Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
´ÓÊý¾Ý²Ö¿âµ½Êý¾Ýºþ¡ª¡ªÇ³Ì¸Êý¾Ý¼Ü¹¹Ñݽø
 
×÷ÕߣºÇñÑó
  7753  次浏览      29
2020-8-6
 
±à¼­ÍƼö:
±¾ÎÄÖ÷ÒªÊáÀí´ÓÊý¾Ý²Ö¿âµ½Êý¾ÝºþµÄÊý¾Ý¼Ü¹¹µÄÑݽø¹ý³Ì£¬¸ü¶àÏêÇéÇëÔĶÁÏÂÎÄ¡£
±¾ÎÄÀ´×ÔBingo Cloud£¬ÓÉ»ðÁú¹ûÈí¼þAlice±à¼­¡¢ÍƼö¡£

´«Í³µÄÊý¾Ý²Ö¿â¼¼Êõ´ÓÏÖÔڵĴóÊý¾ÝµÄ½Ç¶ÈÀ´¿´£¬ÒµÄÚÈËÄܹ»Ã÷°×ÉîÉîÆäÖеÄÌôÕ½¡£Ò»¸öÔËÐÐÁË 20 ¶àÄêµÄÊý¾Ý¼Ü¹¹£¬±ØÈ»ÓÐÆäºÏÀíÐÔ¡£Ò²ÕýÊÇÒòΪÄê´ú¾ÃÔ¶£¬´æÁ¿¹ý¶à£¬²Åµ¼Ö¾ٲ½Î¬¼è¡£ÔÚ Cloud ºÍ 5G ʱ´ú£¬³¬ÃܶÈÍøÂ缯³ÉºÍ´óÊý¾Ý¶´²ìÐèÇó¸øÆóÒµ¿Í»§´øÀ´ÐµÄÌôÕ½£¬´ÓÊý¾Ý²Ö¿âµ½Êý¾Ýºþ£¬²»½ö½ö¼Ü¹¹µÄ±ä¸ï£¬¸üÊÇ˼ά·½Ê½µÄÉý¼¶¡£±¾Îij¢ÊÔÊáÀíÊý¾Ý¼Ü¹¹µÄÑݽø¹ý³Ì¡£

Ŀ¼

Êý¾Ý²Ö¿âÀúÊ·ÑØ¸ï

Êý¾Ý²Ö¿â¸ÅÄî

Êý¾Ý²Ö¿â¼Ü¹¹

Êý¾ÝÁ¢·½Ìå

Êý¾Ý¿â½¨Ä£

´óÊý¾Ý¼Ü¹¹

Êý¾Ýºþ¼Ü¹¹

ÑݽøÂ·¾¶Êµ¼ù

1. Êý¾Ý²Ö¿âÀúÊ·ÑØ¸ï

1970 Ä꣬¹ØÏµÊý¾Ý¿âµÄÑо¿Ô­ÐÍ System R ºÍ INGRES ¿ªÊ¼³öÏÖ£¬ÕâÁ½¸öϵͳµÄÉè¼ÆÄ¿±ê¶¼ÊÇÃæÏò on-line transaction processing (OLTP)£¨ÇñÑó£ºÁª»úÊÂÎñ´¦Àí OLTP£©µÄÓ¦Ó᣹ØÏµÊý¾Ý¿âµÄÕæÕý¿ÉÓòúÆ·Ö±µ½ 1980 Äê²Å³öÏÖ£¬·Ö±ðÊÇ DB2 ºÍ INGRES¡£

ÆäËûµÄÊý¾Ý¿â£¬°üÀ¨ Sybase, Oracle, ºÍ Informix ¶¼×ñ´ÓÁËÏàͬµÄÊý¾Ý¿â»ù±¾Ä£ÐÍ¡£¹ØÏµÊý¾Ý¿âµÄÌØµãÊǰ´ÕÕÐд洢¹ØÏµ±í£¬Ê¹Óà B Ê÷»òÑÜÉúµÄÊ÷½á¹¹×÷ΪË÷ÒýºÍ»ùÓÚ´ú¼ÛµÄÓÅ»¯Æ÷£¬Ìṩ ACID µÄÊôÐÔ±£Ö¤¡£

µ½ 1990 Ä꣬һ¸öеÄÇ÷ÊÆ¿ªÊ¼³öÏÖ£ºÆóҵΪÁËÉÌÒµÖÇÄܵÄÄ¿µÄ£¬ÐèÒª°Ñ¶à¸ö²Ù×÷Êý¾Ý¿âÖÐÊý¾ÝÊÕ¼¯µ½Ò»¸öÊý¾Ý²Ö¿âÖС£¾¡¹ÜͶ×ʾ޴óÇÒ¹¦ÄÜÓÐÏÞ£¬Í¶×ÊÊý¾Ý²Ö¿âµÄÆóÒµ»¹ÊÇ»ñµÃÁ˲»´íµÄͶ×ʻر¨ÂÊ¡£

´Ó´Ë£¬Êý¾Ý²Ö¿â¿ªÊ¼Ö§³Å¸÷´óÆóÒµµÄÉÌÒµ¾ö²ß¹ý³Ì¡£Êý¾Ý²Ö¿âµÄ¹Ø¼ü¼¼Êõ°üÀ¨Êý¾Ý½¨Ä££¬ETL ¼¼Êõ£¬OLAP ¼¼ÊõºÍ±¨±í¼¼ÊõµÈ¡£

ĿǰÖ÷ÒªµÄÊý¾Ý²Ö¿â²úÆ·¹©Ó¦Ḛ́üÀ¨ Oracle¡¢IBM¡¢Microsoft¡¢SAS¡¢Teradata¡¢Sybase¡¢Business Objects(Òѱ» SAP ÊÕ¹º) µÈ¡£

µçÐÅÐÐÒµÊÇ×îÔç²ÉÓÃÊý¾Ý²Ö¿â¼¼ÊõµÄÐÐÒµÖ®Ò»¡£ÓÉÓÚµçÐŹ«Ë¾ÔËÐÐÔÚÒ»¸ö¿ìËٱ仯ºÍ¸ßËÙ¾ºÕùµÄ»·¾³£¬ÓµÓдóÁ¿µÄ¿Í»§»ù´¡£¬´Ó¶ø²úÉúºÍ´æ´¢º£Á¿µÄ¸ßÖÊÁ¿Êý¾Ý¡£

µçÐŹ«Ë¾ÀûÓÃÊý¾ÝÍÚ¾ò¼¼Êõ½µµÍÓªÏú³É±¾£¬Ê¶±ðÆÛÕ©£¬²¢¸üºÃµØ¹ÜÀíÆäµçÐÅÍøÂç¡£

2. Êý¾Ý²Ö¿â¸ÅÄî

Êý¾Ý²Ö¿âÖ®¸¸ Bill Inmon ÔÚ 1991 Äê³ö°æµÄ ¡°Building the Data Warehouse¡± Ò»ÊéÖÐËùÌá³öµÄ¶¨Òå±»¹ã·º½ÓÊÜ¡ª¡ªÊý¾Ý²Ö¿â£¨Data Warehouse£©ÊÇÒ»¸öÃæÏòÖ÷ÌâµÄ£¨Subject Oriented£©¡¢¼¯³ÉµÄ£¨Integrated£©¡¢Ïà¶ÔÎȶ¨µÄ£¨Non-Volatile£©¡¢·´Ó³ÀúÊ·±ä»¯£¨Time Variant£©µÄÊý¾Ý¼¯ºÏ£¬ÓÃÓÚÖ§³Ö¹ÜÀí¾ö²ß (Decision Making Support)¡£

ÕâÊÇÒ»¸öÆ«ÏòѧÊõµÄ¶¨Ò壬ȴ·Ç³£×¼È·µÄ½ç¶¨ÁËÊý¾Ý²Ö¿âÓëÆäËûÊý¾Ý¿âϵͳµÄ±¾ÖÊÇø±ð¡£

¡°A data warehouseis a subject-oriented, integrated, time-variant, and nonvolatile collection ofdata in support of management¡¯s decision-making process.¡±

¡ªW. H. Inmon

ÒªÀí½âÊý¾Ý²Ö¿âµÄ¸ÅÄÐèÒª´ÓÓëÊý¾Ý¿âµÄϵͳµÄ¶Ô±ÈÀ´¿´¡£

Êý¾Ý¿âÊÇ×÷Ϊ ¡°ËùÓд¦ÀíµÄµ¥Ò»Êý¾ÝÔ´¡± ³öÏֺͶ¨ÒåµÄ¡£

Êý¾Ý¿âµÄ³öÏÖÓÐÁ½¸öÇý¶¯ÒòËØ£¬µÚÒ»ÊÇ 70 Äê´úÒÔǰ´óÁ¿Ó¦ÓóÌÐòºÍÖ÷ÎļþµÄ·ÖÉ¢´æ·Åµ¼ÖÂһƬ»ìÂҺʹóÁ¿ÈßÓàÊý¾Ý¡£µÚ¶þÊÇÖ±½Ó´æÈ¡´æ´¢É豸µÄ³öÏÖʹµÃ°´¼Ç¼Ѱַ³ÉΪ¿ÉÄÜ¡£»ùÓÚ DBMS µÄÔÚÏßÊÂÎñ´¦ÀíΪÉÌÒµ·¢Õ¹¿ª±ÙȫеÄÊÓÒ°¡£

Êý¾Ý¿âϵͳµÄÉè¼ÆÄ¿±êÊÇÊÂÎñ´¦Àí¡£Êý¾Ý¿âϵͳÊÇΪ¼Ç¼¸üкÍÊÂÎñ´¦Àí¶øÉè¼Æ£¬Êý¾ÝµÄ·ÃÎʵÄÌØµãÊÇ»ùÓÚÖ÷¼ü£¬´óÁ¿Ô­×Ó£¬¸ôÀëµÄСÊÂÎñ£¬²¢·¢ºÍ¿É»Ö¸´ÊǹؼüÊôÐÔ£¬×î´óÊÂÎñÍÌÍÂÁ¿ÊǹؼüÖ¸±ê£¬Òò´ËÊý¾Ý¿âµÄÉè¼Æ¶¼·´Ó³ÁËÕâЩÐèÇó¡£

Êý¾Ý²Ö¿âµÄÉè¼ÆÄ¿±êÊǾö²ßÖ§³Ö¡£ÀúÊ·µÄ£¬ÕªÒªµÄ£¬¾ÛºÏµÄÊý¾Ý±ÈԭʼµÄ¼ÇÂ¼ÖØÒªµÄ¶à¡£²éѯ¸ºÔØÖ÷Òª¼¯ÖÐÔÚ¼´Ï¯²éѯºÍ°üº¬Á¬½Ó£¬¾ÛºÏµÈ²Ù×÷µÄ¸´ÔÓ²éѯ¡£

Ïà¶ÔÓÚÊý¾Ý¿âϵͳÀ´Ëµ£¬²éѯÍÌÍÂÁ¿ºÍÏìӦʱ¼ä±ÈÊÂÎñ´¦ÀíÍÌÍÂÁ¿ÖØÒªµÄ¶à¡£

Êý¾Ý²Ö¿âºÍÊý¾Ý¿âϵͳµÄÇø±ð£¬Ò»ÑÔ±ÎÖ®£ºOLAP ºÍ OLTP µÄÇø±ð¡£Êý¾Ý¿âÖ§³ÖÊÇ OLTP£¨ÇñÑó£ºÁª»ú·ÖÎö´¦Àí On-Line Analytical Processing£©£¬Êý¾Ý²Ö¿âÖ§³ÖµÄÊÇ OLAP¡£

¶Ô OLTP ºÍ OLAP µÄÇø±ð»¹¿ÉÒÔÓÐÒ»¸öά¶È£¬¾ÍÊǼ°Ê±ÐÔÐèÇó¡£OLTP ¶ÔÊÂÎñµÄ¼°Ê±ÐÔÐèÇó½Ï¸ß£¬¶ø OLAP Ôò²»È»¡£

¡ª¡ª²Üºéΰ

Êý¾Ý²Ö¿âÒ»°ã»ùÓÚÊý¾Ý¿âʵÏÖ£¬µ«ÊÇΪ²¿ÊðºÍά»¤ÉÏÊÇ·ÖÀëµÄ¡£Êý¾Ý²Ö¿â¿ÉÒÔÊÇ»ùÓÚ¹ØÏµÊý¾Ý¿âʵÏֵģ¬ÕâÑùµÄÊý¾Ý²Ö¿â±»³ÆÎª ROLAP¡£Êý¾Ý²Ö¿âÒ²¿ÉÒÔÊÇ»ùÓÚ¶àάÊý¾Ý½á¹¹ÊµÏֵģ¬ÕâÑùµÄÊý¾Ý²Ö¿â±»³ÆÎª MOLAP¡£

3. Êý¾Ý²Ö¿â¼Ü¹¹

Êý¾Ý²Ö¿âÊÇÒ»ÖÖÌåϵ½á¹¹£¬¶ø²»ÊÇÒ»ÖÖ¼¼Êõ¡£Êý¾Ý²Ö¿â×îΪºËÐĵÄÄÚÈÝ·ÖÀàÁ½²¿·Ö£º

»ùÓÚ¹ØÏµÊý¾Ý¿âµÄ¶àά½¨Ä££¨RDBMS-based dimensional modeling£©

»ùÓÚÊý¾ÝÁ¢·½ÌåµÄ OLAP ²éѯ£¨cube-based OLAP£©

Êý¾Ý²Ö¿âÌåϵ½á¹¹°üº¬ÁË´ÓÍⲿÊý¾ÝÔ´»òÕßÊý¾Ý¿â³éÈ¡Êý¾ÝµÄ ETL ¹¤¾ß¡£ETL »¹¸ºÔðÊý¾ÝµÄת»»£¬ÇåÏ´£¬È»ºó¼ÓÔØµ½Êý¾Ý²Ö¿âµÄ´æ´¢ÖС£Ò»°ãÀ´Ëµ£¬Êý¾Ý¶¼»á¼ÓÔØµ½´æÈ¡ËٶȽÏÂýµÄ´æ´¢ÖУ¬ÒÔԭʼÊý¾ÝµÄ·½Ê½±£´æÏÂÀ´¡£

ΪÁËÌá¸ß²éѯЧÂÊ£¬Ô­Ê¼Êý¾Ý»á°´Ö÷Ìâ·ÖÀ࣬ÒԾۺϵķ½Ê½´æ´¢µ½Êý¾Ý¼¯ÊÐÖУ¬³ÆÖ®Îª¾ÛºÏÊý¾Ý¡£

²Î¼ûÏÂͼ£¬Ô­Ê¼Êý¾ÝÍùÍùÓжàÌõ¾ÛºÏ·¾¶£¬Ê±¼äά¶ÈÊÇÒ»¸ö×î»ù±¾µÄÄÚÖþۺÏ·¾¶£¬ÐÐÕþ¼¶±ð»®·ÖÒ²ÊÇÒ»ÖÖ³£¼ûµÄ¾ÛºÏ·¾¶£¬²úÆ·ÊôÐÔÒ²Êdz£¼ûµÄ¾ÛºÏ·¾¶¡£

Êý¾Ý²Ö¿âÌåϵ½á¹¹Öл¹°üÀ¨Ç°¶ËµÄ²éѯ¹¤¾ß£¬±¨±í¹¤¾ßºÍÊý¾ÝÍÚ¾ò¹¤¾ß£¬±»³ÆÎª front-end¡£

×îºóÒ²ÊÇ×îÖØÒªµÄÊÇ£¬Êý¾Ý²Ö¿âÌåϵ½á¹¹Öж¼»á°üº¬Ò»¸ö¹¹½¨Êý¾Ý²Ö¿âµÄÔªÊý¾Ý²Ö¿â¡£

ÔªÊý¾Ý²Ö¿â°üÀ¨Êý¾Ý¿â schema£¬view£¬ÓÃÓÚ ETL µÄ metadata£¬ÓÃÓÚÊý¾Ý¾ÛºÏµÄ metadata£¬ÓÃÓÚ±¨±í³ÊÏÖµÄ metadata ºÍ SQL Ä£°åµÈ¡£Êý¾Ý²Ö¿âÍùÍù²ÉÓà meta data driven µÄ¼Ü¹¹Éè¼Æ£¬Õâ¸öÔªÊý¾Ý²Ö¿â¾ÍÖÁ¹ØÖØÒª¡£

ÉÏÎÄÖÐÌáµ½µÄά¶ÈµÄ¸ÅÄά¶È (dimension) Êǹ۲ìÊÂÎïµÄ½Ç¶È£¬Ò²ÊÇÊý¾Ý¿âÊÂʵ±íÖÐÓÃÀ´ÃèÊöÊý¾Ý·ÖÀàµÄ²ã´Î½á¹¹¡£Î¬¶ÈÔÚÊý¾ÝÖоÍÊDZíʾΪÁУ¬ÔÚ SQL ÖÐÓÃ×÷¹ýÂ˺ͷÖ×é¡£

ÏñÉÏͼÕâÑù¶ÔÊý¾Ý½øÐжà¸öά¶ÈµÄ³éÏó²¢½èÖúÓÚÊý¾Ý¿âµÄ select£¬group by µÈ»ù±¾²Ù×÷ÐÎ³ÉµÄ OLAP ¶àάÊý¾Ý²Ù×÷£¨roll up£¬drill down£¬slice and dice£¬pivot£©±»³ÆÎª¶àάÊý¾ÝÄ£ÐÍ¡£

ΪÁË·½±ã¸´ÔÓ·ÖÎöºÍ¿ÉÊÓ»¯³ÊÏÖ£¬Êý¾Ý²Ö¿âÖÐÊý¾ÝÍùÍùÒÔ¶àάģÐͽ¨Ä£¡£Ã¿Ò»¸öά¶È±»³ÆÎªÒ»¸ö²ã¼¶£¬Èý¸öά¶È¹¹³ÉÒ»¸öÊý¾ÝÁ¢·½Ì塣ά¶ÈҲͨ³£ÓÃÀ´¹ýÂ˺ͷÖ×飬ËùÒÔÊý¾ÝÁ¢·½Ìå³ÆÖ®Îª group by µÄ²¢¡£

OLAP Ò²±»³ÆÎªÔÚ»ùÓÚÊý¾Ý²Ö¿â¶àάģÐ͵Ļù´¡ÉÏʵÏÖµÄÃæÏò·ÖÎöµÄ¸÷Àà²Ù×÷µÄ¼¯ºÏ¡£

4. Êý¾ÝÁ¢·½Ìå

Êý¾ÝÁ¢·½ÌåÖ»ÊǶàάģÐ͵ÄÒ»¸öÐÎÏóµÄ˵·¨¡£Á¢·½ÌåÆä±¾ÉíÖ»ÓÐÈýά£¬µ«¶àάģÐͲ»½öÏÞÓÚÈýάģÐÍ£¬¿ÉÒÔ×éºÏ¸ü¶àµÄά¶È¡£

µ«Ò»·½ÃæÊdzöÓÚ¸ü·½±ãµØ½âÊͺÍÃèÊö£¬Í¬Ê±Ò²ÊǸøË¼Î¬³ÉÏñºÍÏëÏóµÄ¿Õ¼ä£»ÁíÒ»·½ÃæÊÇΪÁËÓ봫ͳ¹ØÏµÐÍÊý¾Ý¿âµÄ¶þά±íÇø±ð¿ªÀ´£¬ÓÚÊǾÍÓÐÁËÊý¾ÝÁ¢·½ÌåµÄ³Æºô (¼ûÏÂͼ)¡£

OLAP µÄ²Ù×÷ÊÇÒÔ²éѯ¡ª¡ªÒ²¾ÍÊÇÊý¾Ý¿âµÄ SELECT ²Ù×÷ΪÖ÷£¬µ«ÊDzéѯ¿ÉÒԺܸ´ÔÓ£¬±ÈÈç»ùÓÚ¹ØÏµÊý¾Ý¿âµÄ²éѯ¿ÉÒÔ¶à±í¹ØÁª£¬¿ÉÒÔʹÓà COUNT¡¢SUM¡¢AVG µÈ¾ÛºÏº¯Êý¡£

OLAP µÄ¶àά·ÖÎö²Ù×÷°üÀ¨£º×êÈ¡£¨Drill-down£©¡¢ÉÏ¾í£¨Roll-up£©¡¢ÇÐÆ¬£¨Slice£©¡¢Çп飨Dice£©ÒÔ¼°Ðýת£¨Pivot£©£¬ÖðÒ»½âÊÍÈçÏ£º

 

¿´ÁËÉÏͼÖÐÊý¾ÝÁ¢·½ÌåµÄ¸÷ÖÖ²Ù×÷£¬ÓÐÈ˾õµÃ»¹ÊǺܳéÏó¡£ÏÂÃæ¸øÒ»¸ö SQL µÄÀý×Ó£¬ËµÃ÷Êý¾ÝÁ¢·½ÌåµÄ¾ßÌå²Ù×÷¡£

select//¹«Ê½±ØÐëÅäºÏ group by ʹÓÃ

 

OLAP µÄÓÅÊÆÊÇ»ùÓÚÊý¾Ý²Ö¿âÃæÏòÖ÷Ìâ¡¢¼¯³ÉµÄ¡¢±£ÁôÀúÊ·¼°²»¿É±ä¸üµÄÊý¾Ý´æ´¢£¬ÒÔ¼°¶àάģÐͶàÊӽǶà²ã´ÎµÄÊý¾Ý×éÖ¯ÐÎʽ£¬Èç¹ûÍÑÀëµÄÕâÁ½µã£¬OLAP ½«²»¸´´æÔÚ£¬Ò²¾ÍûÓÐÓÅÊÆ¿ÉÑÔ¡£

»ùÓÚ¶àάģÐ͵ÄÊý¾Ý×éÖ¯ÈÃÊý¾ÝµÄչʾ¸ü¼ÓÖ±¹Û£¬Ëü¾ÍÏñÊÇÎÒÃÇÆ½³£¿´´ý¸÷ÖÖÊÂÎïµÄ·½Ê½£¬¿ÉÒÔ´Ó¶à¸ö½Ç¶È¶à¸ö²ãÃæÈ¥·¢ÏÖÊÂÎïµÄ²»Í¬ÌØÐÔ£¬¶ø OLAP ÕýÊǽ«ÕâÖÖѰ³£µÄ˼άģÐÍÓ¦Óõ½ÁËÊý¾Ý·ÖÎöÉÏ¡£

5. Êý¾Ý¿â½¨Ä£

Èç¹û°Ñ¶àάÊý¾ÝÄ£ÐÍÓ³Éäµ½¹ØÏµÊý¾Ý¿âºÍ SQL ²éѯÉÏ£¨ROLAP£©£¬Êý¾Ý¿â¸ÃÈçºÎÉè¼ÆÄØ£¿

´ó¶àÊýÊý¾Ý²Ö¿â¶¼²ÉÓà ¡°ÐÇÐÍÄ£ÐÍ¡± À´±íʾ¶àάÊý¾ÝÄ£ÐÍ¡£ÔÚÐÇÐÍÄ£ÐÍÖУ¬Ö»ÓÐÒ»¸öÊÂʵ±í£¬²¢ÇÒÿһ¸öά¶ÈÓÐÒ»¸öµ¥¶ÀµÄ±í¡£

ÊÂʵ±íÖеÄÿһ¸öÔª×é¶¼ÊÇÒ»¸öÍâ¼üÖ¸Ïòά¶È±íµÄÖ÷¼ü¡£Ã¿Ò»¸öά¶È±íµÄÁÐÊÇ×é³ÉÕâ¸öά¶ÈµÄËùÓÐÊôÐÔ¡£ÈçÏÂͼËùʾ¡£

ÁíÍâÒ»¸ö³£¼ûµÄÊý¾Ý¿âÉè¼Æ·½·¨ÊÇ ¡°Ñ©»¨Ä£ÐÍ¡±¡£Ñ©»¨Ä£ÐÍͨ¹ý¶¨Òåµ¥¶ÀµÄά¶È±í£¬¸Ä½øÁËÐÇÐÍÄ£ÐÍÖÐûÓÐÃ÷È·Ìṩά¶È²ã¼¶µÄÎÊÌâ¡£ÊÇνά¶È±íµÄÕýÔò»¯£¬ÈçÏÂͼ¡£µ«ÐÇÐÍÄ£Ð͸üÊʺÏä¯ÀÀά¶È²ã¼¶¡£

³ýÁËÊÂʵ±íºÍά¶È±í£¬Êý¾Ý²Ö¿â»¹ÐèÒª´´½¨ pre-aggregation ±íÓÃÓÚ´æ´¢ÌôÑ¡µÄÕªÒªÊý¾Ý¡£

6. ´óÊý¾Ý¼Ü¹¹

1010data ¹«Ë¾¸ß¼¶Èí¼þ¹¤³Ìʦ ADAM JACOBS ²©Ê¿ÔÚ ACM ͨѶ·¢±íµÄ¡¶´óÊý¾Ý²¡Àíѧ¡·Ö¸³ö´óÊý¾ÝµÄ²¡ÀíÔÚÓÚ·ÖÎö¶ø²»ÔÚÓÚ´æ´¢¡ª¡ªÎÒÃÇÆÚÍû´Ó³ÉÄêÀÛÔ»ýÀÛµÄÊý¾ÝÖÐÔÚ¼¸·ÖÖÓ»òÕß¼¸ÃëÄÚ»ñµÃ·ÖÎö½á¹û£¡

Æäʵ×÷ÕßÖ¸³öÁ˹ØÏµÊý¾Ý¿âµÄÔÚ´óÊý¾Ýʱ´úµÄ²¡Àí£¬ÈçÏÂͼËùʾһ¸öÊý¾Ý²Ö¿â·ÖÎö²Ù×÷µÄ SQL ÔÚÊý¾ÝÁ¿³¬¹ý 100 ÍòÌõ¼Ç¼ʱµÄÐÔÄܱíÏÖ¡£

 

Òò´Ë£¬Êý¾Ý²Ö¿â±»ÈÏΪÊǶÔÊý¾Ý¿â²éѯÐÔÄÜÎÊÌâµÄÒ»¸ö½â¾ö·½°¸¡£ÔÚ 90 Äê´ú£¬ÈËÃÇÒѾ­¶¼ÃæÁÙÒ»¸öÊý¾Ý±¬Õ¨µÄÌôÕ½£¬ÎªÁ˽â¾öÄǸöʱ´úµÄ ¡°´óÊý¾Ý¡± ÎÊÌ⣬Êý¾Ý²Ö¿âÓ¦Ô˶øÉú¡£

ÔÚ 1980s ÔçÆÚ£¬´óÊý¾ÝÊÇÖ¸Êý¾Ý¼¯³¬³öÁË´Å´ø»úµÄ´¦ÀíÄÜÁ¦¡£

ÔÚ 1990s£¬´óÊý¾ÝÊÇÖ¸Êý¾Ý¼¯³¬³öÁË Microsoft Excel »òÕß×ÀÃæ PC µÄ´¦ÀíÄÜÁ¦¡£

½ñÌ죬´óÊý¾ÝÊÇÖ¸Êý¾Ý¼¯³¬³öÁ˹ØÏµÊý¾Ý¿âµÄ´¦ÀíÄÜÁ¦¡£

Õ¾ÔÚ´óÊý¾Ýʱ´ú»ØÍûÊý¾Ý¼Ü¹¹µÄ·¢Õ¹ÀúÊ·£¬È»ºó´Ó¼¼ÊõµÄ½Ç¶È˼¿¼´óÊý¾ÝµÄ¶¨Ò壺µ±Ç°Á÷Ðеļ¼Êõ´¦Àí²»Á˵ÄÊý¾Ý£¬¶¼ÊÇ´óÊý¾Ý¡£

Êý¾Ý²Ö¿âµÄ±¾ÖÊÊǰÑÊý¾Ý±äС£¬Ò»°ãÓÐÁ½¸ö·½·¨£º

µÚÒ»ÊÇͨ¹ý³éÈ¡£¬×ª»»£¬¼ÓÔØ£¬ÇåÏ´¡£

µÚ¶þÊÇͨ¹ý pre-aggregation »ñµÃÊý¾ÝµÄÒ»·Ýµ¥¶À¿½±´¡£Òò´ËÊý¾Ý²Ö¿â±»¶¨ÒåΪ£º

ΪÁË·½±ã²éѯ·ÖÎö£¬°ÑÊý¾Ý´Ó¹ØÏµÊý¾Ý¿âÖе¥¶À¿½±´Ò»·Ý³öÀ´£¬È»ºóͨ¹ý ETL »òÕß ELT ת»»¡£

¶ÔÓÚ´óÊý¾Ý£¬½ö½ö¼òµ¥¹¹½¨Ò»¸öÊý¾Ý²Ö¿âÊDz»¹»µÄ¡£Êý¾ÝÓ¦¸ÃÈçºÎ½á¹¹»¯²ÅÄܸü±ãÓÚ·ÖÎö£¿Êý¾Ý¿âºÍ·ÖÎö¹¤¾ßÓ¦¸ÃÈçºÎÉè¼Æ²ÅÄܸü¸ßЧµÄ´¦Àí´óÊý¾Ý£¿

Òâʶµ½´óÊý¾Ý¹ÌÓеÄʱ¼äÊôÐԺͿռäÊôÐÔ£¬ÊÇÎÒÃÇÀí½â¹ØÏµÊý¾Ý¿â´¦Àí´óÊý¾Ýʱ´æÔÚÐÔÄÜÎÊÌâµÄÖØÒªÇ°Ìá¡£

Èç¹û˵Êý¾ÝÊÇÎÒ¶ÔÊÀ½çµÄ¹Û²ì¼Ç¼µÄ»°£¬´óÊý¾ÝÊÇÎÒÃǶÔÊÀ½çÔÚʱ¼äºÍ/»ò¿Õ¼äά¶ÈµÄÖØ¸´¹Û²ì¡£Õâ¾ÍÊÇ´óÊý¾ÝµÄʱ¿ÕÌØµã£¬Ò²ÊÇÊý¾Ý²Ö¿â¶àάģÐ͵Ĺ¹½¨Ô­Àí¡£

µ±½ñµÄÖ÷Á÷Êý¾Ý¿âÄ£ÐÍÊǹØÏµÊý¾Ý¿â£¬²¢ÇÒ¸ÃÄ£ÐÍÏÔʽµØºöÂÔ±íÖеÄÐеÄ˳Ðò¡£Õ⽫²»¿É±ÜÃâµ¼ÖÂÓ¦ÓÃÒÔ·Ç˳ÐòµÄ·½Ê½²éѯÊý¾Ý¡£

ÔÚÕâÖÖÇé¿öÏ£¬´«Í³µÄÊý¾Ý¼Ü¹¹¿ÉÒÔͨ¹ýÒýÈ뻺´æµÄ·½Ê½»º½âÐÔÄÜÎÊÌ⣬¶ø´óÊý¾ÝÔò»á´ó´ó·Å´óÁË´ÎÓÅ·ÃÎÊģʽ¶ÔÐÔÄܵÄÓ°Ïì¡£

ÈçÏÂͼËùÊ¾Ëæ»ú·ÃÎʺÍ˳Ðò·ÃÎʵIJî±ð¡£

Òò´ËÎÒÃÇÒªÒýÈ룬ҲÊÇÎÒÃÇÒªÍÆµ¼µÄ½áÂÛ£ºÄæÕýÔò»¯£¨Äæ¹æ·¶»¯£©ºÍ˳Ðò´æ´¢£¬²»¿É¸ü¸ÄÊý¾Ý¼¯£¨append only£¬immutable data set£©¡£Ë³×Å´æ´¢Õ»ÍùÏÂ×ߣ¬Ö±µ½Êý¾Ý´æ´¢¸ñʽ¡£ÊÇʱºò·ÅÆú¹ØÏµÊý¾Ý¿âÁË¡£

¼òµ¥½âÊÍÒ»ÏÂÄæÕýÔò»¯£¨Äæ¹æ·¶»¯£©¡£¾­µä¹ØÏµÊý¾Ý¿â½éÉܵÄËùÓз¶Ê½Ö¸µ¼Ë¼Ïë¶¼ÊÇÕýÔò»¯£¬¼õÉÙÖØ¸´Êý¾Ý£¬Èç¹ûÖØ¸´£¬Ôòµ¥¶À´´½¨Ò»¸ö±í£¬Ê¹ÓÃÍâ¼ü¹ØÁª£¬Ä¿µÄÊǽÚÊ¡´æ´¢¿Õ¼ä£¨ÄǸöʱºò´æ´¢ºÜ°º¹ó£©¡£

ÄæÕýÔò»¯ÔòÊÇÔÊÐíÁÐÖ®¼äµÄÖØ¸´¡£ÈçÏÂͼËùʾ¡£

ÎÒÓÐÒ»¸ö¿´·¨£¬NoSQL µÄ¼üÖµ´æ´¢¼´ÊÇÓü«¼òµÄ·Ç½á¹¹»¯À´ÊµÏֽṹ»¯´æ´¢µÄÄæ¹æ·¶»¯¡£¼üÖµ´æ´¢ÊǼ«¼òµÄ½á¹¹»¯£¬Ò²ÊǼ«¼òµÄ·Ç½á¹¹»¯¡£

¹ØÓÚ˳Ðò´æ´¢£¬²»¿É¸ü¸ÄÊý¾Ý¼¯£¬¿ÉÒԲο¼ Pat Helland¡¶Immutability Changes Everything¡·£¬ºÍÎÒÉÏÃæµÄ½éÉÜÊÇÒ»Öµġ£

¹ØÓÚ´«Í³¹ØÏµÊý¾Ý¿âµÄÌÖÂÛ»¹ÓÐÊý¾Ý¿âÖªÃûר¼Ò£¬2015 ÄêͼÁé½±µÃÖ÷ Michael Stonebraker ׫дµÄ¡¶One Size Fits All¡·£¬·Ö±ð´ÓÊý¾Ý²Ö¿âºÍÁ÷´¦ÀíÁ½¸ö·½ÃæÌ½ÌÖÁËÊý¾Ý¿â 25 ÄêÀ´Ò»Õв»±äµÄÁ鵤ÃîÒ©ÒѾ­²»ÔÙÊʺÏÏÖÔÚµÄÒµÎñ·¢Õ¹¡£

ÎÄÕµÄÖÐÐÄ˼ÏëºÍ Pat Helland Ìá³ö lambda ¼Ü¹¹Ò²ÓÐÒìÇúͬ¹¤Ö®Ãî¡£

speed layer

(i) compensates for the high latency of updates to the serving layer

(ii) deals with recent data only

serving layer

(i) indexes the batch views

(ii) Can be queried in low-latency, ad-hoc way

batch layer

(i) managing the master dataset (an immutable, append-only set of raw data),

(ii) pre-compute the batch views

Lambda ¼Ü¹¹Í³Ò»ÁË´«Í³Êý¾Ý²Ö¿âʱ´úµÄ°ëʵʱÔÚÏß²éѯ£¬¸Õ¸ÕÐËÆðµÄʵʱÁ÷´¦Àí£¨Online£©£¬ºÍÅú´¦ÀíÊý¾Ý·ÖÎö£¨Offline£©£¬¸øÊý¾Ý¼Ü¹¹µÄÉè¼ÆÈËÔ±ÌṩÁËÒ»¸öÈ«ÃæµÄ²Î¿¼¡£

ÔÙ½áºÏ°ë½á¹¹»¯£¬½á¹¹»¯Êý¾Ý´æ´¢£¬SQL and No-SQL »ìºÏ£¬ÎÒÃÇ¿ÉÒԵõ½ÏÂÃæÒ»¸öµäÐ͵ÄÊý¾Ý¼Ü¹¹£º

ÉÏÃæµÄÌÖÂÛÊǼܹ¹µÄ΢¹Û¿¼ÂÇ£¬ÈÃÎÒÃǻص½´óÊý¾Ý¼Ü¹¹µÄºê¹ÛÖ¸µ¼ÉÏÀ´¡£

Ŀǰҵ½ç¶Ô´óÊý¾ÝµÄÒ»¸ö¹²Ê¶µÄ¶¨ÒåÊÇ 5 ¸ö V¡£ÈçÏÂͼËùʾ¡£

´Ó¼¼ÊõµÄ½Ç¶ÈÐèҪרעÓÚÆäÖеÄÈý¸ö V£¬Í¨¹ýÔĶÁ´óÁ¿ÎÄÏ×£¬Îҵõ½ÏÂÃæÒ»¸ö·¶ÐÍ£º

1. ½èÁ¦¿ªÔ´Èí¼þ´¦ÀíÊý¾Ý¶àÑùÐÔÌôÕ½

2. ʹÓ÷ֲ¼Ê½¼¼Êõ½â¾öÊý¾ÝÈÝÁ¿ÎÊÌâ

3. ʹÓÃʵʱÁ÷´¦Àí¼¼Êõ½â¾öÊý¾ÝËÙ¶ÈÎÊÌâ

´«Í³µÄ OLAP ¶øÑÔ£¬ÊµÊ±ÐÔÐèÇó²»Ã÷ÏÔ£¬ÊµÊ±·ÖÎöµÄÇ¿ÐèÇóÊǵ¼Ö´óÊý¾Ý¼¼ÊõµÄÒ»¸öÔ­Òò¡£

¡ª¡ª²Üºéΰ

»ùÓÚ´Ë£¬ÎÒ¸öÈËÍÆ¼öµÄ´óÊý¾Ý¼Ü¹¹ÊÇ BDAS, the Berkeley Data Analytics Stack¡£Õâ¸ö¼Ü¹¹Öв»½ö°üº¬ÉÏÃæÌáµ½µÄÈý¸ö˼¿¼Î¬¶È£¬»¹ÌṩÁËÕû¸ö´óÊý¾Ý¼Ü¹¹ blueprint¡£ÄÚÈݺܶ࣬ʹÓÃʱ¸÷¸ö»÷ÆÆ£¬Ôڴ˲»×¸Êö¡£

̸ÁËÄÇô¶à£¬×ܽáһϴóÊý¾Ý¼Ü¹¹µÄ¼¸¸öÒªµã£º

·Ö²¼Ê½¼ÆËã

ʵʱÁ÷´¦Àí

Online ºÍ Offline

SQL ºÍ No-SQL£º»ìºÏ¼Ü¹¹Ò²ÊÇÑݽøÂ·¾¶Ö®Ò»

ÄæÕýÔò»¯£¨Äæ¹æ·¶»¯£©ºÍ˳Ðò´æ´¢£¬²»¿É¸ü¸ÄÊý¾Ý¼¯

7. Êý¾Ýºþ¼Ü¹¹

Pentaho µÄ CTO James Dixon ÔÚ 2011 ÄêÌá³öÁË ¡°Data Lake¡± µÄ¸ÅÄî¡£ÔÚÃæ¶Ô´óÊý¾ÝÌôսʱ£¬ËûÉù³Æ£º²»ÒªÏë×ÅÊý¾ÝµÄ ¡°²Ö¿â¡± ¸ÅÄÏëÏëÊý¾Ý µÄ ¡°ºþ¡± ¸ÅÄî¡£Êý¾Ý ¡°²Ö¿â¡± ¸ÅÄîºÍÊý¾Ýºþ¸ÅÄîµÄÖØ´óÇø±ðÊÇ£ºÊý¾Ý²Ö¿âÖÐÊý¾ÝÔÚ½øÈë²Ö¿â֮ǰÐèÒªÊÇÊÂÏȹéÀ࣬ÒÔ±ãÓÚδÀ´µÄ·ÖÎö¡£ÕâÔÚ OLAP ʱ´úºÜ³£¼û£¬µ«ÊǶÔÓÚÀëÏß·ÖÎöȴûÓÐÈκÎÒâÒ壬²»Èç°Ñ´óÁ¿µÄԭʼÊý¾ÝÏß±£´æÏÂÀ´£¬¶øÏÖÔÚÁ®¼ÛµÄ´æ´¢ÌṩÁËÕâ¸ö¿ÉÄÜ¡£

Nearly unlimited potential for operational insight and data discovery. As data volumes, data variety, and metadata richness grow, so does the benefit.

ÐÎÏóµÄÀ´¿´£¬ÈçÏÂͼËùʾ£¬Êý¾Ýºþ¼Ü¹¹±£Ö¤Á˶à¸öÊý¾ÝÔ´µÄ¼¯³É£¬²¢ÇÒ²»ÏÞÖÆ schema£¬±£Ö¤ÁËÊý¾ÝµÄ¾«È·¶È¡£Êý¾Ýºþ¿ÉÒÔÂú×ãʵʱ·ÖÎöµÄÐèÒª£¬Í¬Ê±Ò²¿ÉÒÔ×÷ΪÊý¾Ý²Ö¿âÂú×ãÅú´¦ÀíÊý¾ÝÍÚ¾òµÄÐèÒª¡£Êý¾Ýºþ»¹ÎªÊý¾Ý¿ÆÑ§¼Ò´ÓÊý¾ÝÖз¢ÏÖ¸ü¶àµÄÁé¸ÐÌṩÁË¿ÉÄÜ¡£

ºÍÊý¾Ý²Ö¿â¶Ô±ÈÀ´¿´£¬Êý¾Ý²Ö¿âÊǸ߶Ƚṹ»¯µÄ¼Ü¹¹£¬Êý¾ÝÔÚת»»Ö®Ç°ÊÇÎÞ·¨¼ÓÔØµ½Êý¾Ý²Ö¿âµÄ£¬Óû§¿ÉÒÔÖ±½Ó»ñµÃ·ÖÎöÊý¾Ý¡£¶øÔÚÊý¾ÝºþÖУ¬Êý¾ÝÖ±½Ó¼ÓÔØµ½Êý¾ÝºþÖУ¬È»ºó¸ù¾Ý·ÖÎöµÄÐèÒªÔÙת»»Êý¾Ý¡£

ÏÂÃæÎÒÕûÀíÁËÊý¾Ý²Ö¿âºÍÊý¾ÝºþÔÚ¶à¸öά¶ÈµÄÏêϸ¶Ô±È¡£

×ܽáÆðÀ´£¬Êý¾Ýºþ¼Ü¹¹ÓÐһϼ¸¸öÏÔÖøµÄÌØµã£º

Êý¾Ý´æ´¢£º´óÈÝÁ¿µÍ³É±¾

Êý¾Ý±£Õæ¶È£ºÊý¾ÝºþÒÔԭʼµÄ¸ñʽ±£´æÊý¾Ý

Êý¾ÝʹÓãºÊý¾ÝºþÖеÄÊý¾Ý¿ÉÒÔ·½±ãµÄ±»Ê¹ÓÃ

Ñӳٰ󶨣ºÊý¾ÝºþÌṩÁé»îµÄ£¬ÃæÏòÈÎÎñµÄÊý¾Ý°ó¶¨£¬²»ÐèÒªÌáǰ¶¨ÒåÊý¾ÝÄ£ÐÍ

µ±È»£¬¶ÔÓÚÊý¾Ýºþ¼Ü¹¹µÄÅúÆÀÒ²ÊDz»¾øÓÚ¶ú¡£ÓÐÈËÅúÆÀ˵£¬»ã¼¯¸÷ÖÖÔÓÂÒµÄÊý¾Ý£¬Ó¦¸Ã¾ÍÊÇÊý¾ÝÕÓÔó¡£Martin Fowler Ò²¶ÔÊý¾ÝºþÖÐÊý¾ÝµÄ°²È«ÐÔºÍ˽ÃÜÐÔÌá³öÁËÖÊÒÉ¡£

8. ÑݽøÂ·¾¶Êµ¼ù

ÏÖÔڵļܹ¹ÊÇÒ»¸öµäÐ͵ÄÊý¾Ý²Ö¿â¼Ü¹¹¡£ÈçÏÂͼËùʾ¡£ÏÖÔڵļܹ¹Éè¼ÆÓÐÒÔϼ¸¸öÒªµã£º

ROLAP£º»ùÓÚ Oracle Êý¾Ý¿â£¬µ«²¢Ã»ÓÐÓà Oracle µÄÊý¾Ý²Ö¿â£¬µ¥¶À¹¹½¨Êý¾Ý²Ö¿â¡£

Meta Data Driven µÄ¼Ü¹¹Éè¼Æ£ºMeta Data ¸²¸ÇÕû¸öÊý¾Ý pipe¡£µ±ÐµÄÊý¾ÝÐèÒª¼¯³É£¬Ö»ÐèÒª±à¼­Ð嵀 Meta Data£¬ÏµÍ³²»ÐèÒª×öÈκθı䡣

Schema Éè¼Æ£ºÖ÷ÒªÓÐÁ½Àà±í£ºÔ­Ê¼Êý¾Ý±íºÍ¾ÛºÏ±í£» ÿÀà±í¶¼ÓÐÈý²ã½á¹¹£º±í£¬ÓÃ×÷¾ÛºÏµÄÊÓͼ£¬ÓÃ×÷±¨±íµÄÊÓͼ¡£²»Í¬µÄÓ¦ÓÃʹÓò»Í¬µÄÊÓͼÀ´²Ù×÷Êý¾Ý¡£µ±Ô­Ê¼µÄÊý¾Ý±í½á¹¹±ä»¯Ê±£¬¿ÉÒÔ¸ù¾ÝÐèÒª¸ü¸Ä²»Í¬²ã´ÎµÄÊÓͼ¡£

Schema µÄÑÝ»¯¡£ÕâÊÇÒ»¸ö±È½Ï´óµÄÖ÷Ì⣬¹ØÏµÊý¾ÝÊÇ schema on write µÄ£¬ÈκÎÁеÄÔö¼Ó¶¼ÐèÒª alter ±í½á¹¹£¬Õâ»á´øÀ´¿Í»§ÏµÍ³ºÜ³¤Ê±¼äµÄ downtime¡£Òò´Ëԭʼ±í²ÉÓà 1000 ÁеÄÉè¼Æ£¨Oracle Ö§³ÖµÄ×î´óÁÐÊý£©£¬²¢ÇÒÁÐÖ»Ôö¼Ó£¬²»¼õÉÙ£¬±ÜÃâÁËÊý¾Ý¿â schema µÄ±ä»¯£¬½µµÍ²»Í¬ release Ö®¼ä migration µÄ³É±¾¡£

Êý¾Ý´æ´¢£º¶¨ÆÚÇå³ýԭʼÊý¾Ý£¬Ö»±£Áô¾ÛºÏÊý¾Ý¡£

ΪʲôÏÖÔڵļܹ¹ÐèÒªÑݽøÄØ£¿

Ê×Ïȵ±Ç°¼Ü¹¹ÃæÁÙÀ©Õ¹ÐÔµÄÌôÕ½¡£Êý¾Ý¿âÀ©Õ¹ÐÔÖ÷ÒªÒÀÀµÓÚ Oracle RAC ½â¾ö·½°¸£¬Oracle RAC ²»ÊÇÒ»¸öÏßÐÔµÄÀ©Õ¹·½°¸£¬Í¬Ê±Ò²Ôö¼ÓÁ˺ܶà¹ÜÀíºÍά»¤³É±¾¡£²¢ÇÒÓÉÓÚÓ²¼þµÄÏÞÖÆ£¬´¹Ö±ÐÔÀ©Õ¹²»ÊÇÒ»¸ö³¤ÆÚµÄ½â¾ö·½°¸¡£

Æä´Î£¬µ±Ç°µÄ´æ´¢³É±¾Ì«°º¹ó£¬Òò´ËÈ¥ IOE ³ÉΪĿ±ê¡£

µÚÈý£¬ÊµÊ±´¦ÀíÐèÇóÒ²ÊÇÇý¶¯¼Ü¹¹ÑݽøµÄÖØÒªÒòËØ¡£

È»ºó£¬¼Ü¹¹±ä³ÉÁËÕâÑù×Ó£º

´«Í³ SQL »ùÓÚÔÆÆ½Ì¨ÖØÐ¶¨ÒåΪ NewSQL£¬ÄÇô Data Warehouse Ò²¿ÉÒÔÖØÐ¶¨Òå New Data Warehouse¡£

¡ª¡ª²Üºéΰ

ÕâÑùµÄ¼Ü¹¹ÊDz»ÊÇ New Data Warehouse£¬ÎÒ²»ÖªµÀ£¬¿ÉÄÜÊÇ¡£ÔÚÕâÑùµÄ¼Ü¹¹Ï£¬×î´óµÄ±ä»¯¾ÍÊǸü»» Oracle Êý¾ÝΪ HDFS£¬²¢Ê¹Óà SQL on Hadoop£¨±ÈÈç Hive SQL£¬Spark SQL£©µÈ±£³Ö SQL ½Ó¿Ú£¬Î¬³ÖÁËǰ¶Ë·ÖÎöÒýÇæµÄ²»±ä¡£Meta Data ²¿·ÖÒÀÈ»±£³ÖÁËÔ­À´µÄÊý¾Ý½¨Ä££¬²¢Ã»ÓиıäÊý¾Ý¼¯³É·½Ê½¡£ÕâÑùµÄ¼Ü¹¹¼Ì³ÐÁ˾­µäµÄ²Ö¿â¼Ü¹¹£¬Ìá¸ßϵͳÀ©Õ¹ÐÔ£¬ÔÚÂú×ãÒµÎñÐèÇóµÄͬʱ£¬×î´ó»¯µÄ±£»¤ÒÑÓÐͶ×Ê¡£

Ôڼܹ¹ÑݽøÕâ¸ö¹ý³ÌÖУ¬ÓÐһЩ lesson learned£º

SQL on Hadoop ÊDZØÐëµÄ¡£¿Í»§Ï£Íû±£³Ö SQL ½Ó¿ÚµÄÁ¬ÐøÐÔ¡£

»ìºÏÊý¾Ý²Ö¿â¼Ü¹¹£ºÕë¶Ô²»Í¬µÄÒµÎñ²ÉÓò»Í¬´æ´¢·½°¸£¨Oracle ºÍ HDFS£©£¬Êý¾ÝÁ¿´óµÄ²ÉÓà HDFS ´æ´¢£¬Êý¾ÝÁ¿²»¹»´óµÄ£¨²»´æÔÚÀ©Õ¹ÐÔÌôÕ½µÄ£©¿ÉÒÔÒÀȻʹÓùØÏµÐÍÊý¾Ý¿â¡£

Äæ¹æ·¶»¯¶ÔÐÔÄܵÄÓ°ÏìÖØ´ó¡£Í¨¹ý¶ÔÄæ¹æ·¶Éè¼Æ£¬¿ÉÒÔ´ïµ½¹ØÏµÊý¾Ý¿âµÄ²éѯÐÔÄÜ¡£µ«ÊǶÔÓÚÄæ¹æ·¶»¯ÊÇ·ñ´æÔÚÆäËûÓ°Ï죬»¹ÐèÒªÑо¿¡£

Ïà¶ÔÓÚ sequence files ºÍ RC files£¬ORC Îļþ¸ñʽµÄÐÔÄÜÊÇ×îºÃµÄ¡£

ʵʱ pipe ʹÓà storm ºÍ Kafka ʵÏÖ¡£

¾ÍÏñ NewSQL ÄÇÑù£¬¿ÉÒÔÓÐ New Data Warehouse µÄ¡£¾ÍÊÇ Data Warehouse ÓëÔÆ¼ÆËãµÄÈںϣ¬¼´Êý¾Ý²Ö¿âµÄ´æ´¢²ãÔÚÔÆÆ½Ì¨£¬²ÉÓ÷ֲ¼Ê½ÏµÍ³¡£¶ÔÓ¦ÓÃ²à¶øÑÔ£¬ Ô­Óеķ½Ê½ÒÀ¾ÉÓÐЧ£¬ÕâÑù¾Í²»»á×ʲúÀË·Ñ£¬¶øÊÇÓÐЧµÄ¼Ì³Ð£¬ Ò²ÊÇͨÍùÊý¾ÝºþµÄÒ»¸ö½ÏÎÈÍ׵IJ½Öè¡£

¡ª¡ª²Üºéΰ

ÀϲÜÕâôһ˵£¬»íÈ»¿ªÀÊ¡£ÎÒÃÇÔÚ̸Êý¾Ý²Ö¿â¼Ü¹¹Ïò´óÊý¾Ý¼Ü¹¹ÑݽøµÄʱºò£¬ÆäʵÎÒÃÇÔÚ̸ New Data Warehouse ¼Ü¹¹¡£

¾ÍÏñµ±³õÊý¾Ý²Ö¿âµÄ³öÏÖÊǶÔÊý¾Ý¿âϵͳ´æÔÚµÄÏÞÖÆ½øÐв¹³äÒ»Ñù£¬Ä¿Ç°µÄ´óÊý¾Ýƽ̨ÊǶÔÊý¾Ý²Ö¿âϵͳ´æÔÚµÄÎÊÌâ½øÐв¹³ä¡£

ËûÃǵļ¼Êõ˼·£¬¼¼Êõ¼Ü¹¹£¬Óû§ÐèÇóijÖ̶ֳÈÉÏÊÇÒ»Öµģ¬»òÕß˵ºËÐĵÄ˼ÏëÊÇÒ»Öµġ£²»Ò»Öµĵط½½ö½öÊÇΪÁËÂú×ãÐÔÄܶø×öµÄ¼¼Êõ·½°¸µÄµ÷Õû¡£

Ê×ÏÈ¿´Êý¾Ý¼¯³É¼Ü¹¹¡£ÈçÏÂͼ£¬»ùÓÚ Hadoop µÄÊý¾Ý¼¯³É¼Ü¹¹ºÍ»ùÓÚ¹ØÏµÊý¾Ý¿âµÄ´«Í³Êý¾Ý¼¯³É¼Ü¹¹ÊÇÒ»Öµġ£

²»Í¬µØ·½ÔÚÓÚÓÉÓÚÊý¾ÝÁ¿µÄÔö´ó£¬×ó±ßµÄ¼Ü¹¹²ÉÓþßÓÐÄæÕýÔò»¯£¨Äæ¹æ·¶»¯£©ºÍ˳Ðò´æ´¢£¬²»¿É¸ü¸ÄÊý¾Ý¼¯µÈÌØµãµÄ Hadoop ƽ̨´æ´¢Êý¾Ý¡£

Æä´Î¿´Êý¾Ý·ÖÎö·½·¨¡£ËäȻ˵»ùÓÚ Hadoop µÄÊý¾Ý¼¯³É¼Ü¹¹²ÉÓÃÁË Hadoop Êý¾Ý´æ´¢Æ½Ì¨£¨ÄÚÖà MapRdecue Êý¾Ý´¦ÀíÒýÇæ£©¡£

ÆäÊý¾Ý²Ù×÷£¬Êý¾Ý·ÖÎö·½·¨ÔÚ˼ÏëÉÏÊÇÒ»Öµġª¡ª´Ó´óÁ¿µÄÊý¾Ý¼¯ÖлñµÃÓɼÛÖµµÄÐÅÏ¢¡ª¡ªÈçÏÂͼËùʾ£¬Êý¾Ý²Ö¿âµÄ²Ù×÷Óï¾ä£¨group-by-aggregation£©Óë MapRdecue µÄ²Ù×÷º¯Êý¶ÔÓ¦¹ØÏµ¡£

ËùÒÔ MapRdecue µÄºËÐÄ˼Ïë¾ÍÊÇÔÚÊý¾Ý·ÖƬµÄ»ù´¡ÉϰÑÊý¾Ý²Ö¿âÖÐµÄ group-by-aggregation ²Ù×÷ת»»³É·Ö²¼Ê½Ö´ÐУ¬MapRdecue ºÍ´«Í³Êý¾Ý²Ö¿âµÄ˼ÏëÊÇÒ»Öµġ£

The Map-Reduce programming model provides a good abstraction of group-by-aggregation operations over a cluster of machines.

The programmer provides a map function that performs grouping and a reduce function that performs aggregation.

The underlying run-time system achieves parallelism by partitioning the data and processing different partitions concurrently using multiple machines.

Ëùν´´Ð£¬¼Ì³ÐºÍ·¢Õ¹£¬´ó¸ÅÈç´Ë°É¡£¹Ö²»µÃ Michael Stonebraker ׫ÎÄ¡¶MapReduce: A major step backwards¡·Ö¸³ö MapReduce ÊÇÒ»¸ö¾Þ´óµ¹ÍË£¬²¢Òý·¢ÁËËûºÍ DeWitt Ö®¼äµÄ´óÂÛÕ½¡£

Google ÔÚ 2010 Ä껹Ϊ MapRdecue ÉêÇëÁËרÀû£¬µ«ÎÒÈÏΪ MapReduce ²»ËãÊÇÖØ´ó»ù´¡ÐÔ´´Ð£¬±¾ÖÊÉÏ»¹ÊÇÔÆÊ±´úµÄÊý¾Ý²Ö¿â¼¼Êõ£¨New Data Warehouse£©¡£µ«Æä×÷Ϊ Google Èý¼ÜÂí³µµÄ·çÍ·ÈÃÈËÃÇ´ó´óºöÂÔÁË´«Í³Êý¾Ý²Ö¿âµÄ¼¼Êõ˼Ï룬Îóµ¼Á˺ܶàÄêÇáѧ×ӵļ¼Êõ³ç°Ý¡£

ËùÒÔ±¾Îij¢ÊÔÌṩһ¸ö¼¼ÊõÂöÂ磺Data Warehouse->New Data Warehouse->Data Lake£¬²ûÊö´óÊý¾Ý¼¼Êõ±³ºóµÄ¼¼Êõ¼Ü¹¹Ñݽø£¬Å×שÒýÓñ£¬»¶Ó­ÅúÆÀÖ¸Õý¡£

A giant step backward in the programming paradigm for large-scale data intensive applications.

Not novel at all ¡ª it represents a specific implementation of well known techniques developed nearly 25 years ago.

To draw an analogy to SQL, map is like the group-by clause of an aggregate query. Reduce is analogous to the aggregate function (e.g., average) that is computed over all the rows with the same group-by attribute.

ÔÚ New Data Warehouse ¼Ü¹¹µÄ»ù´¡ÉÏ£¬ÈçºÎÏò Data Lake Ñݽø£¿

ÒÔµçÐÅÐÐÒµ¾ÙÀýÀ´Ëµ£¬NFV ºÍ SDN ÕýÔÚÍÆ¶¯µçÐÅÍøÂçÉ豸¿ØÖÆÆ½ÃæºÍÊý¾ÝÆ½ÃæµÄ·ÖÀ룬µçÐÅÉ豸Êý¾Ý»á×ßÏòÊý¾Ýºþ¼Ü¹¹¡£

µçÐÅÉ豸Êý¾ÝÈںϣ¬ÔËÓªÊý¾ÝÈںϣ¬×îÖÕ»á×ßÏòÒ»¸ö´óÈںϡ£×ܽáÆðÀ´£¬µçÐÅ´óÊý¾Ý¶ÔÓÚÊý¾Ýºþ¼Ü¹¹µÄÓµ±§£¬À´×ÔÓÚÒÔÏÂËĸö·½ÃæµÄÇý¶¯¡£ÎÒÓÃËĸöÍÆµ¼¹«Ê½£¬ÈçÏ£º

5G->BigData (Semi-Structured and Unstructured) -> Modern Data Architecture for Enterprise -> Data Lake Storage Architecture -> Data Lake

Cloud -> Network Function Cloudification -> Network Function Virtualization -> stateless VNF -> Distributed Sharing Storage -> Data Lake

Distributed analytics -> Data Lake

Hierarchy architecture -> Flat operations architecture -> Data Lake

ÎÒÃdz¢ÊÔ¹ýÔÚÊý¾Ý¼ÓÔØ¹ý³ÌÖÐ×ÔѧϰµÄ²úÉúÊý¾Ý¿â schema£¬Ö¤Ã÷Õâ¸ö˼·ÊÇ¿ÉÐеġ£»ùÓڽṹ»¯µÄÊý¾Ý£¬Õâ¸ö¹ý³Ì·Ç³£ÈÝÒס£µ«¶ÔÓڷǽṹ»¯µÄÊý¾Ý£¬»¹ÊÇ´æÔںܴóµÄÌôÕ½¡£

ʹÓûúÆ÷ѧϰµÄ·½Ê½£¬Ä£ÐÍѵÁ·³É±¾¿ÖźÍÈ˹¤³éÈ¡ schema µÄ¹¤×÷Á¿ÊÇÏ൱´óµÄ¡£µ«ÊÇÎÒÒ²¿´µ½ÔÚһЩ CMDB µÄÊý¾Ý¿âÐû³ÆÒѾ­Ö§³ÖÊý¾Ý¿â schema µÄ×Ô¶¯Éý¼¶£¬µÈÎÒµ÷ÑÐÒ»ÏÂÔÙ˵¡£

 

   
7753 ´Îä¯ÀÀ       29
Ïà¹ØÎÄÕÂ

»ùÓÚEAµÄÊý¾Ý¿â½¨Ä£
Êý¾ÝÁ÷½¨Ä££¨EAÖ¸ÄÏ£©
¡°Êý¾Ýºþ¡±£º¸ÅÄî¡¢ÌØÕ÷¡¢¼Ü¹¹Óë°¸Àý
ÔÚÏßÉ̳ÇÊý¾Ý¿âϵͳÉè¼Æ ˼·+Ч¹û
 
Ïà¹ØÎĵµ

GreenplumÊý¾Ý¿â»ù´¡Åàѵ
MySQL5.1ÐÔÄÜÓÅ»¯·½°¸
ijµçÉÌÊý¾ÝÖÐ̨¼Ü¹¹Êµ¼ù
MySQL¸ßÀ©Õ¹¼Ü¹¹Éè¼Æ
Ïà¹Ø¿Î³Ì

Êý¾ÝÖÎÀí¡¢Êý¾Ý¼Ü¹¹¼°Êý¾Ý±ê×¼
MongoDBʵս¿Î³Ì
²¢·¢¡¢´óÈÝÁ¿¡¢¸ßÐÔÄÜÊý¾Ý¿âÉè¼ÆÓëÓÅ»¯
PostgreSQLÊý¾Ý¿âʵսÅàѵ
×îл¼Æ»®
DeepSeek´óÄ£ÐÍÓ¦Óÿª·¢ 6-12[ÏÃÃÅ]
È˹¤ÖÇÄÜ.»úÆ÷ѧϰTensorFlow 6-22[Ö±²¥]
»ùÓÚ UML ºÍEA½øÐзÖÎöÉè¼Æ 6-30[±±¾©]
ǶÈëʽÈí¼þ¼Ü¹¹-¸ß¼¶Êµ¼ù 7-9[±±¾©]
Óû§ÌåÑé¡¢Ò×ÓÃÐÔ²âÊÔÓëÆÀ¹À 7-25[Î÷°²]
ͼÊý¾Ý¿âÓë֪ʶͼÆ× 8-23[±±¾©]
 
×îÐÂÎÄÕÂ
InfluxDB¸ÅÄîºÍ»ù±¾²Ù×÷
InfluxDB TSM´æ´¢ÒýÇæÖ®Êý¾ÝдÈë
Éî¶ÈÂþ̸Êý¾Ýϵͳ¼Ü¹¹¡ª¡ªLambda architecture
Lambda¼Ü¹¹Êµ¼ù
InfluxDB TSM´æ´¢ÒýÇæÖ®Êý¾Ý¶ÁÈ¡
×îпγÌ
OracleÊý¾Ý¿âÐÔÄÜÓÅ»¯¡¢¼Ü¹¹Éè¼ÆºÍÔËÐÐά»¤
²¢·¢¡¢´óÈÝÁ¿¡¢¸ßÐÔÄÜÊý¾Ý¿âÉè¼ÆÓëÓÅ»¯
NoSQLÊý¾Ý¿â£¨Ô­Àí¡¢Ó¦Óá¢×î¼Ñʵ¼ù£©
ÆóÒµ¼¶Hadoop´óÊý¾Ý´¦Àí×î¼Ñʵ¼ù
OracleÊý¾Ý¿âÐÔÄÜÓÅ»¯×î¼Ñʵ¼ù
³É¹¦°¸Àý
ij½ðÈÚ¹«Ë¾ Mysql¼¯ÈºÓëÐÔÄÜÓÅ»¯
±±¾© ²¢·¢¡¢´óÈÝÁ¿¡¢¸ßÐÔÄÜÊý¾Ý¿âÉè¼ÆÓëÓÅ»¯
ÖªÃûijÐÅϢͨÐŹ«Ë¾ NoSQL»º´æÊý¾Ý¿â¼¼Êõ
±±¾© oracleÊý¾Ý¿âSQLÓÅ»¯
ÖйúÒÆ¶¯ IaaSÔÆÆ½Ì¨-Ö÷Á÷Êý¾Ý¿â¼°´æ´¢¼¼Êõ