Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
Ò»ÎÄ×ܽáÊý¾Ý¿ÆÑ§¼Ò³£ÓõÄPython¿â£¨ÉÏ£©
 
×÷Õߣº°²¿É
  3873  次浏览      28
 2020-8-12  
 
±à¼­ÍƼö:
ÕâÆªÎÄÕÂÖУ¬ÎÒÃÇÌôÑ¡ÁË24¸öÓÃÓÚÊý¾Ý¿ÆÑ§µÄPython¿â¡£ÕâЩ¿âÓÐ×Ų»Í¬µÄÊý¾Ý¿ÆÑ§¹¦ÄÜ£¬ÀýÈçÊý¾ÝÊÕ¼¯£¬Êý¾ÝÇåÀí£¬Êý¾Ý̽Ë÷£¬½¨Ä£µÈ£¬½ÓÏÂÀ´ÎÒÃÇ»á·ÖÀà½éÉÜ¡£
±¾ÎÄÀ´×ÔÓÚ Î¢ÐŹ«ÖںŠ- ÅÍ´´AI£¨xunixs£©£¬ÓÉ»ðÁú¹ûÈí¼þAlice±à¼­£¬ÍƼö¡£

½éÉÜ

ÎÒÊÇPythonÓïÑÔµÄÖÒʵ·ÛË¿£¬ËüÊÇÎÒÔÚÊý¾Ý¿ÆÑ§·½ÃæÑ§µ½µÄµÚÒ»Ãűà³ÌÓïÑÔ¡£PythonÓÐÈý¸öÌØµã£º

ËüµÄÒ×ÓÃÐÔºÍÁé»îÐÔ

È«ÐÐÒµµÄ½ÓÊܶȣºËüÊÇÒµÄÚ×îÁ÷ÐеÄÊý¾Ý¿ÆÑ§ÓïÑÔ

ÓÃÓÚÊý¾Ý¿ÆÑ§µÄÅÓ´óÊýÁ¿µÄPython¿â

ÊÂʵÉÏ£¬ÓÐÈç´Ë¶àµÄPython¿â£¬Òª¸úÉÏËüÃǵķ¢Õ¹ËÙ¶È¿ÉÄÜ»á±äµÃ·Ç³£À§ÄÑ¡£Õâ¾ÍÊÇΪʲôÎÒ¾ö¶¨Ïû³ýÕâÖÖÍ´¿à£¬²¢±à¼­Õâ24¸öPython¿â¡£»»¾ä»°Ëµ£¬ÔÚÊý¾Ý¿ÆÑ§ÁìÓò£¬ÄãÕÆÎÕÕâ¸ö24¸öpython¿â¾Í¹»ÁË£¡

ÄÇÊÇ¶ÔµÄ - ÎÒ¸ù¾Ý¸÷×ÔÔÚÊý¾Ý¿ÆÑ§ÖеĽÇÉ«¶ÔÕâЩ¿â½øÐÐÁË·ÖÀà¡£ËùÒÔÎÒÌáµ½ÁËÓÃÓÚÊý¾ÝÇåÀí£¬Êý¾Ý²Ù×÷£¬¿ÉÊÓ»¯£¬¹¹½¨Ä£ÐÍÉõÖÁÄ£ÐͲ¿Êð£¨ÒÔ¼°ÆäËû£©µÄ¿â¡£ÕâÊÇÒ»¸ö·Ç³£È«ÃæµÄÁÐ±í£¬¿É°ïÖúÄú¿ªÊ¼Ê¹ÓÃPython½øÐÐÊý¾Ý¿ÆÑ§Ö®Âá£

ÓÃÓÚ²»Í¬Êý¾Ý¿ÆÑ§ÈÎÎñµÄPython¿â£º

ÓÃÓÚÊý¾ÝÊÕ¼¯µÄPython¿â£º

Beautiful Soup

Scrapy

Selenium

ÓÃÓÚÊý¾ÝÇåÀíºÍ²Ù×÷µÄPython¿â£º

Pandas

PyOD

NumPy

Spacy

ÓÃÓÚÊý¾Ý¿ÉÊÓ»¯µÄPython¿â£º

Matplotlib

Seaborn

Bokeh

ÓÃÓÚ½¨Ä£µÄPython¿â£º

Scikit-learn

TensorFlow

PyTorch

ÓÃÓÚÄ£ÐͿɽâÊÍÐÔµÄPython¿â£º

Lime

H2O

ÓÃÓÚÒôƵ´¦ÀíµÄPython¿â£º

Librosa

Madmom

pyAudioAnalysis

ÓÃÓÚͼÏñ´¦ÀíµÄPython¿â£º

OpenCV-Python

Scikit-image

Pillow

ÓÃÓÚÊý¾Ý¿âµÄPython¿â£º

Psycopg

SQLAlchemy

ÓÃÓÚ²¿ÊðµÄPython¿â£º

Flask

ÓÃÓÚÊý¾ÝÊÕ¼¯µÄPython¿â

ÄúÊÇ·ñÓöµ½¹ýÒ»ÖÖÇé¿ö£¬¼´ÄúûÓÐ×ã¹»µÄÊý¾ÝÀ´½â¾öÄúÏëÒª½â¾öµÄÎÊÌ⣿ÕâÊÇÊý¾Ý¿ÆÑ§ÖÐÒ»¸öÓÀºãµÄÎÊÌâ¡£Õâ¾ÍÊÇΪʲôѧϰÈçºÎÌáÈ¡ºÍÊÕ¼¯Êý¾Ý¶ÔÊý¾Ý¿ÆÑ§¼ÒÀ´ËµÊÇÒ»Ïî·Ç³£¹Ø¼üµÄ¼¼ÄÜ¡£Ëü¿ª±ÙÁËÒÔǰÎÞ·¨ÊµÏÖµÄ;¾¶¡£

ËùÒÔÕâÀïÓÐÈý¸öÓÐÓõÄPython¿â£¬ÓÃÓÚÌáÈ¡ºÍÊÕ¼¯Êý¾Ý¡£

/* Beautiful Soup */

ÊÕ¼¯Êý¾ÝµÄ×î¼Ñ·½·¨Ö®Ò»ÊÇ×¥È¡ÍøÕ¾£¨µ±È»ÊǵÀµÂºÍºÏ·¨µÄ£¡£©¡£ÊÖ¶¯Íê³ÉÐèÒª»¨·ÑÌ«¶àµÄÊÖ¶¯¹¤×÷ºÍʱ¼ä¡£ÃÀÀöµÄÌÀÊÇÄãµÄ¾ÈÐÇ¡£

Beautiful SoupÊÇÒ»¸öHTMLºÍXML½âÎöÆ÷£¬ËüΪ½âÎöµÄÒ³Ãæ´´½¨½âÎöÊ÷£¬ÓÃÓÚ´ÓÍøÒ³ÖÐÌáÈ¡Êý¾Ý¡£´ÓÍøÒ³ÖÐÌáÈ¡Êý¾ÝµÄ¹ý³Ì³ÆÎªÍøÂçץȡ¡£

ʹÓÃÒÔÏ´úÂë°²×°BeautifulSoup£º

pip install beautifulsoup4

ÕâÊÇÒ»¸öʵÏÖBeautiful SoupµÄ¼òµ¥´úÂ룬ÓÃÓÚ´ÓHTMLÖÐÌáÈ¡ËùÓÐanchor±ê¼Ç£º

#!/usr/bin/python3
# Anchor extraction from html document
from bs4 import BeautifulSoup
from urllib.request import urlopen

with urlopen('LINK') as response:
soup = BeautifulSoup (response, 'html.parser')
for anchor in soup.find_all('a'):
print(anchor.get('href', '/'))

 

ÎÒ½¨Òéͨ¹ýÒÔÏÂÎÄÕÂÀ´Ñ§Ï°ÈçºÎÔÚPythonÖÐʹÓÃBeautifulSoup£º

ʹÓÃBeautifulSoupÔÚPythonÖнøÐÐWeb ScrapingµÄ³õѧÕßÖ¸ÄÏ

/* Scrapy */

ScrapyÊÇÁíÒ»¸öÓÃÓÚWebץȡµÄ³¬¼¶ÓÐÓõÄPython¿â¡£ËüÊÇÒ»¸ö¿ªÔ´ºÍЭ×÷¿ò¼Ü£¬ÓÃÓÚ´ÓÍøÕ¾ÖÐÌáÈ¡ÄúÐèÒªµÄÊý¾Ý¡£ËüʹÓÃÆðÀ´¿ìËÙ¶ø¼òµ¥¡£

ÕâÊǰ²×°ScrapyµÄ´úÂ룺

pip install scrapy

ËüÊÇ´ó¹æÄ£ÍøÂçץȡµÄ¿ò¼Ü¡£ËüΪÄúÌṩÁËÓÐЧÌáÈ¡ÍøÕ¾Êý¾Ý£¬¸ù¾ÝÐèÒª´¦ÀíÊý¾Ý²¢½«Æä´æ´¢ÔÚÊ×Ñ¡½á¹¹ºÍ¸ñʽÖÐËùÐèµÄËùÓй¤¾ß¡£

ÕâÊÇÒ»¸öʵÏÖScrapyµÄ¼òµ¥´úÂ룺

import scrapy

class Spider(scrapy.Spider):
name = 'NAME'
start_urls = ['LINK']

def parse(self, response):
for title in response.css('.post-header>h2'):
yield {'title': title.css('a ::text').get()}

for next_page in response.css('a.next-posts-link'):
yield response.follow(next_page, self.parse)

 

ÕâÊÇѧϰScrapy²¢ÔÚPythonÖÐʵÏÖËüµÄÍêÃÀ½Ì³Ì£º

ʹÓÃScrapyÔÚPythonÖнøÐÐWeb Scraping£¨Óжà¸öʾÀý£©

/* Selenium */

SeleniumÊÇÒ»ÖÖÓÃÓÚ×Ô¶¯»¯ä¯ÀÀÆ÷µÄÁ÷Ðй¤¾ß¡£ËüÖ÷ÒªÓÃÓÚÐÐÒµ²âÊÔ£¬µ«¶ÔÓÚÍøÂçץȡҲ·Ç³£·½±ã¡£Êµ¼ÊÉÏ£¬SeleniumÔÚITÁìÓò±äµÃ·Ç³£ÊÜ»¶Ó­£¬ËùÒÔÎÒÏàÐźܶàÈËÖÁÉÙ»áÌý˵¹ýËü¡£

ÎÒÃÇ¿ÉÒÔÇáËɵرàдPython½Å±¾ÒÔʹÓÃSelenium×Ô¶¯»¯Webä¯ÀÀÆ÷¡£ËüΪÎÒÃÇÓÐЧµØÌáÈ¡Êý¾Ý²¢ÒÔÎÒÃÇϲ»¶µÄ¸ñʽ´æ´¢Êý¾Ý£¬ÒÔ¹©½«À´Ê¹Óá£

ÎÒ×î½üдÁËһƪ¹ØÓÚʹÓÃPythonºÍSeleniumץȡYouTubeÊÓÆµÊý¾ÝµÄÎÄÕ£º

Êý¾Ý¿ÆÑ§ÏîÄ¿£ºÊ¹ÓÃPythonºÍSelenium¶ÔYouTubeÊý¾Ý½øÐйβÁÒÔ¶ÔÊÓÆµ½øÐзÖÀà

ÓÃÓÚÊý¾ÝÇåÀíºÍ²Ù×÷µÄPython¿â

ºÃ°É - ËùÒÔÄãÒѾ­ÊÕ¼¯ÁËÄãµÄÊý¾Ý²¢×¼±¸ºÃDZÈë¡£ÏÖÔÚÊÇʱºòÇåÀíÎÒÃÇ¿ÉÄÜÃæÁÙµÄÈκλìÂÒÊý¾Ý²¢Ñ§Ï°ÈçºÎ²Ù×÷Ëü£¬ÒÔ±ãÎÒÃǵÄÊý¾Ý¿ÉÒÔÓÃÓÚ½¨Ä£¡£

ÕâÀïÓÐËĸöPython¿â¿ÉÒÔ°ïÖúÄúʵÏÖÕâһĿ±ê¡£Çë¼Çס£¬ÎÒÃǽ«´¦ÀíÏÖʵÊÀ½çÖеĽṹ»¯£¨Êý×Ö£©ºÍÎı¾Êý¾Ý£¨·Ç½á¹¹»¯£© - Õâ¸ö¿âÁÐ±íº­¸ÇÁËËùÓÐÕâЩ¡£

/* Pandas */

ÔÚÊý¾Ý´¦ÀíºÍ·ÖÎö·½Ã棬ûÓÐʲôÄܱÈpandas¸üʤһ³ï¡£ËüÊÇÏÖ½×¶Î×îÁ÷ÐеÄPython¿â¡£PandasÊÇÓÃPythonÓïÑÔ±àдµÄ£¬ÌرðÊÊÓÃÓÚ²Ù×÷ºÍ·ÖÎöÈÎÎñ¡£

PandasÐèÒªÔ¤ÏȰ²×°Python»òAnaconda£¬ÕâÀïÊÇÐèÒªµÄ´úÂ룺

pip install pandas

PandasÌṩµÄ¹¦ÄÜÈçÏ£º

Êý¾Ý¼¯¼ÓÈëºÍºÏ²¢

Êý¾Ý½á¹¹ÁÐɾ³ýºÍ²åÈë

Êý¾Ý¹ýÂË

ÖØËÜÊý¾Ý¼¯

DataFrame¶ÔÏó²Ù×ÝÊý¾ÝµÈµÈ£¡

ÕâÊÇһƪÎÄÕºÍÒ»¸öºÜ°ôµÄ±¸Íüµ¥£¬ÈÃÄãµÄpandas¼¼ÄÜ´ïµ½×î¼Ñ״̬£º

12ÓÃÓÚÊý¾Ý²Ù×÷µÄPythonÖÐÓÐÓõÄÐÜè¼¼Êõ

CheatSheet£ºÊ¹ÓÃPythonÖеÄPandas ½øÐÐÊý¾Ý̽Ë÷

/* PyOD */

ÔÚ¼ì²âÒ쳣ֵʱ¿à¿àÕõÔú£¿Äã²»ÊÇÒ»¸öÈË¡£ÕâÊÇÓб§¸º£¨ÉõÖÁÒѽ¨Á¢£©Êý¾Ý¿ÆÑ§¼ÒµÄ³£¼ûÎÊÌâ¡£ÄãÈçºÎ¶¨ÒåÒì³£Öµ£¿

±ðµ£ÐÄ£¬PyOD¿â¿ÉÒÔ°ïµ½Äú¡£

PyODÊÇÒ»¸öÈ«ÃæÇÒ¿ÉÀ©Õ¹µÄPython¹¤¾ß°ü£¬ÓÃÓÚ¼ì²âÍâΧ¶ÔÏó¡£Òì³£¼ì²â»ù±¾ÉÏÊÇʶ±ðÓë´ó¶àÊýÊý¾ÝÏÔ×Ų»Í¬µÄÏ¡ÓÐÏîÄ¿»ò¹Û²ì¡£

Äú¿ÉÒÔʹÓÃÒÔÏ´úÂëÏÂÔØpyOD£º

pip install pyod

ÏëÁ˽âPyODÈçºÎ¹¤×÷ÒÔ¼°ÈçºÎ×Ô¼ºÊµÏÖ£¿ÄÇô£¬ÏÂÃæµÄÖ¸ÄϽ«»Ø´ðÄãËùÓеÄPyODÎÊÌ⣺

ʹÓÃPyOD ¿âÔÚPythonÖÐѧϰÒì³£¼ì²âµÄÒ»¸öºÜ°ôµÄ½Ì³Ì

/* NumPy */

ÏñPandasÒ»Ñù£¬NumPyÊÇÒ»¸ö·Ç³£ÊÜ»¶Ó­µÄPython¿â¡£NumPyÒýÈëÁËÖ§³Ö´óÐͶàάÊý×éºÍ¾ØÕóµÄº¯Êý¡£Ëü»¹ÒýÈëÁ˸߼¶Êýѧº¯ÊýÀ´´¦ÀíÕâЩÊý×éºÍ¾ØÕó¡£

NumPyÊÇÒ»¸ö¿ªÔ´¿â£¬Óжà¸ö¹±Ï×Õß¡£ËüÔ¤ÏȰ²×°ÁËAnacondaºÍPython£¬ÕâÀïÊǰ²×°ËüµÄ´úÂ룺

pip install numpy

# ´´½¨Êý×é
import numpy as np
x = np.array([1, 2, 3])
print(x)
y = np.arange(10)
print(y)

# output - [1 2 3]
# [0 1 2 3 4 5 6 7 8 9]

# »ù±¾²Ù×÷
a = np.array([1, 2, 3, 6])
b = np.linspace(0, 2, 4)
c = a - b
print(c)
print(a**2)

#output - [1. 1.33333333 1.66666667 4. ]
# [ 1 4 9 36]

»¹Óиü¶à£¡

/* SpaCy */

µ½Ä¿Ç°ÎªÖ¹£¬ÎÒÃÇÒѾ­ÌÖÂÛÁËÈçºÎÇåÀíºÍ²Ù×÷ÊýÖµÊý¾Ý¡£µ«ÊÇ£¬Èç¹ûÄãÕýÔÚ´¦ÀíÎı¾Êý¾ÝÄØ£¿

spaCyÊÇÒ»¸ö³¬¼¶ÓÐÓÃÇÒÁé»îµÄ×ÔÈ»ÓïÑÔ´¦Àí£¨NLP£©¿âºÍ¿ò¼Ü£¬ÓÃÓÚÇåÀíÎı¾ÎĵµÒÔ½øÐÐÄ£ÐÍ´´½¨¡£ÓëÓÃÓÚÀàËÆÈÎÎñµÄÆäËû¿âÏà±È£¬SpaCy¸ü¿ì¡£

ÔÚLinuxÖа²×°SpacyµÄ´úÂ룺

pip install -U spacy
python -m spacy download en

ÒªÔÚÆäËû²Ù×÷ϵͳÉϰ²×°Ëü£¬Çë²Î¿¼´ËÁ´½Ó(https://spacy.io/usage/)¡£

µ±È»£¬ÎÒÃÇΪÄúѧϰspaCyÌṩÁ˱£ÕÏ£º

×ÔÈ»ÓïÑÔ´¦Àí±äµÃÇáËÉ - ʹÓÃSpaCy£¨ÔÚPythonÖУ©

ÓÃÓÚÊý¾Ý¿ÉÊÓ»¯µÄPython¿â

ÏÂÒ»¸öÊÇʲô£¿ÎÒÔÚÕû¸öÊý¾Ý¿ÆÑ§×îϲ»¶µÄ·½Ãæ - Êý¾Ý¿ÉÊÓ»¯£¡Êý¾Ý¿ÉÊÓ»¯ºó£¬ÎÒÃǵļÙÉ轫µÃµ½Ö±¹ÛµÄÑéÖ¤£¡

ÕâÀïÓÐÈý¸öÓÃÓÚÊý¾Ý¿ÉÊÓ»¯µÄºÜ°ôµÄPython¿â¡£

/* Matplotlib */

MatplotlibÊÇPythonÖÐ×îÁ÷ÐеÄÊý¾Ý¿ÉÊÓ»¯¿â¡£ËüÔÊÐíÎÒÃÇÉú³ÉºÍ¹¹½¨¸÷ÖÖͼ±í¡£Ëü¿ÉÒÔÓëSeabornÒ»ÆðʹÓá£

Äú¿ÉÒÔͨ¹ýÒÔÏ´úÂë°²×°matplotlib£º

pip install matplotlib

pip install matplotlib

ÒÔÏÂÊÇÎÒÃÇ¿ÉÒÔʹÓÃmatplotlib¹¹½¨µÄ²»Í¬ÀàÐ͵Äͼ±íµÄ¼¸¸öʾÀý£º

# Ö±·½Í¼
%matplotlib inline
import matplotlib.pyplot as plt
from numpy.random import normal
x = normal(size=100)
plt.hist(x, bins=20)
plt.show()

 

# 3Dͼ
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-10, 10, 0.1)
Y = np.arange(-10, 10, 0.1)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
surf = ax.plot_surface (X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm)
plt.show()

 

¼ÈÈ»ÎÒÃÇÒѾ­½éÉÜÁËPandas£¬NumPyºÍÏÖÔÚµÄmatplotlib£¬Çë²é¿´ÏÂÃæµÄ½Ì³Ì£¬½«ÕâÈý¸öPython¿âÍø¸ñ»¯£º

ʹÓÃNumPy£¬MatplotlibºÍPandasÔÚPythonÖнøÐÐÊý¾Ý̽Ë÷µÄÖÕ¼«Ö¸ÄÏ

/* Seaborn */

SeabornÊÇÁíÒ»¸ö»ùÓÚmatplotlibµÄ»æÍ¼¿â¡£ËüÊÇÒ»¸öpython¿â£¬Ìṩ¸ß¼¶½çÃæÀ´»æÖÆÓÐÎüÒýÁ¦µÄͼÐΡ£matplotlib¿ÉÒÔ×öʲô£¬SeabornÖ»ÊÇÒÔ¸ü¾ßÊÓ¾õÎüÒýÁ¦µÄ·½Ê½×öµ½ÕâÒ»µã¡£

SeabornµÄһЩ¹¦ÄÜÊÇ£º

ÃæÏòÊý¾Ý¼¯µÄAPI£¬ÓÃÓÚ¼ì²é¶à¸ö±äÁ¿Ö®¼äµÄ¹ØÏµ

·½±ãµØ²é¿´¸´ÔÓÊý¾Ý¼¯µÄÕûÌå½á¹¹

ÓÃÓÚÑ¡ÔñÏÔʾÊý¾ÝÖÐͼ°¸µÄµ÷É«°åµÄ¹¤¾ß

ÄúÖ»ÐèʹÓÃÒ»ÐдúÂë¼´¿É°²×°Seaborn£º

pip install seaborn

ÈÃÎÒÃÇͨ¹ýһЩºÜ¿áµÄͼ±íÀ´¿´¿´seabornÄÜ×öʲô£º

import seaborn as sns
sns.set()
tips = sns.load_dataset("tips")
sns.relplot(x="total_bill", y="tip", col="time",
hue="smoker", style="smoker", size="size",
data=tips);

 

ÕâÊÇÁíÒ»¸öÀý×Ó£º

/* Bokeh */

BokehÊÇÒ»¸ö½»»¥Ê½¿ÉÊÓ»¯¿â£¬ÃæÏòÏÖ´úWebä¯ÀÀÆ÷½øÐÐÑÝʾ¡£ËüΪ´óÁ¿Êý¾Ý¼¯ÌṩÁ˶àÖÖͼÐεÄÓÅÑŹ¹Ôì¡£

Bokeh¿ÉÓÃÓÚ´´½¨½»»¥Ê½Í¼±í£¬ÒDZí°åºÍÊý¾ÝÓ¦ÓóÌÐò¡£°²×°´úÂ룺

pip install bokeh

ÇëËæÒâÔĶÁÒÔÏÂÎÄÕ£¬Á˽âÓйØBokehµÄ¸ü¶àÐÅÏ¢²¢²é¿´ÆäÖеIJÙ×÷£º

ʹÓÃBokeh½øÐн»»¥Ê½Êý¾Ý¿ÉÊÓ»¯£¨ÔÚPythonÖУ©

 

 
   
3873 ´Îä¯ÀÀ       28
Ïà¹ØÎÄÕÂ

ÊÖ»úÈí¼þ²âÊÔÓÃÀýÉè¼ÆÊµ¼ù
ÊÖ»ú¿Í»§¶ËUI²âÊÔ·ÖÎö
iPhoneÏûÏ¢ÍÆËÍ»úÖÆÊµÏÖÓë̽ÌÖ
AndroidÊÖ»ú¿ª·¢£¨Ò»£©
Ïà¹ØÎĵµ

Android_UI¹Ù·½Éè¼Æ½Ì³Ì
ÊÖ»ú¿ª·¢Æ½Ì¨½éÉÜ
androidÅÄÕÕ¼°ÉÏ´«¹¦ÄÜ
Android½²ÒåÖÇÄÜÊÖ»ú¿ª·¢
Ïà¹Ø¿Î³Ì

Android¸ß¼¶Òƶ¯Ó¦ÓóÌÐò
Androidϵͳ¿ª·¢
AndroidÓ¦Óÿª·¢
ÊÖ»úÈí¼þ²âÊÔ
×îл¼Æ»®
DeepSeekÔÚÈí¼þ²âÊÔÓ¦ÓÃʵ¼ù 4-12[ÔÚÏß]
DeepSeek´óÄ£ÐÍÓ¦Óÿª·¢Êµ¼ù 4-19[ÔÚÏß]
UAF¼Ü¹¹ÌåϵÓëʵ¼ù 4-11[±±¾©]
AIÖÇÄÜ»¯Èí¼þ²âÊÔ·½·¨Óëʵ¼ù 5-23[ÉϺ£]
»ùÓÚ UML ºÍEA½øÐзÖÎöÉè¼Æ 4-26[±±¾©]
ÒµÎñ¼Ü¹¹Éè¼ÆÓ뽨ģ 4-18[±±¾©]
 
×îÐÂÎÄÕÂ
¼òÊöMatplotlib
PythonÈýά»æÍ¼--Matplotlib
PythonÊý¾ÝÇåϴʵ¼ù
PyTorchʵսָÄÏ
PythonÅÀ³æÓëÊý¾Ý¿ÉÊÓ»¯
×îпγÌ
PythonÓ¦Óÿª·¢×î¼Ñʵ¼ù
Python+Êý¾Ý·ÖÎö+tensorflow
Python ±à³Ì·½·¨ºÍÓ¦Óÿª·¢
È˹¤ÖÇÄÜ+Python£«´óÊý¾Ý
Python¼°Êý¾Ý·ÖÎö
³É¹¦°¸Àý
ijͨÐÅÉ豸ÆóÒµ PythonÊý¾Ý·ÖÎöÓëÍÚ¾ò
Ä³ÒøÐÐ È˹¤ÖÇÄÜ+Python+´óÊý¾Ý
ijÁìÏÈÊý×ÖµØÍ¼ÌṩÉÌ PythonÊý¾Ý·ÖÎöÓë»úÆ÷ѧϰ
±±¾© Python¼°Êý¾Ý·ÖÎö
ij½ðÈÚ¹«Ë¾ Python±à³Ì·½·¨Óëʵ¼ùÅàѵ