ¹Ù·½µÄ½âÊÍ£¬Neo4jÊÇÒ»¸öÓÃJava¿ª·¢µÄͼÐÎÊý¾Ý¿â¡£ÊôÓÚNoSQLÊý¾Ý¿â³ÉÔ±¡£

ÄÇôÊ×ÏÈÎÒÃÇÐèÒªÃ÷°×ʲôÊÇͼ£¿Ê²Ã´ÊÇͼÐÎÊý¾Ý¿â£¿

¡° A graph is a pictorial representation of a set of objects where some pairs of objects are connected by links. It is composed of two elements - nodes (vertices) and relationships (edges). Graph database is a database used to model the data in the form of graph. In here, the nodes of a graph depict the entities while the relationships depict the association of these nodes. ¡±

ÒÔÉÏÊÇÎÒÃÇÕª×ÔÏà¹ØÎÄÏ×µÄÄÚÈÝ£¬´ÓÕâ¸ö½âÊ͵±ÖÐÎÒÃÇ¿ÉÒÔ¿´µ½£¬ËùνµÄͼÊÇÖ¸Ò»×éÏ໥¿ÉÒÔÁªÏµµÄ¶ÔÏóµÄ×éºÏ£¬ÕâЩ¶ÔÏóµÄ»ù±¾ÔªËذüº¬Á½¸ö£º½ÚµãºÍ¹ØÏµ£¬½Úµã¾ÍÊǶÔÏó±¾Éí£¬¹ØÏµ¾ÍÊÇÏ໥µÄÁªÏµ¡£ÄÇôͼÐÎÊý¾Ý¿â¾ÍÊÇÀ´½â¾öÕâÀàÊý¾Ý¶ÔÏó´æºÍÈ¡µÄÌØÊâÊý¾Ý¿â¡£

Neo4jÊÇDB engine ÉÏÅÅÃûÊ×λµÄͼÐÎÊý¾Ý¿â´ú±í¡£

´Ó2010 Neo4j1.0µ½Ä¿Ç°µÄNeo4j4.2°æ±¾£¬¹Ù·½ÒѾ­·¢²¼ÁË300¶à¸ö°æ±¾¡£

2. Neo4j µÄÊý¾ÝÄ£Ðͽṹ

ͼDBÊý¾ÝÄ£ÐÍÖ÷ÒªÓÃÀ´ÃèÊöͼÐζÔÏóºÍ¶ÔÏóÖ®¼äµÄ¹ØÏµ£¬Èç¹û¶ÔÓÚÏÖʵÊÀ½çµ±ÖеĶÔÏó£¬ÎÒÃÇÓýڵãÀ´±íʾ£¬ÄÇô¶ÔÏóÓë¶ÔÏóÖ®¼äµÄ¹ØÏµ¾ÍÓñßÀ´±íʾ£¬Èçͼ2.1Ëùʾ¡£

ͼ2.1 Êý¾Ý½¨Ä£Í¼

Ö±¹Û¿´Í¼2.1£¬ÆäʵÎÒÃÇͨ¹ýÕâÀàÄ£Ðͱíʾ³öÀ´µÄ½á¹¹£¬×î´óµÄÄ¿µÄ¾ÍÊÇÏëҪŪÇåA¡¢B¡¢C¡¢DËĸö½ÚµãÖ®¼äµÄ¹ØÏµ¡£ÎªÁËÍê³ÉÕâ¸öÄ¿µÄ£¬ÒÔÉÏÊý¾Ý½¨Ä£µ±ÖÐÓÐÈý¸ö±Ø²»¿ÉÉÙµÄÒòËØ£º

(1 ). ½Úµã£º½ÚµãÔÚNeo4jµ±ÖÐÊÇÒ»¸öÖ¸ÏòÁªÏµºÍÊôÐԵĵ¥ÏòÁ´±í£¬Õâ¸öÁ´±íÊǹ̶¨´óС£»°üº¬ÊÇ·ñ±»Ê¹Óõıê־룬¹ØÁªµ½Õâ¸ö½ÚµãµÄµÚÒ»¸ö¹ØÏµµÄID£¬µÚÒ»¸öÊôÐÔID£¬½ÚµãµÄ±êÇ©¼°Ö¸Õ룬±£Áôλ¡£

( 2). ÊôÐÔ£ºÒ²Êǹ̶¨´óСÁ´±í£¬Ã¿¸öÊôÐԼǼ°üÀ¨4¸öÊôÐÔ¿éºÍÖ¸ÏòÊôÐÔÁ´ÖÐÏÂÒ»¸öÊôÐÔµÄID¡£ÊôÐԼǼ°üÀ¨ÊôÐÔÀàÐͺÍÖ¸ÏòÊôÐÔË÷ÒýÎļþµÄÖ¸Õ롣ͬʱÊôÐԼǼÖпÉÒÔÄÚÁª¶¯Ì¬´æ´¢£¬ÔÚÊôÐÔÖµ´æ´¢Õ¼ÓÃСʱ£¬»áÖ±½Ó´æ´¢ÔÚÊôÐԼǼÖУ¬¶ÔÓÚ´óÊôÐÔÖµ£¬¿ÉÒÔ·Ö±ð´æ´¢ÔÚ¶¯Ì¬×Ö·û´æ´¢ºÍ¶¯Ì¬Êý×é´æ´¢ÖС£

( 3). ¹ØÏµ£ºË«ÏòÁ´±í£¬Õâ¸öÁ´±íÒ²Êǹ̶¨´óС£»°üº¬ÊÇ·ñ±»Ê¹Óõıê־룬Æðʼ½ÚµãµÄID£¬½áÊø½ÚµãµÄID£¬¹ØÏµÀàÐÍ£¬Æðʼ½ÚµãµÄÉÏÏÂÁªÏµºÍ½áÊø½ÚµãµÄÉÏϽڵ㣬ÒÔ¼°Ò»¸öָʾµ±Ç°¼Ç¼ÊÇ·ñλÓÚÁªÏµÁ´µÄ×îÇ°Ãæ¡£ÐèҪǿµ÷µÄÒ»µãÊǹØÏµ±ØÐëÓз½Ïò£¬Ò²¾ÍÊÇ˵ÓÐÆðµã¡¢Öյ㡣

×ܽáÀ´¿´£¬ÔÚͼÊý¾Ý¿âµÄÊý¾Ý½á¹¹µ±ÖУ¬×îÖØÒªµÄ½ÚµãºÍ¹ØÏµÁ½¸öÔªËØ±£´æµÄ»ù±¾Êǹ̶¨´óСµÄÔªÊý¾ÝÐÅÏ¢»òÕß˵ָÕëÐÅÏ¢£¬Èç¹ûÊôÐÔÐÅÏ¢½Ï´ó£¬ÄÇ̫;ÕýµÄÊý¾ÝÊÇÔÚDynamic StoreÊý¾Ý½á¹¹µ±ÖС£ÎÒÃÇ¿ÉÒÔͨ¹ýÒÔϵÄÀý×ÓÀ´Ú¹ÊÍÔÚNeo4jµ±ÖÐÈçºÎÈ¥´´½¨ÕâЩÊý¾Ý½á¹¹¡£

CREATE (sally:Person { name: 'Sally', age: 32 })

CREATE (john:Person { name: 'John', age: 27 })

CREATE (sally)-[:FRIEND_OF { since: 1357718400 }]->(john)

ÒÔÉÏÀý×Óµ±ÖУ¬ÎÒÃÇ´´½¨ÁËÁ½¸öÒÔÈËΪ¶ÔÏóµÄ½ÚµãÒÔ¼°ÕâÁ½¸ö½Úµã×Ô½¨µÄ¹ØÏµ FRIEND_OF ¡£µ±È»ÔÚÕâÀïÃæÆä½ÚµãÀïÃæµÄÊôÐԷdz£¼òµ¥£¬½ö½ö°üº¬ÐÕÃû¡¢ÄêÁäµÄ¼üÖµ¶Ô¡£Êµ¼ÊÉÏËüÖ§³Ö¡° bool ¡¢ byte ¡¢ short ¡¢ int ¡¢ log ¡¢ float ¡¢ double ¡¢ char ¡¢ string ¡±µÈºÜ¶àÖÖÊý¾ÝÀàÐÍ¡£¾ßÌåʵ¼ù¿ÉÒԲο¼Neo4jµÄÃüÁîCQLÖ¸ÄÏ¡£

3. Neo4j µÄÊý¾Ý²Ù×÷ÀàÐÍ

CQL´ú±íCypher²éѯÓïÑÔ¡£ÏñOracleÊý¾Ý¿â¾ßÓвéѯÓïÑÔSQL£¬Neo4j¾ßÓÐCQL×÷Ϊ²éѯÓïÑÔ¡£ÔÚNeo4jÊý¾Ý¿âµ±ÖУ¬ÎÒÃÇ¿ÉÒÔʵÏֵľßÌåÊý¾Ý´æÈ¡²Ù×÷ºÜ¼òµ¥£¬Ö÷Òª°üÀ¨Á½Àࣺ

1). ´´½¨¡¢É¾³ý¡¢ÐÞ¸ÄÊý¾Ý¶ÔÏ󣬰üÀ¨½Úµã¡¢ÊôÐԺ͹ØÏµ¡£

2). ²éѯÊý¾Ý£¬°üÀ¨¶Ô½Úµã¡¢¹ØÏµ±¾ÉíµÄ¼ìË÷£¬¼ìË÷±¾ÉíÖ§³Ö¾«È·Æ¥ÅäÒÔ¼°Ìõ¼þÆ¥ÅäµÈ¡£

±í3.1±íʾµÄÊÇCQLÓïÑÔ¿ÉÒÔʵÏֵľßÌå²Ù×÷ÀàÐÍÒÔ¼°¿ÉÒÔʵÏÖµÄÏêϸ¹¦ÄÜÃèÊö£º

±í3.1 Neo4jÊý¾Ý²Ù×÷ÀàÐÍ

ÏêϸµÄÓï·¨ÎÒÃǾͲ»ÔÚ±¾ÎÄÏêÊö£¬´ó¼Ò¿ÉÒÔ²éѯCQLÓïÑÔµÄÖ¸ÄÏÊֲᡣΪÁ˸üºÃµÄÀí½âCQLÓïÑԵľßÌå²Ù×÷¹¦ÄÜ£¬ÎÒÃÇͨ¹ýÒÔÏÂÀý×ÓÀ´Õ¹Ê¾Ò»¸ö¾ßÌ峡¾°¡£Àý×Óµ±ÖУºÓпͻ§£¨cust£©¡¢ÐÅÓÿ¨£¨cc£©Á½Àà½Úµã£¬½Úµãµ±ÖоßÓÐID¡¢Price¡¢ShopdateµÈÊôÐÔÐÅÏ¢¡£ÎÒÃDzéѯ½ÚµãÐÅÏ¢£¬½¨Á¢Ïû·ÑµÄ¹ØÏµ¡£

MATCH (cust:Customer),(cc:CreditCard)

WHERE cust.id = "1001" AND cc.id= "5001"

CREATE (cust)-[r:DO_SHOPPING_WITH{shopdate:"12/1 0 /20 20 ",price:5000}]->(cc)

RETURN r

Àý×Óµ±ÖУ¬ÎÒÃÇͨ¹ýÒÔ¡°¿Í»§ID=1001&ÐÅÓÿ¨ID=5001¡±ÎªÌõ¼þ£¬¼ìË÷µ½ÏàÓ¦¿Í»§¼°ÐÅÓÿ¨µÄ½ÚµãÐÅÏ¢£¬²¢ÇÒ½¨Á¢ÁË´Ó¿Í»§µ½ÆäÐÅÓÿ¨µÄÏû·Ñ¼Ç¼¹ØÏµ¡£

4. Neo4j µÄ±éÀúËã·¨

ͼÐÎÊý¾Ý¿â¶ÔÓÚ¹ØÏµÎÊÌâµÄ½â¾ö±È½ÏÉó¤¶à¶Ô¶à¹ØÏµµÄ´¦Àí¡£Ö®ËùÒÔËüÄܹ»Éó¤ÓÚ¸÷ÖÖ»ùÓÚͼµÄÒµÎñ³¡¾°µÄ¼ìË÷´¦Àí£¬¾ÍÔÚÓÚÆäÇ¿´óµÄ±éÀúËã·¨¡£³£¼û±éÀúËã·¨ÓÐ15ÖÖ£¬ÎÒÃÇͨ¹ýËüµÄ¶¨Ò壨What£©ºÍÈçºÎʹÓã¨How£©Á½¸ö·½ÃæÀ´½øÐмòµ¥×ܽ᣺

1.¹ã¶ÈÓÅÏÈËã·¨(BFS)

What£º±éÀúÊ÷Êý¾Ý½á¹¹£¬Ì½Ë÷×î½üµÄÁÚ¾ÓºÍËûÃǵĴμ¶ÁÚ¾Ó¡£ËüÓÃÓÚ¶¨Î»Á¬½Ó£¬ÊÇÐí¶àÆäËûͼËã·¨µÄǰÉí¡£µ±Ê÷½Ï²»Æ½ºâ»òÄ¿±ê¸ü½Ó½üÆðµãʱ£¬BFSÊÇÊ×Ñ¡¡£ËüÒ²¿ÉÓÃÓÚ²éÕÒ½ÚµãÖ®¼äµÄ×î¶Ì·¾¶»ò±ÜÃâÉî¶ÈÓÅÏÈËÑË÷µÄµÝ¹é¹ý³Ì¡£

How£º¹ã¶ÈÓÅÏÈËÑË÷¿ÉÓÃÓÚ¶ÔµÈÍøÂçÖеÄÁھӽڵ㣬¿É¾«È·¶¨Î»¸½½üµÄλÖã¬Éç½»ÍøÂç·þÎñ¿ÉÔÚÌØ¶¨¾àÀëÄÚ²éÕÒ¶ÔÏó¡£

2.Éî¶ÈÓÅÏÈËã·¨(DFS)

What£º±éÀúÊ÷Êý¾Ý½á¹¹£¬Í¨¹ýÔÚ»ØËÝ֮ǰ¾¡¿ÉÄÜ̽Ë÷ÿ¸ö·ÖÖ§¡£ÓÃÓÚÉî²ã´ÎµÄÊý¾Ý£¬ÊÇÐí¶àÆäËûͼËã·¨µÄǰÉí¡£µ±Ê÷½Ïƽºâ»òÄ¿±ê¸ü½Ó½ü¶Ëµãʱ£¬Éî¶ÈÓÅÏÈËÑË÷ÊÇÊ×Ñ¡¡£

How£ºÉî¶ÈÓÅÏÈË㷨ͨ³£ÓÃÓÚÓÎÏ·Ä£Ä⣬ÆäÖÐÿ¸öÑ¡Ôñ»ò¶¯×÷Òý·¢ÁíÒ»¸ö²Ù×÷£¬´Ó¶øÀ©Õ¹³É¿ÉÄÜÐÔµÄÊ÷ÐÎͼ¡£Ëü½«±éÀúÑ¡ÔñÊ÷£¬Ö±µ½ÕÒµ½×î¼Ñ½â¾ö·½°¸Â·¾¶¡£

3.µ¥Ô´×î¶Ì·¾¶

What£º¼ÆËã½ÚµãÓëËùÓÐÆäËû½ÚµãÖ®¼äµÄ·¾¶£¬ÒÔ¼°ÆäÓëËùÓÐÆäËû½ÚµãµÄ×ܺÍÖµ(³É±¾£¬¾àÀ룬ʱ¼ä»òÈÝÁ¿µÈ¹ØÏµµÄÈ¨ÖØ)²¢µÃ³ö×ܺÍ×îС¡£

How£ºµ¥Ô´×î¶Ì·¾¶Í¨³£ÓÃÓÚ×Ô¶¯»ñÈ¡ÎïÀíλÖÃÖ®¼äµÄ·Ïߣ¬ÀýÈçͨ¹ýGoogleµØÍ¼»ñÈ¡¼Ý³µÂ·Ïß¡£ÔÚÂß¼­Â·ÓÉÖÐÒ²ºÜÖØÒª£¬ÀýÈçµç»°ºô½Ð·ÓÉ(×îµÍ³É±¾Â·ÓÉ)¡£

4.ȫԴ×î¶Ì·¾¶

What£º¼ÆËã°üº¬Í¼ÖнڵãÖ®¼äËùÓÐ×î¶Ì·¾¶µÄ×î¶Ì·¾¶É­ÁÖ(×é)¡£µ±×î¶Ì·¾¶±»×èÈû»ò±äµÃ´ÎÓÅʱ£¬Çл»µ½ÐµÄ×î¶Ì·¾¶£¬Í¨³£ÓÃÓÚ±¸Ó÷ÓÉ¡£

How£ºÓÃÓÚÆÀ¹À±¸Ó÷ÓÉ£¬ÀýÈç¸ßËÙ¹«Â·±¸·Ý»òÍøÂçÈÝÁ¿¡£ËüÒ²ÊÇΪÂß¼­Â·ÓÉÌṩ¶à·¾¶µÄ¹Ø¼ü£¬±ÈÈçºô½Ð·ÓÉÑ¡Ôñ¡£

5.×îСÉú³ÉÊ÷(MWST)

What£º¼ÆËãÓë·ÃÎÊÊ÷ÖÐËùÓнڵãÏà¹ØµÄ×îСֵµÄ·¾¶£¬ÓÃÓڱƽüһЩNPÄÑÌâ¡£

How£º×îСÉú³ÉÊ÷¹ã·ºÓÃÓÚÍøÂçÉè¼Æ£º³É±¾×îµÍµÄÂß¼­»òÎïÀí·ÓÉ£¬ÈçÆÌÉèµçÀ£¬×î¿ìµÄÀ¬»øÊÕ¼¯Â·Ïߣ¬¹©Ë®ÏµÍ³ÈÝÁ¿£¬¸ßЧµç·Éè¼ÆµÈµÈ¡£Ëü»¹¿ÉÓÃÓÚ¹ö¶¯ÓÅ»¯µÄʵʱӦÓóÌÐò£¬È绯ѧÁ¶Óͳ§µÄ¹ý³Ì»òÐÐʻ·ÏßÐÞÕý¡£

6.PageRank

What£º¹À¼Æµ±Ç°½Úµã¶ÔÆäÏàÁÚ½ÚµãµÄÖØÒªÐÔ£¬È»ºóÔÙ´ÓÆäÁÚ¾ÓÄÇÀï»ñµÃ½ÚµãµÄÖØÒªÐÔ¡£Ò»¸ö½ÚµãµÄÅÅÃûÀ´Ô´ÓÚÆä´«µÝÁ´½ÓµÄÊýÁ¿ºÍÖÊÁ¿¡£

How£ºPageRankÓÃÓÚÆÀ¹ÀÖØÒªÐÔºÍÓ°ÏìÁ¦£¬ÓÃÓÚ»úÆ÷ѧϰ£¬ÒÔÈ·¶¨×îÓÐÓ°ÏìµÄÌáÈ¡ÌØÕ÷¡£ÔÚÉúÎïѧÖУ¬Ëü±»ÓÃÀ´Ê¶±ðʳÎïÍøÖÐÄÄЩÎïÖÖµÄÃð¾ø»áµ¼ÖÂÎïÖÖËÀÍöµÄ×î´óÁ¬Ëø·´Ó¦¡£

7.Degree Centrality

What£º²âÁ¿½Úµã(»òÕû¸öͼ±í)Ëù¾ßÓеĹØÏµÊýÁ¿£¬±»·ÖΪÁ÷ÈëºÍÁ÷³öÁ½¸ö·½Ïò£¬¹ØÏµ¾ßÓÐÖ¸ÏòÐÔ¡£

How£ºDegree Centrality×ÅÑÛÓÚÓÃ;µÄÖ±½ÓÁ¬Í¨ÐÔ£¬ÀýÈçÆÀ¹À»¼Õß½Ó½ü²¡¶¾»òÌýÈ¡ÐÅÏ¢µÄ½üÆÚ·çÏÕ¡£ÔÚÉç»áÑо¿ÖУ¬¿ÉÒÔÓÃÀ´Ô¤¹ÀÈËÆø»òÕ߯äËüÇé¸Ð¡£

8.Closeness Centrality

What£ººâÁ¿Ò»¸ö½Úµã¶ÔÆä¼¯ÈºÄÚËùÓÐÁھӵļ¯Öг̶ȡ£¼Ù¶¨µ½ËùÓÐÆäËû½ÚµãµÄ·¾¶¶¼ÊÇ×î¶ÌµÄ£¬ÄÇô¸Ã½Úµã¾ÍÄܹ»ÒÔ×î¿ìµÄËٶȵ½´ïÕû¸ö×é¡£

How£ºCloseness CentralityÊÊÓÃÓÚ¶àÖÖ×ÊÔ´¡¢½»Á÷ºÍÐÐΪ·ÖÎö£¬ÓÈÆäÊǵ±½»»¥ËÙ¶ÈÏÔ×Åʱ¡£ÔÚй«¹²·þÎñÖУ¬±»ÓÃÓÚÈ·¶¨×î´ó¿É·ÃÎÊÐÔµÄλÖá£ÔÚÉç½»ÍøÂç·ÖÎöÖУ¬ÓÃÓÚÕÒµ½¾ßÓÐÀíÏëÉç½»ÍøÂçλÖõÄÈË£¬ÒÔ±ã¸ü¿ìµØ´«²¥ÐÅÏ¢¡£

9.Betweenness Centrality

What£º²âÁ¿Í¨¹ý½ÚµãµÄ×î¶Ì·¾¶µÄÊýÁ¿¡£Ëüͨ³£Óë¿ØÖÆ×ÊÔ´ºÍÐÅÏ¢µÄÁ÷¶¯Óйء£

How£ºBetweenness CentralityÊÊÓÃÓÚÍøÂç¿ÆÑ§Öеĸ÷ÖÖÎÊÌ⣬ÓÃÓÚ²éÃ÷ͨÐźͽ»Í¨ÍøÂçÖÐµÄÆ¿¾±»ò¿ÉÄܵĹ¥»÷Ä¿±ê¡£ÔÚ»ùÒò×éѧÖУ¬±»ÓÃÓÚÁË½â¿ØÖÆÄ³Ð©»ùÒòÔÚµ°°×ÖÊÍøÂçÖеĸĽø¡£Ò²±»ÓÃÀ´ÆÀ¹À¶àÈËÔÚÏßÓÎÏ·Íæ¼ÒºÍ¹²Ïíҽʦרҵ֪ʶµÄÐÅÏ¢Á÷¡£

10.Label Propagation

What£º»ùÓÚÁÚÓò¶àÊýµÄ±êÇ©×÷ÎªÍÆ¶Ï¼¯ÈºµÄÊֶΡ£ÕâÖÖ¼«Æä¿ìËÙµÄͼÐηָîÐèÒªºÜÉÙµÄÏÈÑéÐÅÏ¢¡£

How£ºLabel Propagation¾ßÓв»Í¬µÄÓ¦Óã¬ÀýÈçÁ˽âÉç»áÍÅÌåÖеĹ²Ê¶Ðγɡ¢Ê¶±ðÔÚÉúÎïÍøÂçµÄ¹ý³Ì(¹¦ÄÜÄ£¿é)ÖÐËùÉæ¼°µÄµ°°×Öʼ¯ºÏµÈµÈ¡£ÉõÖÁ»¹¿ÉÒÔÓÃÓÚ°ë¼à¶½ºÍÎ޼ලµÄ»úÆ÷ѧϰ×÷Ϊ³õʼµÄÔ¤´¦Àí²½Öè¡£

11.Strongly Connected

What£º¶¨Î»½Úµã×飬ÆäÖÐÿ¸ö½Úµã¿É´Óͬһ×éÖеÄËùÓÐÆäËû½Úµã°´ÕÕ¹ØÏµµÄ·½Ïòµ½´ï¡£

How£ºStrongly Connectedͨ³£ÓÃÓÚÔÚʶ±ðµÄ¼¯ÈºÉ϶ÀÁ¢ÔËÐÐÆäËûËã·¨¡£×÷ΪÓÐÏòͼµÄÔ¤´¦Àí²½Ö裬ËüÓÐÖúÓÚ¿ìËÙʶ±ð²»Á¬Í¨µÄ¼¯Èº¡£ÔÚÁãÊÛÍÆ¼öÖУ¬ËüÓÐÖúÓÚʶ±ð¾ßÓÐÇ¿Ç׺ÍÐÔµÄ×飬Ȼºó½«ÏòÄÇЩÉÐδ¹ºÂòÉÌÆ·µÄȺÌåÍÆ¼öÊ×Ñ¡ÉÌÆ·¡£

12.Union-Find/Connected Components/Weakly Connected

What£º²éÕÒ½Úµã×飬ÆäÖÐÿ¸ö½Úµã¿É´Óͬһ×éÖеÄÈÎºÎÆäËû½Úµãµ½´ï£¬¶ø²»¿¼ÂǹØÏµµÄ·½Ïò¡£ËüÌṩ¼¸ºõºã¶¨µÄʱ¼ä²Ù×÷À´Ìí¼ÓеÄ×飬ºÏ²¢ÏÖÓеÄ×飬²¢È·¶¨Á½¸ö½ÚµãÊÇ·ñÔÚͬһ×éÖС£

How£ºUnion-find/connected ¾­³£ÓëÆäËûËã·¨½áºÏʹÓã¬ÌرðÊǶÔÓÚ¸ßÐÔÄÜ·Ö×é¡£×÷ΪÎÞÏòͼµÄÔ¤´¦Àí²½Ö裬ËüÓÐÖúÓÚ¿ìËÙʶ±ð¶Ï¿ªµÄ×é¡£

13.Louvain Modularity

What£ºÍ¨¹ý±È½ÏËüµÄ¹ØÏµÃܶÈÓëÊʵ±¶¨ÒåµÄËæ»úÍøÂçÀ´²âÁ¿ÉçÍÅ·Ö×éµÄÖÊÁ¿(¼´¼Ù¶¨µÄ׼ȷÐÔ)¡£

How£ºËüͨ³£ÓÃÓÚÆÀ¹À¸´ÔÓÍøÂçµÄ×éÖ¯ºÍÉçÇø²ã´Î½á¹¹¡£Õâ¶ÔÓÚÎ޼ල»úÆ÷ѧϰÖеijõʼÊý¾ÝÔ¤´¦ÀíÒ²ÊÇÓÐÓõġ£LouvainÓÃÓÚÆÀ¹ÀÒ»¸ö×éÖ¯ÊÇÖ»´æÔÚһЩ²»Á¼ÐÐΪ£¬»¹ÊDZ³ºóÒ»¸öÁ¬»·ÆÛÕ©¡£

14.Local Clustering Coefficient/Node Clustering Coefficient

What£º¶ÔÓÚÒ»¸öÌØ¶¨µÄ½Úµã£¬Á¿»¯ÁËÆäµ½ÁÚ¾Ó½ÚµãµÄ¾àÀë¡£

How£ºLocal cluster coefficientͨ¹ýÀí½âȺÌåÏà¹ØÐÔ»òË鯬»¯µÄ¿ÉÄÜÐÔ£¬¶Ô¹À¼Æµ¯ÐÔ¾ßÓÐÖØÒªÒâÒå¡£ÓÃÕâÖÖ·½·¨¶ÔÅ·ÖÞµçÍøµÄ·ÖÎö·¢ÏÖ£¬ÓëÏ¡ÊèÁ¬½ÓµÄ½ÚµãÏà±È£¬¼¯Èº¸üÄܵÖÓùÆÕ±éµÄ¹ÊÕÏ¡£

15.Triangle-Count and Average Clustering Coefficient

What£º²âÁ¿ÓжàÉÙ½Úµã¾ßÓÐÈý½ÇÐÎÒÔ¼°½ÚµãÇãÏòÓÚ¾Û¼¯ÔÚÒ»ÆðµÄ³Ì¶È¡£Æ½¾ù¾ÛÀàϵÊýΪ1ʱ±íÃ÷ÓÐÒ»¸ö·Ö×飬0ʱûÓÐÁ¬½Ó¡£ÎªÊ¹¾ÛÀàϵÊýÓÐÒâÒ壬ËüÓ¦¸ÃÃ÷ÏÔ¸ßÓÚÍøÂçÖÐËùÓйØÏµËæ»úµÄ°æ±¾¡£

How£ºÆ½¾ù¾ÛÀàϵÊýͨ³£ÓÃÓÚ¹À¼ÆÍøÂçÊÇ·ñ¿ÉÄÜÕ¹ÏÖ»ùÓÚ½ôÃܼ¯ÈºµÄ¡°Ð¡ÊÀ½ç¡±ÐÐΪ¡£ÕâÒ²ÊǼ¯ÈºÎȶ¨ÐԺ͵¯ÐÔµÄÒ»¸öÒòËØ¡£Á÷Ðв¡Ñ§¼ÒʹÓÃÆ½¾ù¾ÛÀàϵÊýÀ´°ïÖúÔ¤²â²»Í¬ÉçÇøµÄ¸÷ÖÖ¸ÐȾÂÊ¡£

5. Neo4j µÄÂß¼­¼Ü¹¹

Neo4jÊý¾Ý¿âÄÚ²¿µÄÂß¼­¼Ü¹¹Ïà¶Ô±È½Ï¼òµ¥£¬Èçͼ5.1Ëùʾ£º

ͼ5.1 Neo4j´æ´¢ÒýÇæ¼Ü¹¹

´Óͼ5.1¿ÉÒÔ¿´³ö£¬´ÓÉϵ½Ï£¬×ÝÏò·ÖΪÈý¸ö´óµÄ²ã´Î£¬·Ö±ðÊǽӿڲ㡢Êý¾Ý¹ÜÀí²ãÒÔ¼°´æ´¢²ã¡£½Ó¿Ú²ãÓÐTraversal API¡¢Core API¡¢CypherµÈ½Ó¿Ú¡£Tranversal API Ö÷ÒªÊDZéÀúËã·¨µÄµ÷Óýӿڣ»Core APIÊÇNeo4jµÄÄÚ²¿ºËÐÄJava×é¼þ½Ó¿Ú£¬¶ÁÊý¾ÝµÄʱºò£¬¿ÉÒÔͨ¹ýËüչʾ½Úµã¡¢¹ØÏµ¡¢ÊôÐÔµÈԭʼͼÊý¾Ý£»Ð´Êý¾ÝµÄʱºò£¬Í¨¹ýËüÀ´±£Ö¤Êý¾ÝµÄÔ­×ÓÐÔ¡¢¸ôÀëÐÔ¡¢Á¬ÐøÐԵȣ»CypherÊÇNeo4jÊý¾Ý¿âÖ÷ÒªµÄ²éѯÓïÑÔ½Ó¿ÚCQL½Ó¿Ú¡£ÖмäÊý¾Ý¹ÜÀí²ã°üÀ¨¶ÔÊý¾ÝµÄ²¢·¢Ëø¹ÜÀí¡¢ÊÂÎñ¹ÜÀí¡¢»º´æ¹ÜÀíÒÔ¼°´æ´¢¹ÜÀíµÈ£»×îϲã¾ÍÊÇÕæÕýµÄ´æ´¢¿Õ¼äÁË¡£

6. Neo4j µÄ¼¯Èº¼Ü¹¹

ͨ³£½²Neo4jµÄ¼¯Èº¼Ü¹¹ÊÇÖ¸ Causal cluster ¡£¸Ã¼¯Èº¼Ü¹¹ÓÉÁ½¸ö²»Í¬µÄ½ÇÉ«Core ServersºÍRead Replicas×é³É£¬ÕâÁ½¸ö½ÇÉ«ÊÇÈκÎÉú²ú²¿ÊðÖеĻù´¡£¬µ«±Ë´ËÖ®¼äµÄ¹ÜÀí¹æÄ£²»Í¬£¬²¢ÇÒÔÚ¹ÜÀíÕû¸ö¼¯ÈºµÄÈÝ´íÐԺͿÉÉìËõÐÔ·½Ãæ³Ðµ£×Ų»Í¬µÄ½ÇÉ«¡£Èçͼ6.1Ëùʾ£º

ͼ6.1 Neo4j Cluster¼Ü¹¹

1). ºËÐÄ·þÎñÆ÷£¨Core Servers£©£ººËÐÄ·þÎñÆ÷ͨ¹ýʹÓÃRaftЭÒ鏴֯ËùÓÐÊÂÎñÀ´ÊµÏÖ¶ÔÊý¾Ý±£»¤µÄÄ¿µÄ¡£ÔÚÈ·ÈÏÏò×îÖÕÓû§Ó¦ÓóÌÐòÌá½»ÊÂÎñ֮ǰ£¬RaftÈ·±£Êý¾Ý°²È«³Ö¾Ã£¬¼¯Èº£¨N / 2 + 1£©ÖеĴó¶àÊýºËÐÄ·þÎñÆ÷¶¼ÐèҪȷÈÏÁËÊÂÎñ¡£Ëæ×ÅȺ¼¯ÖкËÐÄ·þÎñÆ÷ÊýÁ¿µÄÔö¼Ó£¬È·ÈÏÒ»´ÎдÈëËùÐèµÄCore ServersµÄÊýÁ¿Ò²»áÔö¼Ó¡£Êµ¼ÊÉÏ£¬ÕâÒâζ×ŵäÐ͵ÄCore Server¼¯ÈºÖÐÐèÒªÒ»¶¨ÊýÁ¿µÄ·þÎñÆ÷£¬×ãÒÔÎªÌØ¶¨²¿ÊðÌṩ×ã¹»µÄÈÝ´íÄÜÁ¦¡£ÕâÊÇʹÓù«Ê½M = 2F +1¼ÆËãµÄ£¬MÊÇÈÝÈÌF¹ÊÕÏËùÐèµÄºËÐÄ·þÎñÆ÷ÊýÁ¿¡£

2). ¸±±¾·þÎñÆ÷£¨Read Replicas£©£º¸±±¾·þÎñÆ÷µÄÖ÷ÒªÖ°ÔðÊÇÀ©Õ¹Í¼Êý¾Ý¸ºÔØÄÜÁ¦¡£×÷ÓÃÀàËÆÓÚCore Server±£»¤µÄÊý¾ÝµÄ»º´æ£¬µ«ËüÃDz»ÊǼòµ¥µÄ¼üÖµ»º´æ£¬Í¬Ê±ËüÊǹ¦ÄÜÆëÈ«µÄNeo4jÊý¾Ý¿â£¬Äܹ»Íê³ÉÈÎÒ⣨ֻ¶Á£©Í¼Êý¾Ý²éѯºÍ¹ý³Ì¡£Ö»¶Á¸±±¾ÊÇͨ¹ýÊÂÎñÈÕÖ¾´«ËÍ´ÓCore ServersÒì²½¸´ÖƵġ£Ëü¶¨ÆÚÂÖѯºËÐÄ·þÎñÆ÷ÒÔ²éÕÒ×ÔÉÏ´ÎÂÖѯÒÔÀ´ÒÑ´¦ÀíµÄÈκÎÐÂÊÂÎñ£¬²¢ÇÒºËÐÄ·þÎñÆ÷»á½«ÕâЩÊÂÎñ·¢Ë͵½Ö»¶Á¸±±¾¡£¿ÉÒÔ´ÓÏà¶Ô½ÏÉÙµÄCore ServerÖÐÀ¡ËÍÐí¶àÖ»¶Á¸±±¾Êý¾Ý£¬´Ó¶øÊ¹²éѯ¹¤×÷Á¿´óΪÔö¼Ó£¬´Ó¶øÀ©´ó¹æÄ£¡£µ«ÊÇ£¬ÓëºËÐÄ·þÎñÆ÷²»Í¬£¬Ö»¶Á¸±±¾²»²ÎÓëÓйØÈº¼¯ÍØÆËµÄ¾ö²ß¡£

7. Neo4j ÊÊÓó¡¾°

Ŀǰ£¬ÒµÄÚÒѾ­ÓÐÁËÏà¶Ô±È½Ï³ÉÊìµÄ»ùÓÚͼÊý¾Ý¿âµÄ½â¾ö·½°¸.ÎÒÃÇ¿ÉÒÔ½«Í¼ÁìÓò»®·Ö³ÉÁ½²¿·Ö£º1. ÓÃÓÚÁª»úÊÂÎñͼµÄ³Ö¾Ã»¯¼¼Êõ£¨Í¨³£Ö±½ÓʵʱµØ´ÓÓ¦ÓóÌÐòÖзÃÎÊ£©¡£ÕâÀ༼Êõ±»³ÆÎªÍ¼Êý¾Ý¿â£¬ËüÃǺ͡°Í¨³£µÄ¡±¹ØÏµÐÍÊý¾Ý¿âÊÀ½çÖеÄÁª»úÊÂÎñ´¦Àí£¨OLTP£©Êý¾Ý¿âÊÇÒ»ÑùµÄ¡£2. ÓÃÓÚÀëÏßͼ·ÖÎöµÄ¼¼Êõ, ÕâÀ༼Êõ±»³ÆÎªÍ¼¼ÆËãÒýÇæ¡£ËüÃÇ¿ÉÒÔºÍÆäËû´óÊý¾Ý·ÖÎö¼¼Êõ¿´×öÒ»À࣬ÈçÊý¾ÝÍÚ¾òºÍÁª»ú·ÖÎö´¦Àí¡£

°´ÕÕÐÐÒµ·ÖÀ࣬ĿǰNeo4jÓ¦ÓõÄÒµÎñ³¡¾°·ÖΪÒÔϼ¸Àࣺ

1£® ½ðÈÚÐÐÒµ·´ÆÛÕ©¶àά¹ØÁª·ÖÎö³¡¾°

·´ÆÛÕ©ÒѾ­ÊǽðÈÚÐÐÒµÒ»¸öºËÐÄÓ¦Óã¬Í¨¹ýͼ·ÖÎö¿ÉÒÔÇå³þµØÖªµÀÏ´Ç®ÍøÂç¼°Ïà¹ØÏÓÒÉ£¬ÀýÈç¶ÔÓû§ËùʹÓõÄÕʺ𢷢Éú½»Ò×ʱµÄIPµØÖ·¡¢MACµØÖ·¡¢ÊÖ»úIMEIºÅµÈ½øÐйØÁª·ÖÎö¡£ÀýÈçÈ¥¹ýµØ·½µÄIPµØÖ·¡¢Ôø¾­Ê¹ÓùýµÄMACµØÖ·£¨°üÀ¨ÊÖ»ú¶Ë¡¢PC¶Ë¡¢WIFIµÈ£©¡¢Éç½»ÍøÂçµÄ¹ØÁª¶È·ÖÎö£¬Í¬Ò»Ê±¼äµãÊÇ·ñÔø¾­ÔÚͬһµØÀíλÖø½½ü³öÏÖ¹ý£¬ÒøÐÐÕ˺ÅÖ®¼äÊÇ·ñÓÐÀúÊ·½»Ò×ÐÅÏ¢µÈ¡£

2£® Éç½»ÍøÂç·ÖÎö

ÔÚÉç½»ÍøÂçÖУ¬¹«Ë¾¡¢Ô±¹¤¡¢¼¼ÄܵÄÐÅÏ¢£¬ÕâЩ¶¼Êǽڵ㣬ËüÃÇÖ®¼äµÄ¹ØÏµºÍÅóÓÑÖ®¼äµÄ¹ØÏµ¶¼ÊDZߣ¬ÔÚÕâÀïÃæÍ¼Êý¾Ý¿â¿ÉÒÔ×öһЩ·Ç³£¸´ÔӵĹ«Ë¾Ö®¼ä¹ØÏµµÄ²éѯ¡£±ÈÈç˵¹«Ë¾µ½Ô±¹¤¡¢Ô±¹¤µ½ÆäËû¹«Ë¾£¬´ÓÖÐÕÒÀàËÆµÄ¹«Ë¾¡¢ÏàËÆµÄ¹«Ë¾£¬¶¼¿ÉÒÔÔÚÕâ¸öϵͳÄÚÍê³É¡£

3£® ÆóÒµ¹ØÏµÍ¼Æ×

ͼÊý¾Ý¿â¿ÉÒÔ¶Ô¸÷ÖÖÆóÒµ½øÐÐÐÅϢͼÆ×µÄ½¨Á¢£¬°üÀ¨×î»ù±¾µÄ¹¤ÉÌÐÅÏ¢£¬°üÀ¨ºÎʱע²á¡¢Ë­×¢²á¡¢×¢²á×ʱ¾¡¢Ôںδ¦°ì¹«¡¢¾­Óª·¶Î§¡¢¸ß¹Ü¼Ü¹¹¡£Î§ÈÆÆóÒµµÄ¾­Óª·¶Î§£¬¼ÌÐøÏ¸»¯È¥²éѯÆóÒµ¾¿¾¹ÓÐÄÄЩ²úÆ·»ò·þÎñ£¬ÀýÈçͨ¹ýÆóÒµÃû³Æ²éѯµ½ÆóÒµµÄ×ÔýÌ壬´Ó¶ø¸øÓèÆä¸ü¶à¹Ø×¢ºÍÁ˽⡣ÁíÍâÒ²°üÀ¨¶ÔÆóÒµµÄ²úÆ·ºÍ·þÎñµÄÊý¾Ý¹ØÁª£¬²é¿´¸ÃÆóÒµÓÐûÓÐÁîÈËÐÅ·þµÄ×ÔÖ÷֪ʶ²úȨºÍÏà¹Ø×ÊÖÊÀ´Ö§³ÅÒµÎñµÄ¿ªÕ¹¡£¡¢

4£® °²È«¼ì²â·ÖÎö

ͨ¹ý¼Ç¼Èí¼þ»òÕßÍøÂçÐÐΪµÄ¸÷ÖÖ¹ØÏµÊý¾Ý£¬ÀýÈçÆä·ÃÎÊÁËÄÄЩIP¡¢·ÃÎÊÁËÄÄЩϵͳ×ÊÔ´£¬½ø¶ø·ÖÎöÈí¼þÐÐΪÊÇ·ñÊôÓÚÕý³£·ÃÎÊ£¬ÊÇ·ñ¾ßÓжñÒâµÈ¡£

5£® ¼à¿Ø¹ÜÀí

ÏÖʵµ±ÖлáÓкܶ໷¾³°üº¬Ò»¸ö¸öµÄʵÌ壬ʵÌåÖ®¼äÓÖÊÇÏ໥¹ØÁªµÄ£¬´Ó¶ø×é³ÉÁËÒ»¸ö¸´ÔÓµÄÍøÂç¹ØÏµÍ¼¡£ÀýÈçÊý¾ÝÖÐÐİüº¬¸÷ÖÖÉ豸¡¢¸÷ÖÖÉ豸֮¼äÓÖͨ¹ýÓÐÏßÎÞÏßÍøÂçÁ¬½Ó£¬ÀýÈçµØÌúÍøÓɳµÁ¾¡¢Õ¾µã¡¢µ÷¶ÈÈËÔ±µÈ¸÷¸öʵÌå×é³É£¬ËûÃÇÓÖÓи÷ÖÖµÄÁª¶¯¹ØÏµ¡£ÄÇôÎÒÃÇ¿ÉÒÔͨ¹ýͼÊý¾Ý¿âµÄÐÅÏ¢²É¼¯ºÍ¹ØÏµ·ÖÎöÀ´ÊµÏÖÁª¶¯µÄ¼à¿Ø±¨¾¯¡£

   
3547 ´Îä¯ÀÀ       28
Ïà¹ØÎÄÕÂ

»ùÓÚEAµÄÊý¾Ý¿â½¨Ä£
Êý¾ÝÁ÷½¨Ä££¨EAÖ¸ÄÏ£©
¡°Êý¾Ýºþ¡±£º¸ÅÄî¡¢ÌØÕ÷¡¢¼Ü¹¹Óë°¸Àý
ÔÚÏßÉ̳ÇÊý¾Ý¿âϵͳÉè¼Æ ˼·+Ч¹û
 
Ïà¹ØÎĵµ

GreenplumÊý¾Ý¿â»ù´¡Åàѵ
MySQL5.1ÐÔÄÜÓÅ»¯·½°¸
ijµçÉÌÊý¾ÝÖÐ̨¼Ü¹¹Êµ¼ù
MySQL¸ßÀ©Õ¹¼Ü¹¹Éè¼Æ
Ïà¹Ø¿Î³Ì

Êý¾ÝÖÎÀí¡¢Êý¾Ý¼Ü¹¹¼°Êý¾Ý±ê×¼
MongoDBʵս¿Î³Ì
²¢·¢¡¢´óÈÝÁ¿¡¢¸ßÐÔÄÜÊý¾Ý¿âÉè¼ÆÓëÓÅ»¯
PostgreSQLÊý¾Ý¿âʵսÅàѵ
×îл¼Æ»®
DeepSeekÔÚÈí¼þ²âÊÔÓ¦ÓÃʵ¼ù 4-12[ÔÚÏß]
DeepSeek´óÄ£ÐÍÓ¦Óÿª·¢Êµ¼ù 4-19[ÔÚÏß]
UAF¼Ü¹¹ÌåϵÓëʵ¼ù 4-11[±±¾©]
AIÖÇÄÜ»¯Èí¼þ²âÊÔ·½·¨Óëʵ¼ù 5-23[ÉϺ£]
»ùÓÚ UML ºÍEA½øÐзÖÎöÉè¼Æ 4-26[±±¾©]
ÒµÎñ¼Ü¹¹Éè¼ÆÓ뽨ģ 4-18[±±¾©]
 
×îÐÂÎÄÕÂ
InfluxDB¸ÅÄîºÍ»ù±¾²Ù×÷
InfluxDB TSM´æ´¢ÒýÇæÖ®Êý¾ÝдÈë
Éî¶ÈÂþ̸Êý¾Ýϵͳ¼Ü¹¹¡ª¡ªLambda architecture
Lambda¼Ü¹¹Êµ¼ù
InfluxDB TSM´æ´¢ÒýÇæÖ®Êý¾Ý¶ÁÈ¡
×îпγÌ
OracleÊý¾Ý¿âÐÔÄÜÓÅ»¯¡¢¼Ü¹¹Éè¼ÆºÍÔËÐÐά»¤
²¢·¢¡¢´óÈÝÁ¿¡¢¸ßÐÔÄÜÊý¾Ý¿âÉè¼ÆÓëÓÅ»¯
NoSQLÊý¾Ý¿â£¨Ô­Àí¡¢Ó¦Óá¢×î¼Ñʵ¼ù£©
ÆóÒµ¼¶Hadoop´óÊý¾Ý´¦Àí×î¼Ñʵ¼ù
OracleÊý¾Ý¿âÐÔÄÜÓÅ»¯×î¼Ñʵ¼ù
³É¹¦°¸Àý
ij½ðÈÚ¹«Ë¾ Mysql¼¯ÈºÓëÐÔÄÜÓÅ»¯
±±¾© ²¢·¢¡¢´óÈÝÁ¿¡¢¸ßÐÔÄÜÊý¾Ý¿âÉè¼ÆÓëÓÅ»¯
ÖªÃûijÐÅϢͨÐŹ«Ë¾ NoSQL»º´æÊý¾Ý¿â¼¼Êõ
±±¾© oracleÊý¾Ý¿âSQLÓÅ»¯
ÖйúÒÆ¶¯ IaaSÔÆÆ½Ì¨-Ö÷Á÷Êý¾Ý¿â¼°´æ´¢¼¼Êõ