您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
   
 
     
   
 订阅
  捐助
分布式图数据库 Nebula Graph 的 Index 实践
 
  161  次浏览      1
2021-3-4
 
编辑推荐:
本文主要对 Nebula Graph的索引功能做一个详细介绍,希望对您的学习有所帮助。
本文来自博客园,由火龙果软件Alice编辑、推荐。

导读

索引是数据库系统中不可或缺的一个功能,数据库索引好比是书的目录,能加快数据库的查询速度,其实质是数据库管理系统中一个排序的数据结构。不同的数据库系统有不同的排序结构,目前常见的索引实现类型如 B-Tree index、B+-Tree index、B*-Tree index、Hash index、Bitmap index、Inverted index 等等,各种索引类型都有各自的排序算法。

虽然索引可以带来更高的查询性能,但是也存在一些缺点,例如:

  • 创建索引和维护索引要耗费额外的时间,往往是随着数据量的增加而维护成本增大
  • 索引需要占用物理空间
  • 在对数据进行增删改的操作时需要耗费更多的时间,因为索引也要进行同步的维护
  • Nebula Graph 作为一个高性能的分布式图数据库,对于属性值的高性能查询,同样也实现了索引功能。本文将对 Nebula Graph的索引功能做一个详细介绍。

    图数据库 Nebula Graph 术语

    开始之前,这里罗列一些可能会使用到的图数据库和 Nebula Graph 专有术语:

    1.Tag:点的属性结构,一个 Vertex 可以附加多种 tag,以 TagID 标识。(如果类比 SQL,可以理解为一张点表)

    2.Edge:类似于 Tag,EdgeType 是边上的属性结构,以 EdgeType 标识。(如果类比 SQL,可以理解为一张边表)

    3.Property:tag / edge 上的属性值,其数据类型由 tag / edge 的结构确定。

    4.Partition:Nebula Graph 的最小逻辑存储单元,一个 StorageEngine 可包含多个 Partition。Partition 分为 leader 和 follower 的角色,Raftex 保证了 leader 和 follower 之间的数据一致性。

    5.Graph space:每个 Graph Space 是一个独立的业务 Graph 单元,每个 Graph Space 有其独立的 tag 和 edge 集合。一个 Nebula Graph 集群中可包含多个 Graph Space。

    6.Index:本文中出现的 Index 指 nebula graph 中点和边上的属性索引。其数据类型依赖于 tag / edge。

    7.TagIndex:基于 tag 创建的索引,一个 tag 可以创建多个索引。目前(2020.3)暂不支持跨 tag 的复合索引,因此一个索引只可以基于一个 tag。

    8.EdgeIndex:基于 Edge 创建的索引。同样,一个 Edge 可以创建多个索引,但一个索引只可以基于一个 edge。

    9.Scan Policy:Index 的扫描策略,往往一条查询语句可以有多种索引的扫描方式,但具体使用哪种扫描方式需要 Scan Policy 来决定。

    10.Optimizer:对查询条件进行优化,例如对 where 子句的表达式树进行子表达式节点的排序、分裂、合并等。其目的是获取更高的查询效率。

    索引需求分析

    Nebula Graph 是一个图数据库系统,查询场景一般是由一个点出发,找出指定边类型的相关点的集合,以此类推进行(广度优先遍历)N 度查询。另一种查询场景是给定一个属性值,找出符合这个属性值的所有的点或边。在后面这种场景中,需要对属性值进行高性能的扫描,查出与此属性值对应的边或点,以及边或点上的其它属性。为了提高属性值的查询效率,在这里引入了索引的功能。对边或点的属性值进行排序,以便快速的定位到某个属性上。以此避免了全表扫描。

    可以看到对图数据库 Nebula Graph 的索引要求:

    1.支持 tag 和 edge 的属性索引

    2.支持索引的扫描策略的分析和生成

    3.支持索引的管理,如:新建索引、重建索引、删除索引、list | show 索引等。

    系统架构概览

    图数据库 Nebula Graph 存储架构

    从架构图可以看到,每个Storage Server 中可以包含多个 Storage Engine, 每个 Storage Engine中可以包含多个Partition, 不同的Partition之间通过 Raft 协议进行一致性同步。每个 Partition 中既包含了 data,也包含了 index,同一个点或边的 data 和 index 将被存储到同一个 Partition 中。

    业务具体分析

    数据存储结构

    为了更好的描述索引的存储结构,这里将图数据库 Nebula Graph 原始数据的存储结构一起拿出来分析下。

    点的存储结构

    点的 Data 结构

    点的 Index 结构

    Vertex 的索引结构如上表所示,下面来详细地讲述下字段:

    PartitionId:一个点的数据和索引在逻辑上是存放到同一个分区中的。之所以这么做的原因主要有两点:

    当扫描索引时,根据索引的 key 能快速地获取到同一个分区中的点 data,这样就可以方便地获取这个点的任何一种属性值,即使这个属性列不属于本索引。

    目前 edge 的存储是由起点的 ID Hash 分布,换句话说,一个点的出边存储在哪是由该点的 VertexId 决定的,这个点和它的出边如果被存储到同一个 partition 中,点的索引扫描能快速地定位该点的出边。

    IndexId:index 的识别码,通过 indexId 可获取指定 index 的元数据信息,例如:index 所关联的 TagId,index 所在列的信息。

    Index binary:index 的核心存储结构,是所有 index 相关列属性值的字节编码,详细结构将在本文的 #Index binary# 章节中讲解。

    VertexId:点的识别码,在实际的 data 中,一个点可能会有不同 version 的多行数据。但是在 index 中,index 没有 Version 的概念,index 始终与最新 Version 的 Tag 所对应。

    上面讲完字段,我们来简单地实践分析一波:

    假设 PartitionId 为 _100,TagId 有 tag_1 和 tag_2,_其中 tag_1 包含三列 :col_t1_1、col_t1_2、col_t1_3,tag_2 包含两列:col_t2_1、col_t2_2。

    现在我们来创建索引:

    i1 = tag_1 (col_t1_1, col_t1_2) ,假设 i1 的 ID 为 1;

    i2 = tag_2(col_t2_1, col_t2_2), 假设 i2 的 ID 为 2;

    可以看到虽然 tag_1 中有 col_t1_3 这列,但是建立索引的时候并没有使用到 col_t1_3,因为在图数据库 Nebula Graph 中索引可以基于 Tag 的一列或多列进行创建。

    插入点

    // VertexId = hash("v_t1_1"),假如为 50
    INSERT VERTEX tag_1(col_t1_1, col_t1_2, col_t1_3), tag_2(col_t2_1, col_t2_2) \
    VALUES hash("v_t1_1"):("v_t1_1", "v_t1_2", "v_t1_3", "v_t2_1", "v_t2_2");

    从上可以看到 VertexId 可由 ID 标识对应的数值经过 Hash 得到,如果标识对应的数值本身已经为 int64,则无需进行 Hash 或者其他转化数值为 int64 的运算。而此时数据存储如下:

    此时点的 Data 结构

    此时点的 Index 结构

    说明:index 中 row 和 key 是一个概念,为索引的唯一标识;

    边的存储结构

    边的索引结构和点索引结构原理类似,这里不再赘述。但有一点需要说明,为了使索引 key 的唯一性成立,索引的 key 的生成借助了不少 data 中的元素,例如 VertexId、SrcVertexId、Rank 等,这也是为什么点索引中并没有 TagId 字段(边索引中也没有 EdgeType 字段),这是因为** IndexId 本身带有 VertexId 等信息可直接区分具体的 tagId 或 EdgeType**。

    边的 Data 结构

    边的 Index 结构

    Index binary 介绍

    Index binary 是 index 的核心字段,在 index binary 中区分定长字段和不定长字段,int、double、bool 为定长字段,string 则为不定长字段。由于** index binary 是将所有 index column 的属性值编码连接存储**,为了精确地定位不定长字段,Nebula Graph 在 index binary 末尾用 int32 记录了不定长字段的长度。

    举个例子:

    我们现在有一个 index binary 为 index1,是由 int 类型的索引列1 c1、string 类型的索引列 c2,string 类型的索引列 c3 组成:

    index1 (c1:int, c2:string, c3:string)

    假如索引列 c1、c2、c3 某一行对应的 property 值分别为:23、"abc"、"here",则在 index1 中这些索引列将被存储为如下(在示例中为了便于理解,我们直接用原值,实际存储中是原值会经过编码再存储):

    length = sizeof("abc") = 3

    length = sizeof("here") = 4

    所以 index1 该 row 对应的 key 则为 23abchere34;

    回到我们 Index binary 章节开篇说的 index binary 格式中存在 Variable-length field lenght 字段,那么这个字段的的具体作用是什么呢?我们来简单地举个例:

    现在我们又有了一个 index binary,我们给它取名为 index2,它由 string 类型的索引列1 c1、string 类型的索引列 c2,string 类型的索引列 c3 组成:

    index2 (c1:string, c2:string, c3:string)

    假设我们现在 c1、c2、c3 分别有两组如下的数值:

    row1 : ("ab", "ab", "ab")

    row2: ("aba", "ba", "b")

    可以看到这两行的 prefix(上图红色部分)是相同,都是 "ababab",这时候怎么区分这两个 row 的 index binary 的 key 呢?别担心,我们有 Variable-length field lenght 。

    若遇到 where c1 == "ab" 这样的条件查询语句,在 Variable-length field length 中可直接根据顺序读取出 c1 的长度,再根据这个长度取出 row1 和 row2 中 c1 的值,分别是 "ab" 和 "aba" ,这样我们就精准地判断出只有 row1 中的 "ab" 是符合查询条件的。

    索引的处理逻辑

    Index write

    当 Tag / Edge中的一列或多列创建了索引后,一旦涉及到 Tag / Edge 相关的写操作时,对应的索引必须连同数据一起被修改。下面将对索引的write操作在storage层的处理逻辑进行简单介绍:

    INSERT——插入数据

    当用户产生插入点/边操作时,insertProcessor 首先会判断所插入的数据是否有存在索引的 Tag 属性 / Edge 属性。如果没有关联的属性列索引,则按常规方式生成新 Version,并将数据 put 到 Storage Engine;如果有关联的属性列索引,则通过原子操作写入 Data 和 Index,并判断当前的 Vertex / Edge 是否有旧的属性值,如果有,则一并在原子操作中删除旧属性值。

    DELETE——删除数据

    当用户发生 Drop Vertex / Edge 操作时,deleteProcessor 会将 Data 和 Index(如果存在)一并删除,在删除的过程中同样需要使用原子操作。

    UPDATE——更新数据

    Vertex / Edge 的更新操作对于 Index 来说,则是 drop 和 insert 的操作:删除旧的索引,插入新的索引,为了保证数据的一致性,同样需要在原子操作中进行。但是对应普通的 Data 来说,仅仅是 insert 操作,使用最新 Version 的 Data 覆盖旧 Version 的 data 即可。

    Index scan

    在图数据库 Nebula Graph 中是用 LOOKUP 语句来处理 index scan 操作的,LOOKUP 语句可通过属性值作为判断条件,查出所有符合条件的点/边,同样 LOOKUP 语句支持 WHERE 和 YIELD 子句。

    LOOKUP 使用技巧

    正如根据本文#数据存储结构#章节所描述那样,index 中的索引列是按照创建 index 时的列顺序决定。

    举个例子,我们现在有 tag (col1, col2),根据这个 tag 我们可以创建不同的索引,例如:

    index1 on tag(col1)

    index2 on tag(col2)

    index3 on tag(col1, col2)

    index4 on tag(col2, col1)

    我们可以对 clo1、col2 建立多个索引,但在 scan index 时,上述四个 index 返回结果存在差异,甚至是完全不同,在实际业务中具体使用哪个 index,及 index 的最优执行策略,则是通过索引优化器决定。

    下面我们再来根据刚才 4 个 index 的例子深入分析一波:

    lookup on tag where tag.col1 ==1 # 最优的 index 是 index1
    lookup on tag where tag.col2 == 2 # 最优的 index 是index2
    lookup on tag where tag.col1 > 1 and tag.col2 == 1
    # index3 和 index4 都是有效的 index,而 index1 和 index2 则无效

    在上述第三个例子中,index3 和 index4 都是有效 index,但最终必须要从两者中选出来一个作为 index,根据优化规则,因为 tag.col2 == 1 是一个等价查询,因此优先使用 tag.col2 会更高效,所以优化器应该选出 index4 为最优 index。

    实操一下图数据库 Nebula Graph 索引

    在这部分我们就不具体讲解某个语句的用途是什么了,如果你对语句不清楚的话可以去图数据库 Nebula Graph 的官方论坛进行提问:https://discuss.nebula-graph.io/

    CREATE——索引的创建

    (user@127.0.0.1:6999) [(none)]> CREATE SPACE my_space(partition_num=3, replica_factor=1);
    Execution succeeded (Time spent: 15.566/16.602 ms)
    Thu Feb 20 12:46:38 2020
    (user@127.0.0.1:6999) [(none)]> USE my_space;
    Execution succeeded (Time spent: 7.681/8.303 ms)
    Thu Feb 20 12:46:51 2020
    (user@127.0.0.1:6999) [my_space]> CREATE TAG lookup_tag_1(col1 string, col2 string, col3 string);
    Execution succeeded (Time spent: 12.228/12.931 ms)
    Thu Feb 20 12:47:05 2020
    (user@127.0.0.1:6999) [my_space]> CREATE TAG INDEX t_index_1 ON lookup_tag_1(col1, col2, col3);
    Execution succeeded (Time spent: 1.639/2.271 ms)
    Thu Feb 20 12:47:22 2020

    DROP——删除索引

    (user@127.0.0.1:6999) [my_space]> DROP TAG INDEX t_index_1;
    Execution succeeded (Time spent: 4.147/5.192 ms)
    Sat Feb 22 11:30:35 2020

    REBUILD——重建索引

    如果你是从较老版本的 Nebula Graph 升级上来,或者用 Spark Writer 批量写入过程中(为了性能)没有打开索引,那么这些数据还没有建立过索引,这时可以使用 REBUILD INDEX 命令来重新全量建立一次索引。这个过程可能会耗时比较久,在 rebuild index 完成前,客户端的读写速度都会变慢。

    REBUILD {TAG | EDGE} INDEX <index_name> [OFFLINE]

    LOOKUP——使用索引

    需要说明一下,使用 LOOKUP 语句前,请确保已经建立过索引(CREATE INDEX 或 REBUILD INDEX)。

    (user@127.0.0.1:6999) [my_space]> INSERT VERTEX
    lookup_tag_1(col1, col2, col3) VALUES 200:("col1_200",
    "col2_200", "col3_200"), 201:("col1_201", "col2_201",
    "col3_201"), 202:("col1_202", "col2_202", "col3_202");
    Execution succeeded (Time spent: 18.185/19.267 ms)
    Thu Feb 20 12:49:44 2020
    (user@127.0.0.1:6999) [my_space]> LOOKUP ON
    lookup_tag_1 WHERE lookup_tag_1.col1 == "col1_200";
    ============
    | VertexID |
    ============
    | 200 |
    ------------
    Got 1 rows (Time spent: 12.001/12.64 ms)
    Thu Feb 20 12:49:54 2020
    (user@127.0.0.1:6999) [my_space]> LOOKUP ON lookup_tag_1
    WHERE lookup_tag_1.col1 == "col1_200" YIELD lookup_tag_1.col1,
    lookup_tag_1.col2, lookup_tag_1.col3;
    ====================================================
    ====================
    | VertexID | lookup_tag_1.col1 | lookup_tag_1.col2 |
    lookup_tag_1.col3 |
    ==================================================
    ======================
    | 200 | col1_200 | col2_200 | col3_200 |
    --------------------------------------------------
    ----------------------
    Got 1 rows (Time spent: 3.679/4.657 ms)
    Thu Feb 20 12:50:36 2020

       
    161 次浏览       1
    相关文章

    基于EA的数据库建模
    数据流建模(EA指南)
    “数据湖”:概念、特征、架构与案例
    在线商城数据库系统设计 思路+效果
     
    相关文档

    Greenplum数据库基础培训
    MySQL5.1性能优化方案
    某电商数据中台架构实践
    MySQL高扩展架构设计
    相关课程

    数据治理、数据架构及数据标准
    MongoDB实战课程
    并发、大容量、高性能数据库设计与优化
    PostgreSQL数据库实战培训
    最新课程计划
     
    最新文章
    InfluxDB概念和基本操作
    InfluxDB TSM存储引擎之数据写入
    深度漫谈数据系统架构——Lambda architecture
    Lambda架构实践
    InfluxDB TSM存储引擎之数据读取
    最新课程
    Oracle数据库性能优化、架构设计和运行维护
    并发、大容量、高性能数据库设计与优化
    NoSQL数据库(原理、应用、最佳实践)
    企业级Hadoop大数据处理最佳实践
    Oracle数据库性能优化最佳实践
    更多...   
    成功案例
    某金融公司 Mysql集群与性能优化
    北京 并发、大容量、高性能数据库设计与优化
    知名某信息通信公司 NoSQL缓存数据库技术
    北京 oracle数据库SQL优化
    中国移动 IaaS云平台-主流数据库及存储技术
    更多...