Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
Ò»ÎĸÅÊöÉî¶ÈѧϰÖеÄÕýÔò»¯£¨º¬Python´úÂ룩
 
  4274  次浏览      27
 2018-7-23
 
±à¼­ÍƼö:
ÎÄÕÂÀ´Ô´ÓÚ51cto£¬Ïêϸ½²Êö¹ýÄâºÏµÄ¸ÅÄîºÍÓü¸ÖÖÓÃÓÚ½â¾ö¹ýÄâºÏÎÊÌâµÄÕýÔò»¯·½·¨£¬²¢¸¨ÒÔPython°¸Àý½²½â¡£

ʲôÊÇÕýÔò»¯

ÔÚÉîÈë̽ÌÖÕâ¸ö»°Ìâ֮ǰ£¬Çë¿´Ò»ÏÂÕâÕÅͼƬ£º

ÿ´Î̸¼°¹ýÄâºÏ£¬ÕâÕÅͼƬ¾Í»áʱ²»Ê±µØ±»À­³öÀ´¡°±Þʬ¡±¡£ÈçÉÏͼËùʾ£¬¸Õ¿ªÊ¼µÄʱºò£¬Ä£ÐÍ»¹²»ÄܺܺõØÄâºÏËùÓÐÊý¾Ýµã£¬¼´ÎÞ·¨·´Ó³Êý¾Ý·Ö²¼£¬ÕâʱËüÊÇÇ·ÄâºÏµÄ¡£¶øËæ×ÅѵÁ·´ÎÊýÔö¶à£¬ËüÂýÂýÕÒ³öÁËÊý¾ÝµÄģʽ£¬ÄÜÔÚ¾¡¿ÉÄÜ¶àµØÄâºÏÊý¾ÝµãµÄͬʱ·´Ó³Êý¾ÝÇ÷ÊÆ£¬ÕâʱËüÊÇÒ»¸öÐÔÄܽϺõÄÄ£ÐÍ¡£ÔÚÕâ»ù´¡ÉÏ£¬Èç¹ûÎÒÃǼÌÐøÑµÁ·£¬ÄÇÄ£ÐÍ¾Í»á½øÒ»²½ÍÚ¾òѵÁ·Êý¾ÝÖеÄϸ½ÚºÍÔëÉù£¬ÎªÁËÄâºÏËùÓÐÊý¾Ýµã¡°²»ÔñÊֶΡ±£¬ÕâʱËü¾Í¹ýÄâºÏÁË¡£

»»¾ä»°Ëµ£¬´Ó×óÍùÓÒ¿´£¬Ä£Ð͵ĸ´ÔÓ¶ÈÖð½¥Ìá¸ß£¬ÔÚѵÁ·¼¯ÉϵÄÔ¤²â´íÎóÖð½¥¼õÉÙ£¬µ«ËüÔÚ²âÊÔ¼¯ÉϵĴíÎóÂÊÈ´³ÊÏÖÒ»ÌõÏÂ͹ÇúÏß¡£

À´Ô´£ºSlideplayer

Èç¹ûÄã֮ǰ¹¹½¨¹ýÉñ¾­ÍøÂ磬Ïë±ØÄãÒѾ­µÃµ½ÁËÕâ¸ö½Ìѵ£ºÍøÂçÓжิÔÓ£¬¹ýÄâºÏ¾ÍÓжàÈÝÒס£ÎªÁËʹģÐÍÔÚÄâºÏÊý¾ÝµÄͬʱ¸ü¾ßÍÆ¹ãÐÔ£¬ÎÒÃÇ¿ÉÒÔÓÃÕýÔò»¯¶ÔѧϰËã·¨×öһЩϸ΢Ð޸쬴ӶøÌá¸ßÄ£Ð͵ÄÕûÌåÐÔÄÜ¡£

ÕýÔò»¯ºÍ¹ýÄâºÏ

¹ýÄâºÏºÍÉñ¾­ÍøÂçµÄÉè¼ÆÃÜÇÐÏà¹Ø£¬Òò´ËÎÒÃÇÏÈÀ´¿´Ò»¸ö¹ýÄâºÏµÄÉñ¾­ÍøÂ磺

Èç¹ûÄã֮ǰÔĶÁ¹ýÎÒÃǵĴÓÁãѧϰ£º´ÓPythonºÍRÀí½âºÍ±àÂëÉñ¾­ÍøÂ磨ÍêÕû°æ£©£¬»ò¶ÔÉñ¾­ÍøÂçÕýÔò»¯¸ÅÄîÓгõ²½Á˽⣬ÄãÓ¦¸ÃÖªµÀÉÏͼÖдø¼ýÍ·µÄÏßʵ¼ÊÉ϶¼´øÓÐÈ¨ÖØ£¬¶øÉñ¾­ÔªÊÇ´¢´æÊäÈëÊä³öµÄµØ·½¡£ÎªÁ˹«Æ½Æð¼û£¬Ò²¾ÍÊÇΪÁË·ÀÖ¹ÍøÂçÔÚÓÅ»¯·½ÏòÉϹýÓÚ·Å·É×ÔÎÒ£¬ÕâÀïÎÒÃÇ»¹ÐèÒª¼ÓÈëÒ»¸öÏÈÑ顪¡ªÕýÔò»¯³Í·£ÏÓÃÀ´³Í·£Éñ¾­ÔªµÄ¼ÓȨ¾ØÕó¡£

Èç¹ûÎÒÃÇÉèµÄÕýÔò»¯ÏµÊýºÜ´ó£¬µ¼ÖÂһЩ¼ÓȨ¾ØÕóµÄÖµ¼¸ºõΪÁ㡪¡ªÄÇ×îºóÎÒÃǵõ½µÄÊÇÒ»¸ö¸ü¼òµ¥µÄÏßÐÔÍøÂ磬ËüºÜ¿ÉÄÜÊÇÇ·ÄâºÏµÄ¡£

Òò´ËÕâ¸öϵÊý²¢²»ÊÇÔ½´óÔ½ºÃ¡£ÎÒÃÇÐèÒªÓÅ»¯Õâ¸öÕýÔò»¯ÏµÊýµÄÖµ£¬ÒÔ±ã»ñµÃÒ»¸öÁ¼ºÃÄâºÏµÄÄ£ÐÍ£¬ÈçÏÂͼËùʾ¡£

Éî¶ÈѧϰÖеÄÕýÔò»¯

L2ºÍL1ÕýÔò»¯

L1ºÍL2ÊÇ×î³£¼ûµÄÕýÔò»¯·½·¨£¬ËüÃǵÄ×ö·¨ÊÇÔÚ´ú¼Ûº¯ÊýºóÃæÔÙ¼ÓÉÏÒ»¸öÕýÔò»¯Ïî¡£

´ú¼Ûº¯Êý = Ëðʧ£¨Èç¶þÔª½»²æìØ£© + ÕýÔò»¯Ïî

ÓÉÓÚÌí¼ÓÁËÕâ¸öÕýÔò»¯Ï¸÷Ȩֵ±»¼õСÁË£¬»»¾ä»°Ëµ£¬¾ÍÊÇÉñ¾­ÍøÂçµÄ¸´ÔӶȽµµÍÁË£¬½áºÏ¡°ÍøÂçÓжิÔÓ£¬¹ýÄâºÏ¾ÍÓжàÈÝÒס±µÄ˼Ï룬´ÓÀíÂÛÉÏÀ´Ëµ£¬ÕâÑù×öµÈÓÚÖ±½Ó·ÀÖ¹¹ýÄâºÏ£¨°Â¿¨Ä·Ìêµ¶·¨Ôò£©¡£

µ±È»£¬Õâ¸öÕýÔò»¯ÏîÔÚL1ºÍL2ÀïÊDz»Ò»ÑùµÄ¡£

¶ÔÓÚL2£¬ËüµÄ´ú¼Ûº¯Êý¿É±íʾΪ£º

ÕâÀï¦Ë¾ÍÊÇÕýÔò»¯ÏµÊý£¬ËüÊÇÒ»¸ö³¬²ÎÊý£¬¿ÉÒÔ±»ÓÅ»¯ÒÔ»ñµÃ¸üºÃµÄ½á¹û¡£¶ÔÉÏʽÇ󵼺ó£¬È¨ÖØwǰµÄϵÊýΪ1?¦Ç¦Ë/m£¬ÒòΪ¦Ç¡¢¦Ë¡¢m¶¼ÊÇÕýÊý£¬1?¦Ç¦Ë/mСÓÚ1£¬wµÄÇ÷ÊÆÊǼõС£¬ËùÒÔL2ÕýÔò»¯Ò²±»³ÆÎªÈ¨ÖØË¥¼õ¡£

¶ø¶ÔÓÚL1£¬ËüµÄ´ú¼Ûº¯Êý¿É±íʾΪ£º

ºÍL2²»Í¬£¬ÕâÀïÎÒÃdzͷ£µÄÊÇÈ¨ÖØwµÄ¾ø¶ÔÖµ¡£¶ÔÉÏʽÇ󵼺ó£¬ÎÒÃǵõ½µÄµÈʽÀï°üº¬Ò»Ïî-sgn(w)£¬ÕâÒâζ×ŵ±wÊÇÕýÊýʱ£¬w¼õСÇ÷ÏòÓÚ0£»µ±wÊǸºÊýʱ£¬wÔö´óÇ÷ÏòÓÚ0¡£ËùÒÔL1µÄ˼·¾ÍÊǰÑÈ¨ÖØÍù0¿¿£¬´Ó¶ø½µµÍÍøÂ縴ÔÓ¶È¡£

Òò´Ëµ±ÎÒÃÇÏëҪѹËõÄ£ÐÍʱ£¬L1µÄЧ¹û»áºÜºÃ£¬µ«Èç¹ûÖ»ÊǼòµ¥·ÀÖ¹¹ýÄâºÏ£¬Ò»°ãÇé¿öÏ»¹ÊÇ»áÓÃL2¡£ÔÚKerasÖУ¬ÎÒÃÇ¿ÉÒÔÖ±½Óµ÷ÓÃregularizersÔÚÈÎÒâ²ã×öÕýÔò»¯¡£

Àý£ºÔÚÈ«Á¬½Ó²ãʹÓÃL2ÕýÔò»¯µÄ´úÂ룺

from keras import regularizersmodel .add (Dense ( 64 , input_dim = 64, kernel _ regularizer = regularizers .l2 (0.01)

×¢£ºÕâÀïµÄ0.01ÊÇÕýÔò»¯ÏµÊý¦ËµÄÖµ£¬ÎÒÃÇ¿ÉÒÔͨ¹ýÍø¸ñËÑË÷¶ÔËü×ö½øÒ»²½ÓÅ»¯¡£

Dropout

Dropout³ÆµÃÉÏÊÇÕýÔò»¯·½·¨ÖÐ×îÓÐȤµÄÒ»ÖÖ£¬ËüµÄЧ¹ûÒ²ºÜºÃ£¬ËùÒÔÊÇÉî¶ÈѧϰÁìÓò³£Óõķ½·¨Ö®Ò»¡£ÎªÁ˸üºÃµØ½âÊÍËü£¬ÎÒÃÇÏȼÙÉèÎÒÃǵÄÉñ¾­ÍøÂ糤ÕâÑù£º

ÄÇôDropoutµ½µ×dropÁËʲô£¿ÎÒÃÇÀ´¿´ÏÂÃæÕâ·ùͼ£ºÔÚÿ´Îµü´úÖУ¬Ëü»áËæ»úÑ¡ÔñһЩÉñ¾­Ôª£¬²¢°ÑËüÃÇ¡°ÂúÃų­Õ¶¡±¡ª¡ª°ÑÉñ¾­ÔªÁ¬Í¬ÏàÓ¦µÄÊäÈëÊä³öÒ»²¢¡°É¾³ý¡±¡£

±ÈÆðL1ºÍL2¶Ô´ú¼Ûº¯ÊýµÄÐ޸ģ¬Dropout¸üÏñÊÇѵÁ·ÍøÂçµÄÒ»ÖÖ¼¼ÇÉ¡£Ëæ×ÅѵÁ·½øÐУ¬Éñ¾­ÍøÂçÔÚÿһ´Îµü´úÖж¼»áºöÊÓһЩ£¨³¬²ÎÊý£¬³£¹æÊÇÒ»°ë£©Òþ²Ø²ã/ÊäÈë²ãµÄÉñ¾­Ôª£¬Õâ¾Íµ¼Ö²»Í¬µÄÊä³ö£¬ÆäÖÐÓеÄÊÇÕýÈ·µÄ£¬ÓеÄÊÇ´íÎóµÄ¡£

Õâ¸ö×ö·¨ÓеãÀàËÆ¼¯³Éѧϰ£¬ËüÄܸü¶àµØ²¶»ñ¸ü¶àµÄËæ»úÐÔ¡£¼¯³Éѧϰ·ÖÀàÆ÷ͨ³£±Èµ¥Ò»·ÖÀàÆ÷Ч¹û¸üºÃ£¬Í¬ÑùµÄ£¬ÒòÎªÍøÂçÒªÄâºÏÊý¾Ý·Ö²¼£¬ËùÒÔDropoutºóÄ£Ðʹ󲿷ֵÄÊä³ö¿Ï¶¨ÊÇÕýÈ·µÄ£¬¶øÔëÉùÊý¾ÝÓ°ÏìֻռһС²¿·Ö£¬²»»á¶Ô×îÖÕ½á¹ûÔì³ÉÌ«´óÓ°Ïì¡£

ÓÉÓÚÕâЩÒòËØ£¬µ±ÎÒÃǵÄÉñ¾­ÍøÂç½Ï´óÇÒËæ»úÐÔ¸ü¶àʱ£¬ÎÒÃÇÒ»°ãÓÃDropout¡£

ÔÚKerasÖУ¬ÎÒÃÇ¿ÉÒÔʹÓÃkeras core layerʵÏÖdropout¡£ÏÂÃæÊÇËüµÄPython´úÂ룺

from keras.layers.core import Dropoutmodel = Sequential ([Dense (output_ dim= hidden1_ num_ units, input_ dim= input_ num_ units, activation ='relu' ),Dropout (0.25), Dense (output_ dim= output _ num_ units , input _dim= hidden5_ num_ units, activation ='softmax'),])

×¢£ºÕâÀïÎÒÃǰÑ0.25ÉèΪDropoutµÄ³¬²ÎÊý£¨Ã¿´Î¡°É¾¡±1/4£©£¬ÎÒÃÇ¿ÉÒÔͨ¹ýÍø¸ñËÑË÷¶ÔËü×ö½øÒ»²½ÓÅ»¯¡£

Êý¾ÝÔöÇ¿

¼ÈÈ»¹ýÄâºÏÊÇÄ£ÐͶÔÊý¾Ý¼¯ÖÐÔëÉùºÍϸ½ÚµÄ¹ý¶È²¶×½£¬ÄÇô·ÀÖ¹¹ýÄâºÏ×î¼òµ¥µÄ·½·¨¾ÍÊÇÔö¼ÓѵÁ·Êý¾ÝÁ¿¡£µ«ÊÇÔÚ»úÆ÷ѧϰÈÎÎñÖУ¬Ôö¼ÓÊý¾ÝÁ¿²¢²»ÊÇÄÇôÈÝÒ×ʵÏֵģ¬ÒòΪËѼ¯¡¢±ê¼ÇÊý¾ÝµÄ³É±¾Ì«¸ßÁË¡£

¼ÙÉèÎÒÃÇÕýÔÚ´¦ÀíµÄһЩÊÖдÊý×ÖͼÏñ£¬ÎªÁËÀ©´óѵÁ·¼¯£¬ÎÒÃÇÄܲÉÈ¡µÄ·½·¨ÓСª¡ªÐýת¡¢·­×ª¡¢ËõС/·Å´ó¡¢Î»ÒÆ¡¢½ØÈ¡¡¢Ìí¼ÓËæ»úÔëÉù¡¢Ìí¼Ó»û±äµÈ¡£ÏÂÃæÊÇһЩ´¦Àí¹ýµÄͼ£º

ÕâЩ·½Ê½¾ÍÊÇÊý¾ÝÔöÇ¿¡£´ÓijÖÖÒâÒåÉÏÀ´Ëµ£¬»úÆ÷ѧϰģÐ͵ÄÐÔÄÜÊÇ¿¿Êý¾ÝÁ¿¶Ñ³öÀ´µÄ£¬Òò´ËÊý¾ÝÔöÇ¿¿ÉÒÔΪģÐÍÔ¤²âµÄ׼ȷÂÊÌṩ¾Þ´óÌáÉý¡£ÓÐʱΪÁ˸ĽøÄ£ÐÍ£¬ÕâÒ²ÊÇÒ»ÖÖ±ØÓõļ¼ÇÉ¡£

ÔÚKerasÖУ¬ÎÒÃÇ¿ÉÒÔʹÓÃImageDataGeneratorÖ´ÐÐËùÓÐÕâЩת»»£¬ËüÌṩÁËÒ»´ó¶Ñ¿ÉÒÔÓÃÀ´Ô¤´¦ÀíѵÁ·Êý¾ÝµÄ²ÎÊýÁÐ±í¡£ÒÔÏÂÊÇʵÏÖËüµÄʾÀý´úÂ룺

from keras.preprocessing.image import ImageData Generatordatagen = ImageDataGenerator ( horizontal flip = True) datagen.fit(train)

ÔçÍ£·¨

ÕâÊÇÒ»ÖÖ½»²æÑéÖ¤²ßÂÔ¡£ÑµÁ·Ç°£¬ÎÒÃÇ´ÓѵÁ·¼¯Öгé³öÒ»²¿·Ö×÷ΪÑéÖ¤¼¯£¬Ëæ×ÅѵÁ·µÄ½øÐУ¬µ±Ä£ÐÍÔÚÑéÖ¤¼¯ÉϵÄÐÔÄÜÔ½À´Ô½²îʱ£¬ÎÒÃÇÁ¢¼´ÊÖ¶¯Í£Ö¹ÑµÁ·£¬ÕâÖÖÌáǰֹͣµÄ·½·¨¾ÍÊÇÔçÍ£·¨¡£

ÔÚÉÏͼÖУ¬ÎÒÃÇÓ¦¸ÃÔÚÐéÏßλÖþÍֹͣѵÁ·£¬ÒòΪÔÚÄÇÖ®ºó£¬Ä£Ð;ͿªÊ¼¹ýÄâºÏÁË¡£

ÔÚKerasÖУ¬ÎÒÃÇ¿ÉÒÔµ÷ÓÃcallbacksº¯ÊýÌáǰֹͣѵÁ·£¬ÒÔÏÂÊÇËüµÄʾÀý´úÂ룺

from keras.callbacks import EarlyStopping EarlyStopping (monitor ='val_err', patience=5)

ÔÚÕâÀmonitorÖ¸µÄÊÇÐèÒª¼à¿ØµÄepochÊýÁ¿£»val_err±íʾÑéÖ¤´íÎó£¨validation error£©¡£

patience±íʾ¾­¹ý5¸öÁ¬ÐøepochºóÄ£ÐÍÔ¤²â½á¹ûûÓнøÒ»²½¸ÄÉÆ¡£½áºÏÉÏͼ½øÐÐÀí½â£¬¾ÍÊÇÔÚÐéÏߺó£¬Ä£ÐÍÿѵÁ·Ò»¸öepoch¾Í»áÓиü¸ßµÄÑéÖ¤´íÎ󣨸üµÍµÄÑé֤׼ȷÂÊ£©£¬Òò´ËÁ¬ÐøÑµÁ·5¸öepochºó£¬Ëü»áÌáǰֹͣѵÁ·¡£

   
4274 ´Îä¯ÀÀ       27
Ïà¹ØÎÄÕÂ

ÊÖ»úÈí¼þ²âÊÔÓÃÀýÉè¼ÆÊµ¼ù
ÊÖ»ú¿Í»§¶ËUI²âÊÔ·ÖÎö
iPhoneÏûÏ¢ÍÆËÍ»úÖÆÊµÏÖÓë̽ÌÖ
AndroidÊÖ»ú¿ª·¢£¨Ò»£©
Ïà¹ØÎĵµ

Android_UI¹Ù·½Éè¼Æ½Ì³Ì
ÊÖ»ú¿ª·¢Æ½Ì¨½éÉÜ
androidÅÄÕÕ¼°ÉÏ´«¹¦ÄÜ
Android½²ÒåÖÇÄÜÊÖ»ú¿ª·¢
Ïà¹Ø¿Î³Ì

Android¸ß¼¶Òƶ¯Ó¦ÓóÌÐò
Androidϵͳ¿ª·¢
AndroidÓ¦Óÿª·¢
ÊÖ»úÈí¼þ²âÊÔ