| ±à¼ÍƼö: |
| À´Ô´ÓÚcnblogs£¬±¾ÎĽéÉÜÁËPython¶ÔÓÚÏ̵߳ÄÖ§³Ö£¬°üÀ¨¡°Ñ§»á¡±¶àÏ̱߳à³ÌÐèÒªÕÆÎյĻù´¡ÒÔ¼°PythonÁ½¸öÏ̱߳ê×¼¿âµÄÍêÕû½éÉܼ°Ê¹ÓÃʾÀý¡£ |
|
»úÆ÷ѧϰÊÇÒ»Ïî¾Ñé¼¼ÄÜ£¬¾ÑéÔ½¶àÔ½ºÃ¡£ÔÚÏîÄ¿½¨Á¢µÄ¹ý³ÌÖУ¬Êµ¼ùÊÇÕÆÎÕ»úÆ÷ѧϰµÄ×î¼ÑÊֶΡ£ÔÚʵ¼ù¹ý³ÌÖУ¬Í¨¹ýʵ¼Ê²Ù×÷¼ÓÉî¶Ô·ÖÀàºÍ»Ø¹éÎÊÌâµÄÿһ¸ö²½ÖèµÄÀí½â£¬´ïµ½Ñ§Ï°»úÆ÷ѧϰµÄÄ¿µÄ¡£
Ô¤²âÄ£ÐÍÏîĿģ°å
²»ÄÜֻͨ¹ýÔĶÁÀ´ÕÆÎÕ»úÆ÷ѧϰµÄ¼¼ÄÜ£¬ÐèÒª½øÐдóÁ¿µÄÁ·Ï°¡£±¾ÎĽ«½éÉÜÒ»¸öͨÓõĻúÆ÷ѧϰµÄÏîĿģ°å£¬´´½¨Õâ¸öÄ£°å×ܹ²ÓÐÁù¸ö²½Ö衣ͨ¹ý±¾ÎĽ«Ñ§µ½£º
¶Ëµ½¶ËµØÔ¤²â£¨·ÖÀàÓë»Ø¹é£©Ä£Ð͵ÄÏîÄ¿½á¹¹¡£
ÈçºÎ½«Ç°ÃæÑ§µ½µÄÄÚÈÝÒýÈëµ½ÏîÄ¿ÖС£
ÈçºÎͨ¹ýÕâ¸öÏîĿģ°åÀ´µÃµ½Ò»¸ö¸ß׼ȷ¶ÈµÄÄ£°å¡£
»úÆ÷ѧϰÊÇÕë¶ÔÊý¾Ý½øÐÐ×Ô¶¯ÍÚ¾ò£¬ÕÒ³öÊý¾ÝµÄÄÚÔÚ¹æÂÉ£¬²¢Ó¦ÓÃÕâ¸ö¹æÂÉÀ´Ô¤²âÐÂÊý¾Ý£¬Èçͼ19-1Ëùʾ¡£

ͼ19-1
ÔÚÏîÄ¿ÖÐʵ¼ù»úÆ÷ѧϰ
¶Ëµ½¶ËµØ½â¾ö»úÆ÷ѧϰµÄÎÊÌâÊǷdz£ÖØÒªµÄ¡£¿ÉÒÔѧϰ»úÆ÷ѧϰµÄ֪ʶ£¬¿ÉÒÔʵ¼ù»úÆ÷ѧϰµÄij¸ö·½Ã棬µ«ÊÇÖ»ÓÐÕë¶Ôijһ¸öÎÊÌ⣬´ÓÎÊÌⶨÒ忪ʼµ½Ä£ÐͲ¿ÊðΪֹ£¬Í¨¹ýʵ¼ù»úÆ÷ѧϰµÄ¸÷¸ö·½Ã棬²ÅÄÜÕæÕýÕÆÎÕ²¢Ó¦ÓûúÆ÷ѧϰÀ´½â¾öʵ¼ÊÎÊÌâ¡£
ÔÚ²¿ÊðÒ»¸öÏîĿʱ£¬È«³Ì²ÎÓëµ½ÏîÄ¿ÖпÉÒÔ¸ü¼ÓÉîÈëµØË¼¿¼ÈçºÎʹÓÃÄ£ÐÍ£¬ÒÔ¼°ÓÂÓÚ³¢ÊÔÓûúÆ÷ѧϰ½â¾öÎÊÌâµÄ¸÷¸ö·½Ã棬¶ø²»½ö½öÊDzÎÓëµ½×Ô¼º¸ÐÐËȤ»òÉó¤µÄ·½Ãæ¡£Ò»¸öºÜºÃµÄʵ¼ù»úÆ÷ѧϰÏîÄ¿µÄ·½·¨ÊÇ£¬Ê¹ÓôÓ
UCI»úÆ÷ѧϰ²Ö¿â£¨http://archive.ics.uci.edu/ml/datasets.html£©
»ñÈ¡µÄÊý¾Ý¼¯¿ªÆôÒ»¸ö»úÆ÷ѧϰÏîÄ¿¡£Èç¹û´ÓÒ»¸öÊý¾Ý¼¯¿ªÊ¼Êµ¼ù»úÆ÷ѧϰ£¬Ó¦¸ÃÈçºÎ½«Ñ§µ½µÄËùÓм¼Çɺͷ½·¨ÕûºÏµ½Ò»ÆðÀ´´¦Àí»úÆ÷ѧϰµÄÎÊÌâÄØ£¿
·ÖÀà»ò»Ø¹éÄ£Ð͵ĻúÆ÷ѧϰÏîÄ¿¿ÉÒÔ·Ö³ÉÒÔÏÂÁù¸ö²½Ö裺
£¨1£©¶¨ÒåÎÊÌâ¡£
£¨2£©Àí½âÊý¾Ý¡£
£¨3£©Êý¾Ý×¼±¸¡£
£¨4£©ÆÀ¹ÀËã·¨¡£
£¨5£©ÓÅ»¯Ä£ÐÍ¡£
£¨6£©½á¹û²¿Êð¡£
ÓÐʱÕâЩ²½Öè¿ÉÄܱ»ºÏ²¢»ò½øÒ»²½·Ö½â£¬µ«Í¨³£Êǰ´ÉÏÊöÁù¸ö²½ÖèÀ´¿ªÕ¹»úÆ÷ѧϰÏîÄ¿µÄ¡£ÎªÁË·ûºÏPythonµÄϰ¹ß£¬ÔÚÏÂÃæµÄPythonÏîĿģ°åÖУ¬°´ÕÕÕâÁù¸ö²½Öè·Ö½âÕû¸öÏîÄ¿£¬ÔÚ½ÓÏÂÀ´µÄ²¿·Ö»áÃ÷È·¸÷¸ö²½Öè»ò×Ó²½ÖèÖÐËùҪʵÏֵŦÄÜ¡£
»úÆ÷ѧϰÏîÄ¿µÄPythonÄ£°å
ÏÂÃæ»á¸ø³öÒ»¸ö»úÆ÷ѧϰÏîÄ¿µÄPythonÄ£°å¡£´úÂëÈçÏ£º
| # Python»úÆ÷ѧϰÏîÄ¿µÄÄ£°å
# 1. ¶¨ÒåÎÊÌâ
# a) µ¼ÈëÀà¿â
# b) µ¼ÈëÊý¾Ý¼¯
# 2. Àí½âÊý¾Ý
# a) ÃèÊöÐÔͳ¼Æ
# b) Êý¾Ý¿ÉÊÓ»¯
# 3. Êý¾Ý×¼±¸
# a) Êý¾ÝÇåÏ´
# b) ÌØÕ÷Ñ¡Ôñ
# c) Êý¾Ýת»»
# 4. ÆÀ¹ÀËã·¨
# a) ·ÖÀëÊý¾Ý¼¯
# b) ¶¨ÒåÄ£ÐÍÆÀ¹À±ê×¼
# c) Ëã·¨Éó²é
# d) Ëã·¨±È½Ï
# 5. ÓÅ»¯Ä£ÐÍ
# a) Ëã·¨µ÷²Î
# b) ¼¯³ÉËã·¨
# 6. ½á¹û²¿Êð
# a) Ô¤²âÆÀ¹ÀÊý¾Ý¼¯
# b) ÀûÓÃÕû¸öÊý¾Ý¼¯Éú³ÉÄ£ÐÍ
# c) ÐòÁл¯Ä£ÐÍ |
µ±ÓÐеĻúÆ÷ѧϰÏîĿʱ£¬Ð½¨Ò»¸öPythonÎļþ£¬²¢½«Õâ¸öÄ£°åÕ³Ìù½øÈ¥£¬ÔÙ°´ÕÕÇ°ÃæÕ½ڽéÉܵķ½·¨½«ÆäÌî³äµ½Ã¿Ò»¸ö²½ÖèÖС£
¸÷²½ÖèµÄÏêϸ˵Ã÷
½ÓÏÂÀ´½«Ïêϸ½éÉÜÏîĿģ°åµÄ¸÷¸ö²½Öè¡£
²½Öè1£º¶¨ÒåÎÊÌâ
Ö÷ÒªÊǵ¼ÈëÔÚ»úÆ÷ѧϰÏîÄ¿ÖÐËùÐèÒªµÄÀà¿âºÍÊý¾Ý¼¯µÈ£¬ÒÔ±ãÍê³É»úÆ÷ѧϰµÄÏîÄ¿£¬°üÀ¨µ¼ÈëPythonµÄÀà¿â¡¢ÀàºÍ·½·¨£¬ÒÔ¼°µ¼ÈëÊý¾Ý¡£Í¬Ê±ÕâÒ²ÊÇËùÓеÄÅäÖòÎÊýµÄÅäÖÃÄ£¿é¡£µ±Êý¾Ý¼¯¹ý´óʱ£¬¿ÉÒÔÔÚÕâÀï¶ÔÊý¾Ý¼¯½øÐÐÊÝÉí´¦Àí£¬ÀíÏë״̬ÊÇ¿ÉÒÔÔÚ1·ÖÖÓÄÚ£¬ÉõÖÁÊÇ30ÃëÄÚÍê³ÉÄ£Ð͵Ľ¨Á¢»ò¿ÉÊÓ»¯Êý¾Ý¼¯¡£
²½Öè2£ºÀí½âÊý¾Ý
ÕâÊǼÓÇ¿¶ÔÊý¾ÝÀí½âµÄ²½Ö裬°üÀ¨Í¨¹ýÃèÊöÐÔͳ¼ÆÀ´·ÖÎöÊý¾ÝºÍͨ¹ý¿ÉÊÓ»¯À´¹Û²ìÊý¾Ý¡£ÔÚÕâÒ»²½ÐèÒª»¨·Ñʱ¼ä¶àÎʼ¸¸öÎÊÌ⣬É趨¼ÙÉèÌõ¼þ²¢µ÷²é·ÖÎöһϣ¬Õâ¶ÔÄ£Ð͵Ľ¨Á¢»áÓкܴóµÄ°ïÖú¡£
²½Öè3£ºÊý¾Ý×¼±¸
Êý¾Ý×¼±¸Ö÷ÒªÊÇÔ¤´¦ÀíÊý¾Ý£¬ÒÔ±ãÈÃÊý¾Ý¿ÉÒÔ¸üºÃµØÕ¹Ê¾ÎÊÌ⣬ÒÔ¼°ÊìϤÊäÈëÓëÊä³ö½á¹ûµÄ¹ØÏµ¡£°üÀ¨£º
ͨ¹ýɾ³ýÖØ¸´Êý¾Ý¡¢±ê¼Ç´íÎóÊýÖµ£¬ÉõÖÁ±ê¼Ç´íÎóµÄÊäÈëÊý¾ÝÀ´ÇåÏ´Êý¾Ý¡£
ÌØÕ÷Ñ¡Ôñ£¬°üÀ¨ÒƳý¶àÓàµÄÌØÕ÷ÊôÐÔºÍÔö¼ÓеÄÌØÕ÷ÊôÐÔ¡£
Êý¾Ýת»¯£¬¶ÔÊý¾Ý³ß¶È½øÐе÷Õû£¬»òÕßµ÷ÕûÊý¾ÝµÄ·Ö²¼£¬ÒÔ±ã¸üºÃµØÕ¹Ê¾ÎÊÌâ¡£
Òª²»¶ÏµØÖظ´Õâ¸ö²½ÖèºÍÏÂÒ»¸ö²½Ö裬ֱµ½ÕÒµ½×㹻׼ȷµÄËã·¨Éú³ÉÄ£ÐÍ¡£
²½Öè4£ºÆÀ¹ÀËã·¨
ÆÀ¹ÀËã·¨Ö÷ÒªÊÇΪÁËѰÕÒ×î¼ÑµÄËã·¨×Ó¼¯£¬°üÀ¨£º
·ÖÀë³öÆÀ¹ÀÊý¾Ý¼¯£¬ÒÔ±ãÓÚÑé֤ģÐÍ¡£
¶¨ÒåÄ£ÐÍÆÀ¹À±ê×¼£¬ÓÃÀ´ÆÀ¹ÀË㷨ģÐÍ¡£
³éÑùÉó²éÏßÐÔËã·¨ºÍ·ÇÏßÐÔËã·¨¡£
±È½ÏËã·¨µÄ׼ȷ¶È¡£
ÔÚÃæ¶ÔÒ»¸ö»úÆ÷ѧϰµÄÎÊÌâµÄʱºò£¬ÐèÒª»¨·Ñ´óÁ¿µÄʱ¼äÔÚÆÀ¹ÀËã·¨ºÍ×¼±¸Êý¾ÝÉÏ£¬Ö±µ½ÕÒµ½3~5ÖÖ׼ȷ¶È×ã¹»µÄË㷨Ϊֹ¡£
²½Öè5£ºÓÅ»¯Ä£ÐÍ
µ±µÃµ½Ò»¸ö׼ȷ¶È×ã¹»µÄËã·¨Áбíºó£¬Òª´ÓÖÐÕÒ³ö×îºÏÊʵÄËã·¨£¬Í¨³£ÓÐÁ½ÖÖ·½·¨¿ÉÒÔÌá¸ßËã·¨µÄ׼ȷ¶È£º
¶ÔÿһÖÖËã·¨½øÐе÷²Î£¬µÃµ½×î¼Ñ½á¹û¡£
ʹÓü¯ºÏËã·¨À´Ìá¸ßË㷨ģÐ͵Ä׼ȷ¶È¡£
²½Öè6£º½á¹û²¿Êð
Ò»µ©ÈÏΪģÐ͵Ä׼ȷ¶È×ã¹»¸ß£¬¾Í¿ÉÒÔ½«Õâ¸öÄ£ÐÍÐòÁл¯£¬ÒÔ±ãÓÐÐÂÊý¾ÝʱʹÓøÃÄ£ÐÍÀ´Ô¤²âÊý¾Ý¡£
ͨ¹ýÑéÖ¤Êý¾Ý¼¯À´ÑéÖ¤±»ÓÅ»¯¹ýµÄÄ£ÐÍ¡£
ͨ¹ýÕû¸öÊý¾Ý¼¯À´Éú³ÉÄ£ÐÍ¡£
½«Ä£ÐÍÐòÁл¯£¬ÒÔ±ãÓÚÔ¤²âÐÂÊý¾Ý¡£
×öµ½ÕâÒ»²½µÄʱºò£¬¾Í¿ÉÒÔ½«Ä£ÐÍչʾ²¢·¢²¼¸øÏà¹ØÈËÔ±¡£µ±ÓÐÐÂÊý¾Ý²úÉúʱ£¬¾Í¿ÉÒÔ²ÉÓÃÕâ¸öÄ£ÐÍÀ´Ô¤²âÐÂÊý¾Ý¡£
ʹÓÃÄ£°åµÄС¼¼ÇÉ
¿ìËÙÖ´ÐÐÒ»±é£ºÊ×ÏÈÒª¿ìËÙµØÔÚÏîÄ¿Öн«Ä£°åÖеÄÿһ¸ö²½ÖèÖ´ÐÐÒ»±é£¬ÕâÑù»á¼ÓÇ¿¶ÔÏîĿÿһ²¿·ÖµÄÀí½â²¢¸øÈçºÎ¸Ä½ø´øÀ´Áé¸Ð¡£
Ñ»·£ºÕû¸öÁ÷³Ì²»ÊÇÏßÐԵ쬶øÊÇÑ»·½øÐеģ¬Òª»¨·Ñ´óÁ¿µÄʱ¼äÀ´Öظ´¸÷¸ö²½Ö裬ÓÈÆäÊDz½Öè3»ò²½Öè4£¨»ò²½Öè3¡«²½Öè5£©£¬Ö±µ½ÕÒµ½Ò»¸ö׼ȷ¶È×ã¹»µÄÄ£ÐÍ£¬»òÕß´ïµ½Ô¤¶¨µÄÖÜÆÚ¡£
³¢ÊÔÿһ¸ö²½Öè£ºÌø¹ýij¸ö²½ÖèºÜ¼òµ¥£¬ÓÈÆäÊDz»ÊìϤ¡¢²»Éó¤µÄ²½Öè¡£¼á³ÖÔÚÕâ¸öÄ£°åµÄÿһ¸ö²½ÖèÖÐ×öЩ¹¤×÷£¬¼´Ê¹ÕâЩ¹¤×÷²»ÄÜÌá¸ßËã·¨µÄ׼ȷ¶È£¬µ«Ò²ÐíÔÚºóÃæµÄ²Ù×÷¾Í¿ÉÒԸĽø²¢Ìá¸ßËã·¨µÄ׼ȷ¶È¡£¼´Ê¹¾õµÃÕâ¸ö²½Öè²»ÊÊÓã¬Ò²²»ÒªÌø¹ýÕâ¸ö²½Ö裬¶øÊǼõÉٸò½ÖèËù×öµÄ¹±Ïס£
¶¨Ïò׼ȷ¶È£º»úÆ÷ѧϰÏîÄ¿µÄÄ¿±êÊǵõ½Ò»¸ö׼ȷ¶È×ã¹»¸ßµÄÄ£ÐÍ¡£Ã¿Ò»¸ö²½Ö趼ҪΪʵÏÖÕâ¸öÄ¿±ê×ö³ö¹±Ïס£ÒªÈ·±£Ã¿´Î¸Ä±ä¶¼»á¸ø½á¹û´øÀ´ÕýÏòµÄÓ°Ï죬»òÕß¶ÔÆäËûµÄ²½Öè´øÀ´ÕýÏòµÄÓ°Ïì¡£ÔÚÕû¸öÏîÄ¿µÄÿ¸ö²½ÖèÖУ¬×¼È·¶ÈÖ»ÄÜÏò±äºÃµÄ·½ÏòÒÆ¶¯¡£
°´ÐèÊÊÓ㺿ÉÒÔ°´ÕÕÏîÄ¿µÄÐèÒªÀ´Ð޸IJ½Ö裬ÓÈÆäÊǶÔÄ£°åÖеĸ÷¸ö²½Öè·Ç³£ÊìϤ֮ºó¡£ÐèÒª°ÑÎÕµÄÔÔòÊÇ£¬Ã¿Ò»´Î¸Ä½ø¶¼ÒÔÌá¸ßË㷨ģÐ͵Ä׼ȷ¶ÈΪǰÌá¡£
×ܽá
±¾Õ½éÉÜÁËÔ¤²âÄ£ÐÍÏîÄ¿µÄÄ£°å£¬Õâ¸öÄ£°åÊÊÓÃÓÚ·ÖÀà»ò»Ø¹éÎÊÌâ¡£½ÓÏÂÀ´½«½éÉÜ»úÆ÷ѧϰÖеÄÒ»¸ö»Ø¹éÎÊÌâµÄÏîÄ¿£¬Õâ¸öÏîÄ¿±ÈÇ°Ãæ½éÉܵÄð°Î²»¨µÄÀý×Ó¸ü¼Ó¸´ÔÓ£¬»áÀûÓõ½±¾Õ½éÉܵÄÿ¸ö²½Öè¡£
»Ø¹éÏîĿʵÀý
»úÆ÷ѧϰÊÇÒ»Ïî¾Ñé¼¼ÄÜ£¬Êµ¼ùÊÇÕÆÎÕ»úÆ÷ѧϰ¡¢Ìá¸ßÀûÓûúÆ÷ѧϰ½â¾öÎÊÌâµÄÄÜÁ¦µÄÓÐЧ·½·¨Ö®Ò»¡£ÄÇôÈçºÎͨ¹ý»úÆ÷ѧϰÀ´½â¾öÎÊÌâÄØ£¿±¾Õ½«Í¨¹ýÒ»¸öʵÀýÀ´Ò»²½Ò»²½µØ½éÉÜÒ»¸ö»Ø¹éÎÊÌâ¡£±¾ÕÂÖ÷Òª½éÉÜÒÔÏÂÄÚÈÝ£º
ÈçºÎ¶Ëµ½¶ËµØÍê³ÉÒ»¸ö»Ø¹éÎÊÌâµÄÄ£ÐÍ¡£
ÈçºÎͨ¹ýÊý¾Ýת»»Ìá¸ßÄ£Ð͵Ä׼ȷ¶È¡£
ÈçºÎͨ¹ýµ÷²ÎÌá¸ßÄ£Ð͵Ä׼ȷ¶È¡£
ÈçºÎͨ¹ý¼¯³ÉËã·¨Ìá¸ßÄ£Ð͵Ä׼ȷ¶È¡£
¶¨ÒåÎÊÌâ
ÔÚÕâ¸öÏîÄ¿Öн«·ÖÎöÑо¿²¨Ê¿¶Ù·¿¼Û£¨Boston House Price£©Êý¾Ý¼¯£¬Õâ¸öÊý¾Ý¼¯ÖеÄÿһÐÐÊý¾Ý¶¼ÊǶԲ¨Ê¿¶ÙÖܱ߻ò³ÇÕò·¿¼ÛµÄÃèÊö¡£Êý¾ÝÊÇ1978Äêͳ¼ÆÊÕ¼¯µÄ¡£Êý¾ÝÖаüº¬ÒÔÏÂ14¸öÌØÕ÷ºÍ506ÌõÊý¾Ý£¨UCI»úÆ÷ѧϰ²Ö¿âÖе͍Ò壩¡£
CRIM£º³ÇÕòÈ˾ù·¸×ïÂÊ¡£
ZN£º×¡Õ¬ÓõØËùÕ¼±ÈÀý¡£
INDUS£º³ÇÕòÖзÇסլÓõØËùÕ¼±ÈÀý¡£
CHAS£ºCHASÐéÄâ±äÁ¿£¬ÓÃÓڻعé·ÖÎö¡£
NOX£º»·±£Ö¸Êý¡£
RM£ºÃ¿¶°×¡Õ¬µÄ·¿¼äÊý¡£
AGE£º1940ÄêÒÔǰ½¨³ÉµÄ×Ôסµ¥Î»µÄ±ÈÀý¡£
DIS£º¾àÀë5¸ö²¨Ê¿¶ÙµÄ¾ÍÒµÖÐÐĵļÓȨ¾àÀë¡£
RAD£º¾àÀë¸ßËÙ¹«Â·µÄ±ãÀûÖ¸Êý¡£
TAX£ºÃ¿Ò»ÍòÃÀÔªµÄ²»¶¯²ú˰ÂÊ¡£
PRTATIO£º³ÇÕòÖеĽÌʦѧÉú±ÈÀý¡£
B£º³ÇÕòÖеĺÚÈ˱ÈÀý¡£
LSTAT£ºµØÇøÖÐÓжàÉÙ·¿¶«ÊôÓÚµÍÊÕÈëÈËȺ¡£
MEDV£º×Ôס·¿ÎÝ·¿¼ÛÖÐλÊý¡£
ͨ¹ý¶ÔÕâÐ©ÌØÕ÷ÊôÐÔµÄÃèÊö£¬ÎÒÃÇ¿ÉÒÔ·¢ÏÖÊäÈëµÄÌØÕ÷ÊôÐԵĶÈÁ¿µ¥Î»ÊDz»Í³Ò»µÄ£¬Ò²ÐíÐèÒª¶ÔÊý¾Ý½øÐжÈÁ¿µ¥Î»µÄµ÷Õû¡£
µ¼ÈëÊý¾Ý
Ê×Ïȵ¼ÈëÔÚÏîÄ¿ÖÐÐèÒªµÄÀà¿â¡£´úÂëÈçÏ£º
# µ¼ÈëÀà¿â
import numpy as np
from numpy import arange
from matplotlib import pyplot
from pandas import read_csv
from pandas import set_option
from pandas.plotting import scatter_matrix
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import ElasticNet
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.metrics import mean_squared_error |
½ÓÏÂÀ´µ¼ÈëÊý¾Ý¼¯µ½PythonÖУ¬Õâ¸öÊý¾Ý¼¯Ò²¿ÉÒÔ´ÓUCI»úÆ÷ѧϰ²Ö¿âÏÂÔØ£¬ÔÚµ¼ÈëÊý¾Ý¼¯Ê±»¹É趨ÁËÊý¾ÝÊôÐÔÌØÕ÷µÄÃû×Ö¡£´úÂëÈçÏ£º
# µ¼ÈëÊý¾Ý
filename = 'housing.csv'
names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX',
'RM', 'AGE', 'DIS',
'RAD', 'TAX', 'PRTATIO', 'B', 'LSTAT', 'MEDV']
data = read_csv(filename, names=names, delim_whitespace=True) |
ÔÚÕâÀï¶Ôÿһ¸öÌØÕ÷ÊôÐÔÉ趨ÁËÒ»¸öÃû³Æ£¬ÒÔ±ãÓÚÔÚºóÃæµÄ³ÌÐòÖÐʹÓÃËüÃÇ¡£ÒòΪCSVÎļþÊÇʹÓÿոñ¼ü×ö·Ö¸ô·ûµÄ£¬Òò´Ë¶ÁÈëCSVÎļþʱָ¶¨·Ö¸ô·ûΪ¿Õ¸ñ¼ü£¨delim_whitespace=True£©¡£
Àí½âÊý¾Ý
¶Ôµ¼ÈëµÄÊý¾Ý½øÐзÖÎö£¬±ãÓÚ¹¹½¨ºÏÊʵÄÄ£ÐÍ¡£
Ê×ÏÈ¿´Ò»ÏÂÊý¾Ýά¶È£¬ÀýÈçÊý¾Ý¼¯ÖÐÓжàÉÙÌõ¼Ç¼¡¢ÓжàÉÙ¸öÊý¾ÝÌØÕ÷¡£´úÂëÈçÏ£º
# Êý¾Ýά¶È
print(dataset.shape) |
Ö´ÐÐÖ®ºóÎÒÃÇ¿ÉÒÔ¿´µ½×ܹ²ÓÐ506Ìõ¼Ç¼ºÍ14¸öÌØÕ÷ÊôÐÔ£¬ÕâÓëUCIÌṩµÄÐÅÏ¢Ò»Ö¡£
Ôٲ鿴¸÷¸öÌØÕ÷ÊôÐÔµÄ×Ö¶ÎÀàÐÍ¡£´úÂëÈçÏ£º
# ÌØÕ÷ÊôÐÔµÄ×Ö¶ÎÀàÐÍ
print(dataset.dtypes) |
¿ÉÒÔ¿´µ½ËùÓеÄÌØÕ÷ÊôÐÔ¶¼ÊÇÊý×Ö£¬¶øÇҴ󲿷ÖÌØÕ÷ÊôÐÔ¶¼ÊǸ¡µãÊý£¬Ò²ÓÐÒ»²¿·ÖÌØÕ÷ÊôÐÔÊÇÕûÊýÀàÐ͵ġ£Ö´Ðнá¹ûÈçÏ£º
CRIM float64
ZN float64
INDUS float64
CHAS int64
NOX float64
RM float64
AGE float64
DIS float64
RAD int64
TAX float64
PRTATIO float64
B float64
LSTAT float64
MEDV float64
dtype: object |
½ÓÏÂÀ´¶ÔÊý¾Ý½øÐÐÒ»´Î¼òµ¥µÄ²é¿´£¬ÔÚÕâÀïÎÒÃDz鿴һÏÂ×ʼµÄ30Ìõ¼Ç¼¡£´úÂëÈçÏ£º
# ²é¿´×ʼµÄ30Ìõ¼Ç¼
set_option('display.line_width', 120)
print(dataset.head(30)) |
ÕâÀïÖ¸¶¨Êä³öµÄ¿í¶ÈΪ120¸ö×Ö·û£¬ÒÔÈ·±£½«ËùÓÐÌØÕ÷ÊôÐÔÖµÏÔʾÔÚÒ»ÐÐÄÚ¡£¶øÇÒÕâЩÊý¾Ý²»ÊÇÓÃÏàͬµÄµ¥Î»´æ´¢µÄ£¬½øÐкóÃæµÄ²Ù×÷ʱ£¬Ò²ÐíÐèÒª½«Êý¾ÝÕûÀíΪÏàͬµÄ¶ÈÁ¿µ¥Î»¡£Ö´Ðнá¹ûÈçͼ20-1Ëùʾ¡£

ͼ20-1
½ÓÏÂÀ´¿´Ò»ÏÂÊý¾ÝµÄÃèÊöÐÔͳ¼ÆÐÅÏ¢¡£´úÂëÈçÏ£º
# ÃèÊöÐÔͳ¼ÆÐÅÏ¢
set_option('precision', 1)
print(dataset.describe()) |
ÔÚÃèÊöÐÔͳ¼ÆÐÅÏ¢Öаüº¬Êý¾ÝµÄ×î´óÖµ¡¢×îСֵ¡¢ÖÐλֵ¡¢ËÄ·ÖλֵµÈ£¬·ÖÎöÕâЩÊý¾ÝÄܹ»¼ÓÉî¶ÔÊý¾Ý·Ö²¼¡¢Êý¾Ý½á¹¹µÈµÄÀí½â¡£½á¹ûÈçͼ20-2Ëùʾ¡£

ͼ20-2
½ÓÏÂÀ´¿´Ò»ÏÂÊý¾ÝÌØÕ÷Ö®¼äµÄÁ½Á½¹ØÁª¹ØÏµ£¬ÕâÀï²é¿´Êý¾ÝµÄƤ¶ûÑ·Ïà¹ØÏµÊý¡£´úÂëÈçÏ£º
# ¹ØÁª¹ØÏµ
set_option('precision', 2)
print(dataset.corr(method='pearson')) |
Ö´Ðнá¹ûÈçͼ20-3Ëùʾ¡£

ͼ20-3
ͨ¹ýÉÏÃæµÄ½á¹û¿ÉÒÔ¿´µ½£¬ÓÐÐ©ÌØÕ÷ÊôÐÔÖ®¼ä¾ßÓÐÇ¿¹ØÁª¹ØÏµ£¨>0.7»ò<-0.7£©£¬È磺
NOXÓëINDUSÖ®¼äµÄƤ¶ûÑ·Ïà¹ØÏµÊýÊÇ0.76¡£
DISÓëINDUSÖ®¼äµÄƤ¶ûÑ·Ïà¹ØÏµÊýÊÇ-0.71¡£
TAXÓëINDUSÖ®¼äµÄƤ¶ûÑ·Ïà¹ØÏµÊýÊÇ0.72¡£
AGEÓëNOXÖ®¼äµÄƤ¶ûÑ·Ïà¹ØÏµÊýÊÇ0.73¡£
DISÓëNOXÖ®¼äµÄƤ¶ûÑ·Ïà¹ØÏµÊýÊÇ-0.77¡£
Êý¾Ý¿ÉÊÓ»¯
µ¥Ò»ÌØÕ÷ͼ±í
Ê×ÏȲ鿴ÿһ¸öÊý¾ÝÌØÕ÷µ¥¶ÀµÄ·Ö²¼Í¼£¬¶à²é¿´¼¸ÖÖ²»Í¬µÄͼ±íÓÐÖúÓÚ·¢ÏÖ¸üºÃµÄ·½·¨¡£ÎÒÃÇ¿ÉÒÔͨ¹ý²é¿´¸÷¸öÊý¾ÝÌØÕ÷µÄÖ±·½Í¼£¬À´¸ÐÊÜÒ»ÏÂÊý¾ÝµÄ·Ö²¼Çé¿ö¡£´úÂëÈçÏ£º
# Ö±·½Í¼
dataset.hist(sharex=False, sharey=False, xlabelsize=1,
ylabelsize=1)
pyplot.show() |
Ö´Ðнá¹ûÈçͼ20-4Ëùʾ£¬´ÓͼÖпÉÒÔ¿´µ½ÓÐЩÊý¾Ý³ÊÖ¸Êý·Ö²¼£¬ÈçCRIM¡¢ZN¡¢AGEºÍB£»ÓÐЩÊý¾ÝÌØÕ÷³ÊË«·å·Ö²¼£¬ÈçRADºÍTAX¡£

ͼ20-4
ͨ¹ýÃܶÈͼ¿ÉÒÔչʾÕâЩÊý¾ÝµÄÌØÕ÷ÊôÐÔ£¬ÃܶÈͼ±ÈÖ±·½Í¼¸ü¼Óƽ»¬µØÕ¹Ê¾ÁËÕâЩÊý¾ÝÌØÕ÷¡£´úÂëÈçÏ£º
# ÃܶÈͼ
dataset.plot(kind='density', subplots=True, layout=(4,4),
sharex=False, fontsize=1)
pyplot.show() |
ÔÚÃܶÈͼÖУ¬Ö¸¶¨layout=(4, 4)£¬Õâ˵Ã÷Òª»Ò»¸öËÄÐÐËÄÁеÄͼÐΡ£Ö´Ðнá¹ûÈçͼ20-5Ëùʾ¡£

ͼ20-5
ͨ¹ýÏäÏßͼ¿ÉÒԲ鿴ÿһ¸öÊý¾ÝÌØÕ÷µÄ×´¿ö£¬Ò²¿ÉÒԺܷ½±ãµØ¿´³öÊý¾Ý·Ö²¼µÄƫ̬³Ì¶È¡£´úÂëÈçÏ£º
#ÏäÏßͼ
dataset.plot(kind='box', subplots=True, layout=(4,4),
sharex=False, sharey=False, fontsize=8)
pyplot.show()
|
Ö´Ðнá¹ûÈçͼ20-6Ëùʾ¡£

ͼ20-6
¶àÖØÊý¾Ýͼ±í
½ÓÏÂÀ´ÀûÓöàÖØÊý¾Ýͼ±íÀ´²é¿´²»Í¬Êý¾ÝÌØÕ÷Ö®¼äµÄÏ໥ӰÏì¹ØÏµ¡£Ê×ÏÈ¿´Ò»ÏÂÉ¢µã¾ØÕóͼ¡£´úÂëÈçÏ£º
# É¢µã¾ØÕóͼ
scatter_matrix(dataset)
pyplot.show() |
ͨ¹ýÉ¢µã¾ØÕóͼ¿ÉÒÔ¿´µ½£¬ËäÈ»ÓÐЩÊý¾ÝÌØÕ÷Ö®¼äµÄ¹ØÁª¹ØÏµºÜÇ¿£¬µ«ÊÇÕâЩÊý¾Ý·Ö²¼½á¹¹Ò²ºÜºÃ¡£¼´Ê¹²»ÊÇÏßÐÔ·Ö²¼½á¹¹£¬Ò²ÊÇ¿ÉÒԺܷ½±ã½øÐÐÔ¤²âµÄ·Ö²¼½á¹¹£¬Ö´Ðнá¹ûÈçͼ20-7Ëùʾ¡£

ͼ20-7
ÔÙ¿´Ò»ÏÂÊý¾ÝÏ໥ӰÏìµÄÏà¹Ø¾ØÕóͼ¡£´úÂëÈçÏ£º
# Ïà¹Ø¾ØÕóͼ
fig = pyplot.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(dataset.corr(), vmin=-1, vmax=1,
interpolation='none')
fig.colorbar(cax)
ticks = np.arange(0, 14, 1)
ax.set_xticks(ticks)
ax.set_yticks(ticks)
ax.set_xticklabels(names)
ax.set_yticklabels(names)
pyplot.show() |
Ö´Ðнá¹ûÈçͼ20-8Ëùʾ£¬¸ù¾ÝͼÀý¿ÉÒÔ¿´µ½£¬Êý¾ÝÌØÕ÷ÊôÐÔÖ®¼äµÄÁ½Á½Ïà¹ØÐÔ£¬ÓÐЩÊôÐÔÖ®¼äÊÇÇ¿Ïà¹ØµÄ£¬½¨ÒéÔÚºóÐøµÄ´¦ÀíÖÐÒÆ³ýÕâÐ©ÌØÕ÷ÊôÐÔ£¬ÒÔÌá¸ßËã·¨µÄ׼ȷ¶È¡£

ͼ20-8
˼·×ܽá
ͨ¹ýÊý¾ÝµÄÏà¹ØÐÔºÍÊý¾ÝµÄ·Ö²¼µÈ·¢ÏÖ£¬Êý¾Ý¼¯ÖеÄÊý¾Ý½á¹¹±È½Ï¸´ÔÓ£¬ÐèÒª¿¼ÂǶÔÊý¾Ý½øÐÐת»»£¬ÒÔÌá¸ßÄ£Ð͵Ä׼ȷ¶È¡£¿ÉÒÔ³¢ÊÔ´ÓÒÔϼ¸¸ö·½Ãæ¶ÔÊý¾Ý½øÐд¦Àí£º
ͨ¹ýÌØÕ÷Ñ¡ÔñÀ´¼õÉٴ󲿷ÖÏà¹ØÐԸߵÄÌØÕ÷¡£
ͨ¹ý±ê×¼»¯Êý¾ÝÀ´½µµÍ²»Í¬Êý¾Ý¶ÈÁ¿µ¥Î»´øÀ´µÄÓ°Ïì¡£
ͨ¹ýÕý̬»¯Êý¾ÝÀ´½µµÍ²»Í¬µÄÊý¾Ý·Ö²¼½á¹¹£¬ÒÔÌá¸ßËã·¨µÄ׼ȷ¶È¡£
¿ÉÒÔ½øÒ»²½²é¿´Êý¾ÝµÄ¿ÉÄÜÐÔ·Ö¼¶£¨ÀëÉ¢»¯£©£¬Ëü¿ÉÒÔ°ïÖúÌá¸ß¾ö²ßÊ÷Ëã·¨µÄ׼ȷ¶È¡£
·ÖÀëÆÀ¹ÀÊý¾Ý¼¯
·ÖÀë³öÒ»¸öÆÀ¹ÀÊý¾Ý¼¯ÊÇÒ»¸öºÜºÃµÄÖ÷Ò⣬ÕâÑù¿ÉÒÔÈ·±£·ÖÀë³öµÄÊý¾Ý¼¯ÓëѵÁ·Ä£Ð͵ÄÊý¾Ý¼¯ÍêÈ«¸ôÀ룬ÓÐÖúÓÚ×îÖÕÅжϺͱ¨¸æÄ£Ð͵Ä׼ȷ¶È¡£ÔÚ½øÐе½ÏîÄ¿µÄ×îºóÒ»²½´¦Àíʱ£¬»áʹÓÃÕâ¸öÆÀ¹ÀÊý¾Ý¼¯À´È·ÈÏÄ£Ð͵Ä׼ȷ¶È¡£ÕâÀï·ÖÀë³ö20%µÄÊý¾Ý×÷ΪÆÀ¹ÀÊý¾Ý¼¯£¬80%µÄÊý¾Ý×÷ΪѵÁ·Êý¾Ý¼¯¡£´úÂëÈçÏ£º
# ·ÖÀëÊý¾Ý¼¯
array = dataset.values
X = array[:, 0:13]
Y = array[:, 13]
validation_size = 0.2
seed = 7
X_train, X_validation, Y_train, Y_validation =
train_test_split(X, Y,test_size=validation_size,
random_state=seed) |
ÆÀ¹ÀËã·¨
ÆÀ¹ÀËã·¨¡ª¡ªÔʼÊý¾Ý
·ÖÎöÍêÊý¾Ý²»ÄÜÁ¢¿ÌÑ¡Ôñ³öÄĸöËã·¨¶ÔÐèÒª½â¾öµÄÎÊÌâ×îÓÐЧ¡£ÎÒÃÇÖ±¹ÛÉÏÈÏΪ£¬ÓÉÓÚ²¿·ÖÊý¾ÝµÄÏßÐÔ·Ö²¼£¬ÏßÐԻعéËã·¨ºÍµ¯ÐÔÍøÂç»Ø¹éËã·¨¶Ô½â¾öÎÊÌâ¿ÉÄܱȽÏÓÐЧ¡£ÁíÍ⣬ÓÉÓÚÊý¾ÝµÄÀëÉ¢»¯£¬Í¨¹ý¾ö²ßÊ÷Ëã·¨»òÖ§³ÖÏòÁ¿»úËã·¨Ò²Ðí¿ÉÒÔÉú³É¸ß׼ȷ¶ÈµÄÄ£ÐÍ¡£µ½ÕâÀÒÀÈ»²»Çå³þÄĸöËã·¨»áÉú³É׼ȷ¶È×î¸ßµÄÄ£ÐÍ£¬Òò´ËÐèÒªÉè¼ÆÒ»¸öÆÀ¹À¿ò¼ÜÀ´Ñ¡ÔñºÏÊʵÄËã·¨¡£ÎÒÃDzÉÓÃ10ÕÛ½»²æÑéÖ¤À´·ÖÀëÊý¾Ý£¬Í¨¹ý¾ù·½Îó²îÀ´±È½ÏËã·¨µÄ׼ȷ¶È¡£¾ù·½Îó²îÔ½Ç÷½üÓÚ0£¬Ë㷨׼ȷ¶ÈÔ½¸ß¡£´úÂëÈçÏ£º
# ÆÀ¹ÀËã·¨ ¡ª¡ª ÆÀ¹À±ê×¼
num_folds = 10
seed = 7
scoring = 'neg_mean_squared_error' |
¶ÔÔʼÊý¾Ý²»×öÈκδ¦Àí£¬¶ÔËã·¨½øÐÐÒ»¸öÆÀ¹À£¬ÐγÉÒ»¸öËã·¨µÄÆÀ¹À»ù×¼¡£Õâ¸ö»ù×¼ÖµÊǶԺóÐøËã·¨¸ÄÉÆÓÅÁӱȽϵĻù×¼Öµ¡£ÎÒÃÇÑ¡ÔñÈý¸öÏßÐÔËã·¨ºÍÈý¸ö·ÇÏßÐÔËã·¨À´½øÐбȽϡ£
ÏßÐÔËã·¨£ºÏßÐԻع飨LR£©¡¢Ì×Ë÷»Ø¹é£¨LASSO£©ºÍµ¯ÐÔÍøÂç»Ø¹é£¨EN£©¡£
·ÇÏßÐÔËã·¨£º·ÖÀàÓë»Ø¹éÊ÷£¨CART£©¡¢Ö§³ÖÏòÁ¿»ú£¨SVM£©ºÍK½üÁÚËã·¨£¨KNN£©¡£
Ë㷨ģÐͳõʼ»¯µÄ´úÂëÈçÏ£º
# ÆÀ¹ÀËã·¨ - baseline
models = {}
models['LR'] = LinearRegression()
models['LASSO'] = Lasso()
models['EN'] = ElasticNet()
models['KNN'] = KNeighborsRegressor()
models['CART'] = DecisionTreeRegressor()
models['SVM'] = SVR() |
¶ÔËùÓеÄË㷨ʹÓÃĬÈϲÎÊý£¬²¢±È½ÏËã·¨µÄ׼ȷ¶È£¬´Ë´¦±È½ÏµÄÊǾù·½Îó²îµÄ¾ùÖµºÍ±ê×¼·½²î¡£´úÂëÈçÏ£º
# ÆÀ¹ÀËã·¨
results = []
for key in models:
kfold = KFold(n_splits=num_folds, random_state=seed)
cv_result = cross_val_score(models[key], X_train,
Y_train, cv=kfold, scoring=scoring)
results.append(cv_result)
print('%s: %f (%f)' % (key, cv_result.mean(),
cv_result.std())) |
´ÓÖ´Ðнá¹ûÀ´¿´£¬ÏßÐԻع飨LR£©¾ßÓÐ×îÓŵÄMSE£¬½ÓÏÂÀ´ÊÇ·ÖÀàÓë»Ø¹éÊ÷ £¨CART£©Ëã·¨¡£Ö´Ðнá¹ûÈçÏ£º
LR: -21.379856
(9.414264)
LASSO: -26.423561 (11.651110)
EN: -27.502259 (12.305022)
KNN: -41.896488 (13.901688)
CART: -26.608476 (12.250800)
SVM: -85.518342 (31.994798) |
Ôٲ鿴ËùÓеÄ10ÕÛ½»²æ·ÖÀëÑéÖ¤µÄ½á¹û¡£´úÂëÈçÏ£º
#ÆÀ¹ÀËã·¨¡ª¡ªÏäÏßͼ
fig = pyplot.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
pyplot.boxplot(results)
ax.set_xticklabels(models.keys())
pyplot.show() |
Ö´Ðнá¹ûÈçͼ20-9Ëùʾ£¬´ÓͼÖпÉÒÔ¿´µ½£¬ÏßÐÔËã·¨µÄ·Ö²¼±È½ÏÀàËÆ£¬²¢ÇÒK½üÁÚËã·¨µÄ½á¹û·Ö²¼·Ç³£½ô´Õ¡£

ͼ20-9
²»Í¬µÄÊý¾Ý¶ÈÁ¿µ¥Î»£¬Ò²ÐíÊÇK½üÁÚËã·¨ºÍÖ§³ÖÏòÁ¿»úËã·¨±íÏÖ²»¼ÑµÄÖ÷ÒªÔÒò¡£ÏÂÃæ½«¶ÔÊý¾Ý½øÐÐÕý̬»¯´¦Àí£¬ÔٴαȽÏËã·¨µÄ½á¹û¡£
ÆÀ¹ÀËã·¨¡ª¡ªÕý̬»¯Êý¾Ý
ÔÚÕâÀï²Â²âÒ²ÐíÒòΪÔʼÊý¾ÝÖв»Í¬ÌØÕ÷ÊôÐԵĶÈÁ¿µ¥Î»²»Ò»Ñù£¬µ¼ÖÂÓеÄËã·¨µÄ½á¹û²»ÊǺܺ᣽ÓÏÂÀ´Í¨¹ý¶ÔÊý¾Ý½øÐÐÕý̬»¯£¬ÔÙ´ÎÆÀ¹ÀÕâЩËã·¨¡£ÔÚÕâÀï¶ÔѵÁ·Êý¾Ý¼¯½øÐÐÊý¾Ýת»»´¦Àí£¬½«ËùÓеÄÊý¾ÝÌØÕ÷ֵת»¯³É¡°0¡±ÎªÖÐλֵ¡¢±ê×¼²îΪ¡°1¡±µÄÊý¾Ý¡£¶ÔÊý¾ÝÕý̬»¯Ê±£¬ÎªÁË·ÀÖ¹Êý¾Ýй¶£¬²ÉÓÃPipelineÀ´Õý̬»¯Êý¾ÝºÍ¶ÔÄ£ÐͽøÐÐÆÀ¹À¡£ÎªÁËÓëÇ°ÃæµÄ½á¹û½øÐбȽϣ¬´Ë´¦²ÉÓÃÏàͬµÄÆÀ¹À¿ò¼ÜÀ´ÆÀ¹ÀË㷨ģÐÍ¡£´úÂëÈçÏ£º
# ÆÀ¹ÀËã·¨¡ª¡ªÕý̬»¯Êý¾Ý
pipelines = {}
pipelines['ScalerLR'] = Pipeline([('Scaler', StandardScaler()),
('LR', LinearRegression())])
pipelines['ScalerLASSO'] = Pipeline([('Scaler',
StandardScaler()), ('LASSO', Lasso())])
pipelines['ScalerEN'] = Pipeline([('Scaler',
StandardScaler()), ('EN', ElasticNet())])
pipelines['ScalerKNN'] = Pipeline([('Scaler',
StandardScaler()), ('KNN', KNeighborsRegressor())])
pipelines['ScalerCART'] = Pipeline([('Scaler',
StandardScaler()), ('CART', DecisionTreeRegressor())])
pipelines['ScalerSVM'] = Pipeline([('Scaler',
StandardScaler()), ('SVM', SVR())])
results = []
for key in pipelines:
kfold = KFold(n_splits=num_folds, random_state=seed)
cv_result = cross_val_score(pipelines[key], X_train,
Y_train, cv=kfold, scoring=scoring)
results.append(cv_result)
print('%s: %f (%f)' % (key, cv_result.mean(),
cv_result.std())) |
Ö´Ðкó·¢ÏÖK½üÁÚËã·¨¾ßÓÐ×îÓŵÄMSE¡£Ö´Ðнá¹ûÈçÏ£º
ScalerLR: -21.379856
(9.414264)
ScalerLASSO: -26.607314 (8.978761)
ScalerEN: -27.932372 (10.587490)
ScalerKNN: -20.107620 (12.376949)
ScalerCART: -26.978716 (12.164366)
ScalerSVM: -29.633086 (17.009186) |
½ÓÏÂÀ´¿´Ò»ÏÂËùÓеÄ10ÕÛ½»²æ·ÖÀëÑéÖ¤µÄ½á¹û¡£´úÂëÈçÏ£º
#ÆÀ¹ÀËã·¨¡ª¡ªÏäÏßͼ
fig = pyplot.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
pyplot.boxplot(results)
ax.set_xticklabels(models.keys())
pyplot.show() |
Ö´Ðнá¹û£¬Éú³ÉµÄÏäÏßͼÈçͼ20-10Ëùʾ£¬¿ÉÒÔ¿´µ½K½üÁÚËã·¨¾ßÓÐ×îÓŵÄMSEºÍ×î½ô´ÕµÄÊý¾Ý·Ö²¼¡£

µ÷²Î¸ÄÉÆËã·¨
ĿǰÀ´¿´£¬K½üÁÚËã·¨¶Ô×ö¹ýÊý¾Ýת»»µÄÊý¾Ý¼¯ÓкܺõĽá¹û£¬µ«ÊÇÊÇ·ñ¿ÉÒÔ½øÒ»²½¶Ô½á¹û×öһЩÓÅ»¯ÄØ£¿K½üÁÚËã·¨µÄĬÈϲÎÊý½üÁÚ¸öÊý£¨n_neighbors£©ÊÇ5£¬ÏÂÃæÍ¨¹ýÍø¸ñËÑË÷Ëã·¨À´ÓÅ»¯²ÎÊý¡£´úÂëÈçÏ£º
# µ÷²Î¸ÄÉÆËã·¨¡ª¡ªKNN
scaler = StandardScaler().fit(X_train)
rescaledX = scaler.transform(X_train)
param_grid = {'n_neighbors': [1, 3, 5, 7, 9, 11,
13, 15, 17, 19, 21]}
model = KNeighborsRegressor()
kfold = KFold(n_splits=num_folds, random_state=seed)
grid = GridSearchCV(estimator=model,
param_grid=param_grid, scoring=scoring, cv=kfold)
grid_result = grid.fit(X=rescaledX, y=Y_train)
print('×îÓÅ£º%s ʹÓÃ%s' % (grid_result.best_score_,
grid_result.best_params_))
cv_results =
zip(grid_result.cv_results_['mean_test_score'],
grid_result.cv_results_['std_test_score'],
grid_result.cv_results_['params'])
for mean, std, param in cv_results:
print('%f (%f) with %r' % (mean, std, param)) |
×îÓŽá¹û¡ª¡ªK½üÁÚËã·¨µÄĬÈϲÎÊý½üÁÚ¸öÊý£¨n_neighbors£©ÊÇ3¡£Ö´Ðнá¹ûÈçÏ£º
×îÓÅ£º-18.1721369637
ʹÓÃ{'n_neighbors': 3}
-20.208663 (15.029652) with {'n_neighbors': 1}
-18.172137 (12.950570) with {'n_neighbors': 3}
-20.131163 (12.203697) with {'n_neighbors': 5}
-20.575845 (12.345886) with {'n_neighbors': 7}
-20.368264 (11.621738) with {'n_neighbors': 9}
-21.009204 (11.610012) with {'n_neighbors': 11}
-21.151809 (11.943318) with {'n_neighbors': 13}
-21.557400 (11.536339) with {'n_neighbors': 15}
-22.789938 (11.566861) with {'n_neighbors': 17}
-23.871873 (11.340389) with {'n_neighbors': 19}
-24.361362 (11.914786) with {'n_neighbors': 21} |
¼¯³ÉËã·¨
³ýµ÷²ÎÖ®Í⣬Ìá¸ßÄ£ÐÍ׼ȷ¶ÈµÄ·½·¨ÊÇʹÓü¯³ÉËã·¨¡£ÏÂÃæ»á¶Ô±íÏֱȽϺõÄÏßÐԻع顢K½üÁÚ¡¢·ÖÀàÓë»Ø¹éÊ÷Ëã·¨½øÐм¯³É£¬À´¿´¿´Ëã·¨ÄÜ·ñÌá¸ß¡£
×°´üËã·¨£ºËæ»úÉÁÖ£¨RF£©ºÍ¼«¶ËËæ»úÊ÷£¨ET£©¡£
ÌáÉýËã·¨£ºAdaBoost£¨AB£©ºÍËæ»úÌݶÈÉÏÉý£¨GBM£©¡£
ÒÀÈ»²ÉÓúÍÇ°ÃæÍ¬ÑùµÄÆÀ¹À¿ò¼ÜºÍÕý̬»¯Ö®ºóµÄÊý¾ÝÀ´·ÖÎöÏà¹ØµÄËã·¨¡£´úÂëÈçÏ£º
# ¼¯³ÉËã·¨
ensembles = {}
ensembles['ScaledAB'] = Pipeline([('Scaler',
StandardScaler()), ('AB', AdaBoostRegressor())])
ensembles['ScaledAB-KNN'] = Pipeline([('Scaler',
StandardScaler()), ('ABKNN', AdaBoostRegressor
(base_estimator= KNeighborsRegressor(n_neighbors=3)))])
ensembles['ScaledAB-LR'] = Pipeline([('Scaler',
StandardScaler()), ('ABLR',
AdaBoostRegressor(LinearRegression()))])
ensembles['ScaledRFR'] = Pipeline([('Scaler',
StandardScaler()), ('RFR', RandomForestRegressor())])
ensembles['ScaledETR'] = Pipeline([('Scaler',
StandardScaler()), ('ETR', ExtraTreesRegressor())])
ensembles['ScaledGBR'] = Pipeline([('Scaler',
StandardScaler()), ('RBR', GradientBoostingRegressor())])
results = []
for key in ensembles:
kfold = KFold(n_splits=num_folds, random_state=seed)
cv_result = cross_val_score(ensembles[key],
X_train, Y_train, cv=kfold, scoring=scoring)
results.append(cv_result)
print('%s: %f (%f)' % (key, cv_result.mean(),
cv_result.std())) |
ÓëÇ°ÃæµÄÏßÐÔËã·¨ºÍ·ÇÏßÐÔËã·¨Ïà±È£¬Õâ´ÎµÄ׼ȷ¶È¶¼ÓÐÁ˽ϴóµÄÌá¸ß¡£Ö´Ðнá¹ûÈçÏ£º
ScaledAB: -15.244803
(6.272186)
ScaledAB-KNN: -15.794844 (10.565933)
ScaledAB-LR: -24.108881 (10.165026)
ScaledRFR: -13.279674 (6.724465)
ScaledETR: -10.464980 (5.476443)
ScaledGBR: -10.256544 (4.605660) |
½ÓÏÂÀ´Í¨¹ýÏäÏßͼ¿´Ò»Ï¼¯³ÉËã·¨ÔÚ10ÕÛ½»²æÑéÖ¤Öоù·½Îó²îµÄ·Ö²¼×´¿ö¡£´úÂëÈçÏ£º
# ¼¯³ÉËã·¨¡ª¡ªÏäÏßͼ
fig = pyplot.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
pyplot.boxplot(results)
ax.set_xticklabels(ensembles.keys())
pyplot.show() |
Ö´Ðнá¹ûÈçͼ20-11Ëùʾ£¬Ëæ»úÌݶÈÉÏÉýËã·¨ºÍ¼«¶ËËæ»úÊ÷Ëã·¨¾ßÓнϸߵÄÖÐλֵºÍ·Ö²¼×´¿ö¡£

ͼ20-11
¼¯³ÉËã·¨µ÷²Î
¼¯³ÉËã·¨¶¼ÓÐÒ»¸ö²ÎÊýn_estimators£¬ÕâÊÇÒ»¸öºÜºÃµÄ¿ÉÒÔÓÃÀ´µ÷ÕûµÄ²ÎÊý¡£¶ÔÓÚ¼¯³É²ÎÊýÀ´Ëµ£¬n_estimators»á´øÀ´¸ü׼ȷµÄ½á¹û£¬µ±È»ÕâÒ²ÓÐÒ»¶¨µÄÏÞ¶È¡£ÏÂÃæ¶ÔËæ»úÌݶÈÉÏÉý£¨GBM£©ºÍ¼«¶ËËæ»úÊ÷£¨ET£©Ëã·¨½øÐе÷²Î£¬ÔٴαȽÏÕâÁ½¸öË㷨ģÐ͵Ä׼ȷ¶È£¬À´È·¶¨×îÖÕµÄË㷨ģÐÍ¡£´úÂëÈçÏ£º
# ¼¯³ÉËã·¨GBM¡ª¡ªµ÷²Î
caler = StandardScaler().fit(X_train)
rescaledX = scaler.transform(X_train)
param_grid = {'n_estimators': [10, 50, 100, 200,
300, 400, 500, 600, 700, 800, 900]}
model = GradientBoostingRegressor()
kfold = KFold(n_splits=num_folds, random_state=seed)
grid = GridSearchCV(estimator=model,
param_grid=param_grid, scoring=scoring, cv=kfold)
grid_result = grid.fit(X=rescaledX, y=Y_train)
print('×îÓÅ£º%s ʹÓÃ%s' % (grid_result.best_score_,
grid_result.best_params_))
# ¼¯³ÉËã·¨ET¡ª¡ªµ÷²Î
scaler = StandardScaler().fit(X_train)
rescaledX = scaler.transform(X_train)
param_grid = {'n_estimators': [5, 10, 20, 30,
40, 50, 60, 70, 80, 90, 100]}
model = ExtraTreesRegressor()
kfold = KFold(n_splits=num_folds, random_state=seed)
grid = GridSearchCV(estimator=model, param_grid=param_grid,
scoring=scoring, cv=kfold)
grid_result = grid.fit(X=rescaledX, y=Y_train)
print('×îÓÅ£º%s ʹÓÃ%s' % (grid_result.best_score_,
grid_result.best_params_)) |
¶ÔÓÚËæ»úÌݶÈÉÏÉý£¨GBM£©Ëã·¨À´Ëµ£¬×îÓŵÄn_estimatorsÊÇ500£»¶ÔÓÚ¼«¶ËËæ»úÊ÷£¨ET£©Ëã·¨À´Ëµ£¬×îÓŵÄn_estimatorsÊÇ80¡£Ö´Ðнá¹û£¬¼«¶ËËæ»úÊ÷£¨ET£©Ëã·¨ÂÔÓÅÓÚËæ»úÌݶÈÉÏÉý£¨GBM£©Ëã·¨£¬Òò´Ë²ÉÓü«¶ËËæ»úÊ÷£¨ET£©Ëã·¨À´ÑµÁ·×îÖÕµÄÄ£ÐÍ¡£Ö´Ðнá¹ûÈçÏ£º
×îÓÅ£º-9.3078229754
ʹÓÃ{'n_estimators': 500}
×îÓÅ£º-8.99113433246 ʹÓÃ{'n_estimators': 80} |
Ò²ÐíÐèÒªÖ´Ðжà´ÎÕâ¸ö¹ý³Ì²ÅÄÜÕÒµ½×îÓŲÎÊý¡£ÕâÀïÓÐÒ»¸ö¼¼ÇÉ£¬µ±×îÓŲÎÊýÊÇparam_gridµÄ±ß½çֵʱ£¬ÓбØÒªµ÷Õûparam_grid½øÐÐÏÂÒ»´Îµ÷²Î¡£
È·¶¨×îÖÕÄ£ÐÍ
ÎÒÃÇÒѾȷ¶¨ÁËʹÓü«¶ËËæ»úÊ÷£¨ET£©Ëã·¨À´Éú³ÉÄ£ÐÍ£¬ÏÂÃæ¾Í¶Ô¸ÃËã·¨½øÐÐѵÁ·ºÍÉú³ÉÄ£ÐÍ£¬²¢¼ÆËãÄ£Ð͵Ä׼ȷ¶È¡£´úÂëÈçÏ£º
#ѵÁ·Ä£ÐÍ
caler = StandardScaler().fit(X_train)
rescaledX = scaler.transform(X_train)
gbr = ExtraTreesRegressor(n_estimators=80)
gbr.fit(X=rescaledX, y=Y_train) |
ÔÙͨ¹ýÆÀ¹ÀÊý¾Ý¼¯À´ÆÀ¹ÀËã·¨µÄ׼ȷ¶È¡£
# ÆÀ¹ÀË㷨ģÐÍ
rescaledX_validation = scaler.transform(X_validation)
predictions = gbr.predict(rescaledX_validation)
print(mean_squared_error(Y_validation, predictions)) |
Ö´Ðнá¹ûÈçÏ£º
×ܽá
±¾ÏîĿʵÀý´ÓÎÊÌⶨÒ忪ʼ£¬Ö±µ½×îºóµÄÄ£ÐÍÉú³ÉΪֹ£¬Íê³ÉÁËÒ»¸öÍêÕûµÄ»úÆ÷ѧϰÏîÄ¿¡£Í¨¹ýÕâ¸öÏîÄ¿£¬Àí½âÁËÉÏÒ»ÕÂÖнéÉܵĻúÆ÷ѧϰÏîÄ¿µÄÄ£°å£¬ÒÔ¼°Õû¸ö»úÆ÷ѧϰģÐͽ¨Á¢µÄÁ÷³Ì¡£½ÓÏÂÀ´»á½éÉÜÒ»¸ö»úÆ÷ѧϰµÄ¶þ·ÖÀàÎÊÌ⣬ÒÔ½øÒ»²½¼ÓÉî¶ÔÕâ¸öÄ£°åµÄÀí½â¡£
|