±à¼ÍƼö: |
±¾ÎÄÀ´×ÔÓÚcnblogs,ÎÄÕ½éÉÜÁËNumpy£¬Scipy£¬pandasµÄÇø±ð£¬PandasµÄÊý¾Ý¶ÁÈ¡ÒÔ¼°Êý¾Ýд³öµÄÏà¹ØÄÚÈÝ£¬Ï£Íû¶ÔÄúÄÜÓÐËù°ïÖú¡£ |
|
ºÜ¶àÈ˶¼·Ö²»ÇåNumpy£¬Scipy£¬pandasÈý¸ö¿âµÄÇø±ð¡£
ÔÚÕâÀï¼òµ¥·Ö±ðһϣº
NumPy£ºÊýѧ¼ÆËã¿â£¬ÒÔ¾ØÕóΪ»ù´¡µÄÊýѧ¼ÆËãÄ£¿é£¬°üÀ¨»ù±¾µÄËÄÔòÔËÐУ¬·½³ÌʽÒÔ¼°ÆäËû·½ÃæµÄ¼ÆËãʲôµÄ£¬´¿Êýѧ£»
SciPy £º¿ÆÑ§¼ÆËã¿â£¬ÓÐһЩ¸ß½×³éÏóºÍÎïÀíÄ£ÐÍ£¬ÔÚNumPy»ù´¡ÉÏ£¬·â×°ÁËÒ»²ã£¬Ã»ÓÐÄÇô´¿Êýѧ£¬Ìṩ·½·¨Ö±½Ó¼ÆËã½á¹û£»
±ÈÈ磺
×ö¸ö¸µÁ¢Ò¶±ä»»£¬ÕâÊÇ´¿ÊýѧµÄ£¬ÓÃNumpy£»
×ö¸öÂ˲¨Æ÷£¬ÕâÊôÓÚÐźŴ¦ÀíÄ£ÐÍÁË£¬ÓÃScipy¡£
Pandas£ºÌṩÃûΪDataFrameµÄÊý¾Ý½á¹¹£¬±È½ÏÆõºÏͳ¼Æ·ÖÎöÖеıí½á¹¹£¬×öÊý¾Ý·ÖÎöÓõģ¬Ö÷ÒªÊÇ×ö±í¸ñÊý¾Ý³ÊÏÖ¡£
ĿǰÀ´Ëµ£¬Ëæ×ÅPandas¸üУ¬Numpy´ó²¿·Ö¹¦ÄÜÒѾֱ½ÓºÍPandasÈÚºÏÁË¡£
µ«Èç¹ûÄã²»ÊÇ´¿Êýѧרҵ£¬¶øÇÒÏë×öÊý¾Ý·ÖÎöµÄ»°£¬³¢ÊÔ×Å´Ó Pandas ÈëÊֱȽϺá£
½ÓÏÂÀ´½²Pandas¡£
1Êý¾Ý½á¹¹
Series£ºÒ»Î¬Êý×飬ÓëNumpyÖеÄһάarrayÀàËÆ¡£
Time- Series£ºÒÔʱ¼äΪË÷ÒýµÄSeries¡£
DataFrame£º¶þάµÄ±í¸ñÐÍÊý¾Ý½á¹¹¡£¿ÉÒÔ½«DataFrameÀí½âΪSeriesµÄÈÝÆ÷¡£
Panel £ºÈýάµÄÊý×飬¿ÉÒÔÀí½âΪDataFrameµÄÈÝÆ÷¡£
# µ¼Èë±ðÃû
import pandas as pd
pd.Series([1,2,3,4]) |
2Êý¾Ý¶ÁÈ¡
2.1 csvÎļþ¶ÁÈ¡
read_csv(filepath_or_buffer,
sep=',', delimiter=None, header='infer', names=None,
index_col=None, usecols=None, squeeze=False, prefix=None,
mangle_dupe_cols=True, dtype=None, engine=None,
converters=None, true_values=None, false_values=None,
skipinitialspace=False, skiprows=None, nrows=None,
na_values=None, keep_default_na=True, na_filter=True,
verbose=False, skip_blank_lines=True, parse_dates=False,
infer_datetime_format=False, keep_date_col=False,
date_parser=None, dayfirst=False, iterator=False,
chunksize=None, compression='infer', thousands=None,
decimal=b'.', lineterminator=None, quotechar='"',
quoting=0, escapechar=None, comment=None, encoding=None,
dialect=None, tupleize_cols=False, error_bad_lines=True,
warn_bad_lines=True, skipfooter=0, skip_footer=0,
doublequote=True, delim_whitespace=False, as_recarray=False,
compact_ints=False, use_unsigned=False, low_memory=True,
buffer_lines=None, memory_map=False, float_precision=None) |
filepath_or_buffer£ºÎļþ·¾¶£¬½¨ÒéʹÓÃÏà¶Ô·¾¶
header£º ĬÈÏ×Ô¶¯Ê¶±ðÊ×ÐÐΪÁÐÃû£¨ÌØÕ÷Ãû£©£¬ÔÚÊý¾ÝûÓÐÁÐÃûµÄÇé¿öÏ header = none,
»¹¿ÉÒÔÉèÖÃΪÆäËûÐУ¬ÀýÈç header = 5 ±íʾË÷ÒýλÖÃΪ5µÄÐÐ×÷ΪÆðʼÁÐÃû
sep£º ±íʾcsvÎļþµÄ·Ö¸ô·û£¬Ä¬ÈÏΪ','
names£º ±íʾÉèÖõÄ×Ö¶ÎÃû£¬Ä¬ÈÏΪ'infer'
index_col£º±íʾ×÷ΪË÷ÒýµÄÁУ¬Ä¬ÈÏΪ0-ÐÐÊýµÄµÈ²îÊýÁС£
engine£º±íʾ½âÎöÒýÇæ£¬¿ÉÒÔΪ'c'»òÕß'python'
encoding£º±íʾÎļþµÄ±àÂ룬ĬÈÏΪ'utf-8'¡£
nrows£º±íʾ¶ÁÈ¡µÄÐÐÊý£¬Ä¬ÈÏΪȫ²¿¶ÁÈ¡
# ¶ÁÈ¡csv£¬²ÎÊý¿Éɾ
data = pd.read_csv('./data/test.csv',sep = ',',header
= 'infer',names = range(5,18),index_col = [0,2],engine
= 'python',encoding = 'gbk',nrows = 100) |
# ¶ÁÈ¡csv£¬²ÎÊý¿Éɾ
data = pd.read_table('./data/test.csv',sep = ',',header
= 'infer',names = range(5,18),index_col = [0,2],engine
= 'python',encoding = 'gbk',nrows = 100) |
2.2Excel Êý¾Ý¶ÁÈ¡
read_excel(io,
sheetname=0, header=0, skiprows=None, skip_footer=0,
index_col=None, names=None, parse_cols=None, parse_dates=False,
date_parser=None, na_values=None, thousands=None,
convert_float=True, has_index_names=None, converters=None,
dtype=None, true_values=None, false_values=None,
engine=None, squeeze=False, **kwds) |
io£ºÎļþ·¾¶+È«³Æ£¬ÎÞĬÈÏ
sheetname£º¹¤×÷²¾µÄÃû×Ö£¬Ä¬ÈÏΪ0
header£º ĬÈÏ×Ô¶¯Ê¶±ðÊ×ÐÐΪÁÐÃû£¨ÌØÕ÷Ãû£©£¬ÔÚÊý¾ÝûÓÐÁÐÃûµÄÇé¿öÏ header = none,
»¹¿ÉÒÔÉèÖÃΪÆäËûÐУ¬ÀýÈç header = 5 ±íʾË÷ÒýλÖÃΪ5µÄÐÐ×÷ΪÆðʼÁÐÃû
names£º ±íʾÉèÖõÄ×Ö¶ÎÃû£¬Ä¬ÈÏΪ'infer'
index_col£º±íʾ×÷ΪË÷ÒýµÄÁУ¬Ä¬ÈÏΪ0-ÐÐÊýµÄµÈ²îÊýÁÐ
engine£º±íʾ½âÎöÒýÇæ£¬¿ÉÒÔΪ'c'»òÕß'python'
data = pd.read_excel('./data/test.xls',sheetname='ÔʼÊý¾Ý',header
= 0,index_col = [5,6]) |
2.3Êý¾Ý¿âÊý¾Ý¶ÁÈ¡
read_sql_query(sql,
con, index_col=None, coerce_float=True, params=None,
parse_dates=None, chunksize=None) |
sql£º±íʾ³éÈ¡Êý¾ÝµÄSQLÓï¾ä£¬ÀýÈç'select * from ±íÃû'
con£º±íʾÊý¾Ý¿âÁ¬½ÓµÄÃû³Æ
index_col£º±íʾ×÷ΪË÷ÒýµÄÁУ¬Ä¬ÈÏΪ0-ÐÐÊýµÄµÈ²îÊýÁÐ
read_sql_table(table_name,
con, schema=None, index_col=None, coerce_float=True,
parse_dates=None, columns=None, chunksize=None) |
table_name£º±íʾ³éÈ¡Êý¾ÝµÄ±íÃû
con£º±íʾÊý¾Ý¿âÁ¬½ÓµÄÃû³Æ
index_col£º±íʾ×÷ΪË÷ÒýµÄÁУ¬Ä¬ÈÏΪ0-ÐÐÊýµÄµÈ²îÊýÁÐ
columns£ºÊý¾Ý¿âÊý¾Ý¶ÁÈ¡ºóµÄÁÐÃû¡£
read_sql(sql,
con, index_col=None, coerce_float=True, params=None,
parse_dates=None, columns=None, chunksize=None) |
sql£º±íʾ³éÈ¡Êý¾ÝµÄ±íÃû»òÕß³éÈ¡Êý¾ÝµÄSQLÓï¾ä£¬ÀýÈç'select * from ±íÃû'
con£º±íʾÊý¾Ý¿âÁ¬½ÓµÄÃû³Æ
index_col£º±íʾ×÷ΪË÷ÒýµÄÁУ¬Ä¬ÈÏΪ0-ÐÐÊýµÄµÈ²îÊýÁÐ
columns£ºÊý¾Ý¿âÊý¾Ý¶ÁÈ¡ºóµÄÁÐÃû¡£
½¨Ò飺ÓÃǰÁ½¸ö
# ¶ÁÈ¡Êý¾Ý¿â
from sqlalchemy import create_engine
conn = create_engine('mysql+pymysql://root:root@127.0.0.1/test?charset=utf8',
encoding='utf-8', echo=True)
# data1 = pd.read_sql_query('select * from data',
con=conn)
# print(data1.head())
data2 = pd.read_sql_table('data', con=conn)
print(data2.tail())
print(data2['X'][1]) |
Êý¾Ý¿âÁ¬½Ó×Ö·û´®¸÷²ÎÊý˵Ã÷
'mysql+pymysql://root:root@127.0.0.1/test?charset=utf8'
Á¬½ÓÆ÷://Óû§Ãû:ÃÜÂë@Êý¾Ý¿âËùÔÚIP/·ÃÎʵÄÊý¾Ý¿âÃû³Æ?×Ö·û¼¯
3Êý¾Ýд³ö
3.1½«Êý¾Ýд³öΪcsv
DataFrame.to_csv(path_or_buf=None,
sep=',', na_rep='', float_format=None, columns=None,
header=True, index=True, index_label=None, mode='w',
encoding=None, compression=None, quoting=None,
quotechar='"', line_terminator='\n', chunksize=None,
tupleize_cols=False, date_format=None, doublequote=True,
escapechar=None, decimal='.') |
path_or_buf£ºÊý¾Ý´æ´¢Â·¾¶£¬º¬ÎļþÈ«ÃûÀýÈç'./data.csv'
sep£º±íʾÊý¾Ý´æ´¢Ê±Ê¹Óõķָô·û
header£ºÊÇ·ñµ¼³öÁÐÃû£¬Trueµ¼³ö£¬False²»µ¼³ö
index£º ÊÇ·ñµ¼³öË÷Òý£¬Trueµ¼³ö£¬False²»µ¼³ö
mode£ºÊý¾Ýµ¼³öģʽ£¬'w'Ϊд
encoding£ºÊý¾Ýµ¼³öµÄ±àÂë
import pandas
as pd
data.to_csv('data.csv',index = False) |
3.2½«Êý¾Ýд³öΪexcel
DataFrame.to_excel(excel_writer,
sheet_name='Sheet1', na_rep='', float_format=None,
columns=None, header=True, index=True, index_label=None,
startrow=0, startcol=0, engine=None, merge_cells=True,
encoding=None, inf_rep='inf', verbose=True, freeze_panes=None) |
excel_writer£ºÊý¾Ý´æ´¢Â·¾¶£¬º¬ÎļþÈ«ÃûÀýÈç'./data.xlsx'
sheet_name£º±íʾÊý¾Ý´æ´¢µÄ¹¤×÷²¾Ãû³Æ
header£ºÊÇ·ñµ¼³öÁÐÃû£¬Trueµ¼³ö£¬False²»µ¼³ö
index£º ÊÇ·ñµ¼³öË÷Òý£¬Trueµ¼³ö£¬False²»µ¼³ö
encoding£ºÊý¾Ýµ¼³öµÄ±àÂë
data.to_excel('data.xlsx',index=False) |
3.3½«Êý¾ÝдÈëÊý¾Ý¿â
DataFrame.to_sql(name,
con, flavor=None, schema=None, if_exists='fail',
index=True, index_label=None, chunksize=None,
dtype=None) |
name£ºÊý¾Ý´æ´¢±íÃû
con£º±íʾÊý¾ÝÁ¬½Ó
if_exists£ºÅжÏÊÇ·ñÒѾ´æÔÚ¸Ã±í£¬'fail'±íʾ´æÔھͱ¨´í£»'replace'±íʾ´æÔھ͸²¸Ç£»'append'±íʾÔÚβ²¿×·¼Ó
index£º ÊÇ·ñµ¼³öË÷Òý£¬Trueµ¼³ö£¬False²»µ¼³ö
from sqlalchemy
import create_engine
conn =create_engine('mysql+pymysql: //root:root@127.0.0.1/data?charset=utf8',
encoding='utf-8', echo=True)
data.to_sql('data',con = conn) |
4Êý¾Ý´¦Àí
4.1Êý¾Ý²é¿´
# ²é¿´Ç°5ÐÐ,5ΪÊýÄ¿£¬²»ÊÇË÷Òý£¬Ä¬ÈÏΪ5
data.head()
# ²é¿´×îºó6ÐУ¬6ΪÊýÄ¿£¬²»ÊÇË÷Òý£¬Ä¬ÈÏΪ5
data.tail(6)
# ²é¿´Êý¾ÝµÄÐÎ×´
data.shape
# ²é¿´Êý¾ÝµÄÁÐÊý£¬0ΪÐÐ1λÁÐ
data.shape[1]
# ²é¿´ËùÓеÄÁÐÃû
data.columns
# ²é¿´Ë÷Òý
data.index
# ²é¿´Ã¿Ò»ÁÐÊý¾ÝµÄÀàÐÍ
data.dtypes
# ²é¿´Êý¾ÝµÄά¶È
data.ndim |
## ²é¿´Êý¾Ý»ù±¾Çé¿ö
data.describe()
'''
count£º·Ç¿ÕÖµµÄÊýÄ¿
mean£ºÊýÖµÐÍÊý¾ÝµÄ¾ùÖµ
std£ºÊýÖµÐÍÊý¾ÝµÄ±ê×¼²î
min£ºÊýÖµÐÍÊý¾ÝµÄ×îСֵ
25%£ºÊýÖµÐÍÊý¾ÝµÄÏÂËÄ·ÖλÊý
50%£ºÊýÖµÐÍÊý¾ÝµÄÖÐλÊý
75%£ºÊýÖµÐÍÊý¾ÝµÄÉÏËÄ·ÖλÊý
max£ºÊýÖµÐÍÊý¾ÝµÄ×î´óÖµ
''' |
4.2Êý¾ÝË÷Òý
# È¡³öµ¥¶ÀijһÁÐ
X = data['X']
# È¡³ö¶àÁÐ
XY = data[['X','Y']]
# È¡³öijÁеÄijһÐÐ
data['X'][1]
# È¡³öijÁеÄij¼¸ÐÐ
data['X'][:10]
# È¡³öij¼¸ÁеÄij¼¸ÐÐ
data[['X','Y']][:10]
# loc·½·¨Ë÷Òý
'''
DataFrame.loc[ÐÐÃû,ÁÐÃû]
'''
# È¡³öij¼¸ÁеÄijһÐÐ
data.loc[1,['X','Ô·Ý']]
# È¡³öij¼¸ÁеÄij¼¸ÐУ¨Á¬Ðø£©
data.loc[1:5,['X','Ô·Ý']]
# È¡³öij¼¸ÁеÄij¼¸ÐУ¨Á¬Ðø£©
data.loc[[1,3,5],['X','Ô·Ý']]
# È¡³ö x ,FFMC ,DCµÄ0-20ÐÐËùÓÐË÷ÒýÃû³ÆÎªÅ¼ÊýµÄÊý¾Ý
data.loc[range(0,21,2),['X','FFMC','DC']]
# iloc·½·¨Ë÷Òý
'''
DataFrame.iloc[ÐÐλÖÃ,ÁÐλÖÃ]
'''
# È¡³öij¼¸ÁеÄijһÐÐ
data.iloc[1,[1,4]]
# È¡³öÁÐλÖÃΪżÊý£¬ÐÐλÖÃΪ0-20µÄżÊýµÄÊý¾Ý
data.iloc[0:21:2,0:data.shape[1]:2]
# ix·½·¨Ë÷Òý
'''
DataFrame.ix[ÐÐλÖÃ/ÐÐÃû,ÁÐλÖÃ/ÁÐÃû]
'''
## È¡³öij¼¸ÁеÄijһÐÐ
data.ix[1:4,[1,4]]
data.ix[1:4,1:4] |
loc,iloc,ixµÄÇø±ð
locʹÓÃÃû³ÆË÷Òý£¬±ÕÇø¼ä
ilocʹÓÃλÖÃË÷Òý£¬Ç°±Õºó¿ªÇø¼ä
ixʹÓÃÃû³Æ»òλÖÃË÷Òý£¬ÇÒÓÅÏÈʶ±ðÃû³Æ£¬ÆäÇø¼ä¸ù¾ÝÃû³Æ/λÖÃÀ´¸Ä±ä
×ÛºÏÉÏÊöËùÑÔ£¬²»½¨ÒéʹÓÃix£¬ÈÝÒ×·¢Éú»ìÏýµÄÇé¿ö£¬²¢ÇÒÔËÐÐЧÂʵÍÓÚlocºÍiloc£¬pandas¿¼ÂÇÔÚºóÆÚ»áÒÆ³ýÕâÒ»Ë÷Òý·½·¨
4.3Êý¾ÝÐÞ¸Ä
# ÐÞ¸ÄÁÐÃû
list1 = list(data.columns)
list1[0] = 'µÚÒ»ÁÐ'
data.columns = list1
data['ÐÂÔöÁÐ'] = True
data.loc['ÐÂÔöÒ»ÐÐ',:] = True
data.drop('ÐÂÔöÁÐ',axis=1,inplace=True)
data.drop('ÐÂÔöÒ»ÐÐ',axis=0,inplace=True) |

import pandas
as pd
data = pd.read_excel('./data/test.xls')
# ʱ¼äÀàÐÍÊý¾Ýת»»
data['·¢Éúʱ¼ä'] = pd.to_datetime(data['·¢Éúʱ¼ä'],format='%Y%m%d%H%M%S')
# ÌáÈ¡day
data.loc[1,'·¢Éúʱ¼ä'].day
# ÌáÈ¡ÈÕÆÚÐÅϢн¨Ò»ÁÐ
data['ÈÕÆÚ'] = [i.day for i in data['·¢Éúʱ¼ä']]
year_data = [i.is_leap_year for i in data['·¢Éúʱ¼ä']] |
4.4·Ö×é¾ÛºÏ
4.4.1·Ö×é

# ·Ö×é
group1 = data.groupby('ÐÔ±ð')
group2 = data.groupby(['Èëְʱ¼ä','ÐÔ±ð'])
# ²é¿´ÓжàÉÙ×é
group1.size() |
±Ê¼Ç£º
ÓÃgroupby·½·¨·Ö×éºóµÄ½á¹û²¢²»ÄÜÖ±½Ó²é¿´£¬¶øÊDZ»´æÔÚÄÚ´æÖУ¬Êä³öµÄÊÇÄÚ´æµØÖ·¡£Êµ¼ÊÉÏ·Ö×éºóµÄÊý¾Ý¶Ô
ÏóGroupByÀàËÆSeriesÓëDataFrame£¬ÊÇpandasÌṩµÄÒ»ÖÖ¶ÔÏó¡£
4.4.2Groupby¶ÔÏó³£¼û·½·¨

4.4.3Grouped¶ÔÏóµÄagg·½·¨
Grouped.agg(º¯Êý»ò°üº¬ÁË×Ö¶ÎÃûºÍº¯ÊýµÄ×Öµä)
# µÚÒ»ÖÖÇé¿ö
group[['ÄêÁä','¹¤×Ê']].agg(min)
# ¶Ô²»Í¬µÄÁнøÐв»Í¬µÄ¾ÛºÏ²Ù×÷
group.agg({'ÄêÁä':max,'¹¤×Ê':sum})
# ÉÏÊö¹ý³ÌÖÐʹÓõĺ¯Êý¾ùΪϵͳmath¿âËù´øµÄº¯Êý£¬ÈôÐèҪʹÓÃpandasµÄº¯ÊýÔòÐèÒª×öÈçϲÙ×÷
group.agg({'ÄêÁä':lambda x:x.max(),'¹¤×Ê':lambda
x:x.sum()}) |
4.4.4Grouped¶ÔÏóµÄapply¾ÛºÏ·½·¨
Grouped.apply(º¯Êý²Ù×÷)
Ö»ÄܶÔËùÓÐÁÐÖ´ÐÐͬһÖÖ²Ù×÷
group.apply(lambda
x:x.max()) |
4.4.5Grouped¶ÔÏóµÄtransform·½·¨
grouped.transform(º¯Êý²Ù×÷)
transform²Ù×÷ʱµÄ¶ÔÏó²»ÔÙÊÇÿһ×飬¶øÊÇÿһ¸öÔªËØ
# ÿһ¿ÕÌí¼Ó×Ö·û
group['ÄêÁä'].transform(lambda x: x.astype(str)+'Ëê').head()
# ×éÄÚ±ê×¼»¯
group1['¹¤×Ê'].transform(lambda x:(x.mean()-x.min())/(x.max()-x.min())).head() |
|