Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
KafkaÈ«½âÎö
 
  2636  次浏览      27
 2018-5-25 
 
±à¼­ÍƼö:
±¾ÎÄÀ´×ÔÓÚcsdn£¬ÎÄÖнéÉÜÁËConcepts£¬Kafka ºËÐÄÔ­Àí£¬Use Cases £¬Development with Kafka £¬Administration £¬Cluster Planning £¬Compare µÈ¡£

Ò». Concepts

Kafka is used for building real-time data pipelines and streaming apps

·Ö²¼Ê½ÏûÏ¢´«µÝ

ÍøÕ¾»îÔ¾Êý¾Ý¸ú×Ù

ÈÕÖ¾¾ÛºÏ

Á÷ʽÊý¾Ý´¦Àí

Êý¾Ý´æ´¢

ʼþÔ´

¡­¡­

Kafka terminology ÊõÓï

1.Topics

Kafka maintains feeds of messages in categories called topics.

ÏûÏ¢¶¼¹éÊôÓÚÒ»¸öÀà±ð³ÉΪtopic,ÔÚÎïÀíÉϲ»Í¬TopicµÄÏûÏ¢·Ö¿ª´æ´¢,Âß¼­ÉÏÒ»¸öTopicµÄÏûÏ¢¶ÔʹÓÃÕß͸Ã÷

2.Partitions

Topics are broken up into ordered commit logs called partitions

ÿ¸öTopics»®·ÖΪһ¸ö»òÕß¶à¸öPartition,²¢ÇÒPartitionÖеÄÿÌõÏûÏ¢¶¼±»±ê¼ÇÁËÒ»¸ösequential id ,Ò²¾ÍÊÇoffset,²¢ÇÒ´æ´¢µÄÊý¾ÝÊÇ¿ÉÅäÖô洢ʱ¼äµÄ

3.Message Ordering

ÏûÏ¢Ö»±£Ö¤ÔÚͬһ¸öPartitionÖÐÓÐÐò,ËùÒÔ,Èç¹ûÒª±£Ö¤´ÓTopicÖÐÄõ½µÄÊý¾ÝÓÐÐò,ÔòÐèÒª×öµ½:

Group messages in a partition by key(producer)

Configure exactly one consumer instance per partition within a consumer group

kafkaÄܱ£Ö¤µÄÊÇ:

Message sent by a producer to a particular topic partition will be appended in the order they are sent

A consumer instance sees messages in the order they are stored in the log

For a topic with replication factor N, kafka can tolerate up to N-1 server failures without ¡°losing¡± any messages committed to the log

4.Log

Partition¶ÔÓ¦Âß¼­ÉϵÄLog

5.Replication ¸±±¾

Topics can (and should) be replicated

The unit of replication is the partition

Each partition in a topic has 1 leader and 0 or more replicas

A replica is deemed to be ¡°in-sync¡± if

The replica can communicate with Zookeeper

The replica is not ¡°too far¡± behind the leader(configurable)

The group of in-sync replicas for a partition is called the ISR(In-Sync-Replicas)

The Replication factor cannot be lowered

6.kafka durability ¿É¿¿ÐÔ

Durability can be configured with the producer configuration request.required.acks

0 : The producer never waits for an ack

1 : The producer gets an ack after the leader replica has received the data

-1 : The producer gets an ack after all ISRs receive the data

Minimum available ISR can also be configured such that an error is returned if enough replicas are not available to replicate data

ËùÒÔ,kafka¿ÉÒÔÑ¡Ôñ²»Í¬µÄdurabilityÀ´»»È¡²»Í¬µÄÍÌÍÂÁ¿

ͨÓÃ,kafka¿ÉÒÔͨ¹ýÔö¼Ó¸ü¶àµÄBrokerÀ´ÌáÉýÍÌÍÂÁ¿

Ò»¸öÍÆ¼öµÄÅäÖÃ:

7.Broker

Kafka is run as a cluster comparised of one or more servers each of which is called broker

8.Producer

Processes that publish messages to a kafka topic are called producers

Producers publish to a topic of their choosing(push)

Êý¾ÝÔØÈëkafka¿ÉÒÔÊÇ·Ö²¼Ê½µÄ,ͨ³£ÊÇͨ¹ý¡±Round-Robin¡±Ëã·¨²ßÂÔ,Ò²¿ÉÒÔ¸ù¾ÝmessageÖеÄkeyÀ´½øÐÐÓïÒå·Ö¸î¡±semantic partitioning¡±À´·Ö²¼Ê½ÔØÈë,Brokers ͨ¹ý·ÖÇøÀ´¾ùºâÔØÈë

kafkaÖ§³ÖÒì²½·¢ËÍasync,Òì²½·¢ËÍÏûÏ¢ÊÇless durableµÄ,µ«ÊÇÊǸßÍÌ͵Ä

ProducerµÄÔØÈëÆ½ºâºÍISRs

9.Consumer

Processes that subscribe(¶©ÔÄ) to tpics and process the feed of published messages are called consumers

Multiple Consumer can read from the same topic

Each Consumer is responsible for managing it¡¯s own offset

Message stay on kafka¡­ they are not removed after they consumed

Consumer¿ÉÒÔ´ÓÈÎÒ»µØ·½¿ªÊ¼Ïû·Ñ,È»ºóÓֻص½×î´óÆ«ÒÆÁ¿´¦,ConsumersÓÖ¿ÉÒÔ±»»®·ÖΪConsumer Group

10.Consumer Group

Consumer GroupÊÇÏÔʽ·Ö²¼Ê½,¶à¸öConsumer¹¹³É×é½á¹¹,MessageÖ»ÄÜ´«Ê䏸ij¸öGroupÖеÄijһ¸öConsumer

³£ÓõÄConsumer Groupģʽ:

All consumer instances in one group

Acts like a traditional queue with load balancing

All consumer instances in different groups

All messages are broadcast to all consumer instances

¡°Logical Subscriber¡± - Many consumer instances in a group

Consumers are added for scalability and fault tolerance,Each consumer instance reads from one or more partitions for a topic ,There cannot be more consumer instances than partitions

Consumer Groups ÌṩÁËtopicsºÍpartitionsµÄ¸ôÀë

²¢ÇÒµ±Ä³¸öConsumer¹ÒµôºóÄܹ»ÖØÐÂÆ½ºâ

Consumer GroupµÄÓ¦Óó¡¾°

µã¶Ôµã

½«ËùÓÐÏû·ÑÕ߷ŵ½Ò»¸öConsumer Group

¹ã²¥

½«Ã¿¸öÏû·ÑÕßµ¥¶À·Åµ½Ò»¸öConsumer Group

ˮƽÀ©Õ¹

ÏòConsumer GroupÖÐÌí¼ÓÏû·ÑÕß²¢½øÐÐRebalance

¹ÊÕÏ×ªÒÆ

µ±Ä³¸öConsumer·¢Éú¹ÊÕÏʱ,Consumer GroupÖØÐ·ÖÅä·ÖÇø

¶þ. Kafka ºËÐÄÔ­Àí

KafkaÉè¼ÆË¼Ïë

¿É³Ö¾Ã»¯Message

³Ö¾Ã»¯±¾µØÎļþϵͳ,ÉèÖÃÓÐЧÆÚ

Ö§³Ö¸ßÁ÷Á¿´¦Àí

ÃæÏòÌØ¶¨µÄʹÓó¡¾°¶ø²»ÊÇͨÓù¦ÄÜ

Ïû·Ñ״̬±£´æÔÚÏû·Ñ¶Ë¶ø²»ÊÇ·þÎñ¶Ë

¼õÇá·þÎñÆ÷¸ºµ£ºÍ½»»¥

Ö§³Ö·Ö²¼Ê½

Éú²úÕß/Ïû·ÑÕß͸Ã÷Òì²½

ÒÀÀµ´ÅÅÌÎļþϵͳ×öÏûÏ¢»º´æ

²»ÏûºÄÄÚ´æ

¸ßЧµÄ´ÅÅÌ´æÈ¡

¸´ÔÓ¶ÈΪO(1)

Ç¿µ÷¼õÉÙÊý¾ÝµÄÐòÁл¯ºÍ¿½±´¿ªÏú

ÅúÁ¿´æ´¢ºÍ·¢ËÍ¡¢zero-copy

Ö§³ÖÊý¾Ý²¢ÐмÓÔØµ½Hadoop

¼¯³ÉHadoop

KafkaÔ­Àí·ÖÎö

1.´æ´¢

Partition

topicÎïÀíÉϵķÖ×飬һ¸ötopic¿ÉÒÔ·ÖΪ¶à¸öpartition£¬Ã¿¸öpartitionÊÇÒ»¸öÓÐÐòµÄ¶ÓÁС£

ÔÚKafkaÎļþ´æ´¢ÖУ¬Í¬Ò»¸ötopicÏÂÓжà¸ö²»Í¬partition£¬Ã¿¸öpartitionΪһ¸öĿ¼£¬partitonÃüÃû¹æÔòΪtopicÃû³Æ+ÓÐÐòÐòºÅ£¬µÚÒ»¸öpartitonÐòºÅ´Ó0¿ªÊ¼£¬ÐòºÅ×î´óֵΪpartitionsÊýÁ¿¼õ1

ÿ¸öpartion(Ŀ¼)Ï൱ÓÚÒ»¸ö¾ÞÐÍÎļþ±»Æ½¾ù·ÖÅäµ½¶à¸ö´óСÏàµÈsegment(¶Î)Êý¾ÝÎļþÖС£µ«Ã¿¸ö¶Îsegment fileÏûÏ¢ÊýÁ¿²»Ò»¶¨ÏàµÈ£¬ÕâÖÖÌØÐÔ·½±ãold segment file¿ìËÙ±»É¾³ý¡£

ÿ¸öpartitonÖ»ÐèÒªÖ§³Ö˳Ðò¶Áд¾ÍÐÐÁË£¬segmentÎļþÉúÃüÖÜÆÚÓÉ·þÎñ¶ËÅäÖòÎÊý¾ö¶¨¡£

ÕâÑù×öµÄºÃ´¦¾ÍÊÇÄÜ¿ìËÙɾ³ýÎÞÓÃÎļþ£¬ÓÐЧÌá¸ß´ÅÅÌÀûÓÃÂÊ¡£

segment file

segment file×é³É£ºÓÉ2´ó²¿·Ö×é³É£¬·Ö±ðΪindex fileºÍdata file£¬´Ë2¸öÎļþÒ»Ò»¶ÔÓ¦£¬³É¶Ô³öÏÖ£¬ºó׺¡±.index¡±ºÍ¡°.log¡±·Ö±ð±íʾΪsegmentË÷ÒýÎļþ¡¢Êý¾ÝÎļþ.

segmentÎļþÃüÃû¹æÔò£ºpartionÈ«¾ÖµÄµÚÒ»¸ösegment´Ó0¿ªÊ¼£¬ºóÐøÃ¿¸ösegmentÎļþÃûΪÉÏÒ»¸ösegmentÎļþ×îºóÒ»ÌõÏûÏ¢µÄoffsetÖµ¡£ÊýÖµ×î´óΪ64λlong´óС£¬19λÊý×Ö×Ö·û³¤¶È£¬Ã»ÓÐÊý×ÖÓÃ0Ìî³ä¡£

ÆäÖÐ.indexË÷ÒýÎļþ´æ´¢´óÁ¿ÔªÊý¾Ý£¬.logÊý¾ÝÎļþ´æ´¢´óÁ¿ÏûÏ¢£¬Ë÷ÒýÎļþÖÐÔªÊý¾ÝÖ¸Ïò¶ÔÓ¦Êý¾ÝÎļþÖÐmessageµÄÎïÀíÆ«ÒÆµØÖ·¡£ËûÃÇÁ½¸öÊÇÒ»Ò»¶ÔÓ¦µÄ,¶ÔÓ¦¹ØÏµÈçÏÂ

Message

segment data fileÓÉÐí¶àmessage×é³É£¬messageÎïÀí½á¹¹ÈçÏÂ

²ÎÊý˵Ã÷:

2. Consumer

High Level Consumer

Ïû·ÑÕß±£´æÏû·Ñ״̬£º½«´Óij¸öPartition¶ÁÈ¡µÄ×îºóÒ»ÌõÏûÏ¢µÄoffset´æÓÚZooKeeperÖÐ

Low Level Consumer£º¸üºÃµÄ¿ØÖÆÊý¾ÝµÄÏû·Ñ

ͬһÌõÏûÏ¢¶Á¶à´Î

Ö»¶Áȡij¸öTopicµÄ²¿·ÖPartition

¹ÜÀíÊÂÎñ£¬´Ó¶øÈ·±£Ã¿ÌõÏûÏ¢±»´¦ÀíÒ»´Î£¬ÇÒ½ö±»´¦ÀíÒ»´Î

´óÁ¿¶îÍ⹤×÷

±ØÐëÔÚÓ¦ÓóÌÐòÖиú×Ùoffset£¬´Ó¶øÈ·¶¨ÏÂÒ»ÌõÓ¦¸ÃÏû·ÑÄÄÌõÏûÏ¢

Ó¦ÓóÌÐòÐèҪͨ¹ý³ÌÐò»ñ֪ÿ¸öPartitionµÄLeaderÊÇË­

±ØÐë´¦ÀíLeaderµÄ±ä»¯

3.ÏûÏ¢´«µÝÓïÒåDelivery Semantics

At least once

kafkaµÄĬÈÏÉèÖÃ

Messages are never lost but maybe redelivered

At most once

Messages are lost but never redelivered

Exactly once

±È½ÏÄÑʵÏÖ

Messages are delivered once and only once

ʵÏÖExactly OnceÐèÒª¿¼ÂÇ:

Must consider two components

Durability guarantees when publishing a message

Durability guarantees when consuming a message

Producer

What happens when a produce request was sent but a network error returned before an ack ?

RE:Use a single writer per partition and check the latest committed value after network errors

Consumer

include a unique ID(e.g.UUID) and de-duplicate

Consider storing offsets with data

½âÊÍ:

ÏûÏ¢´«µÝÓïÒå: Producer ½Ç¶È

µ±ProducerÏòbroker·¢ËÍÏûϢʱ£¬Ò»µ©ÕâÌõÏûÏ¢±»commit£¬ÒòΪreplicationµÄ´æÔÚ£¬Ëü¾Í²»»á¶ª,µ«ÊÇÈç¹ûProducer·¢ËÍÊý¾Ý¸øbrokerºó£¬Óöµ½ÍøÂçÎÊÌâ¶øÔì³ÉͨÐÅÖжϣ¬ÄÇProducer¾ÍÎÞ·¨ÅжϸÃÌõÏûÏ¢ÊÇ·ñÒѾ­commit

ÀíÏëµÄ½â¾ö·½°¸£ºProducer¿ÉÒÔÉú³ÉÒ»ÖÖÀàËÆÓÚÖ÷¼üµÄ¶«Î÷£¬·¢Éú¹ÊÕÏʱÃݵÈÐÔµÄÖØÊÔ¶à´Î£¬ÕâÑù¾Í×öµ½ÁËExactly once,ĿǰĬÈÏÇé¿öÏÂÒ»ÌõÏûÏ¢´ÓProducerµ½brokerÊÇÈ·±£ÁËAt least once

ÏûÏ¢´«µÝÓïÒå: Consumer : High Level API

ConsumerÔÚ´Óbroker¶ÁÈ¡ÏûÏ¢ºó£¬¿ÉÒÔÑ¡Ôñcommit£¬¸Ã²Ù×÷»áÔÚZookeeperÖб£´æ¸ÃConsumerÔÚ¸ÃPartitionÖжÁÈ¡µÄÏûÏ¢µÄoffset

¸ÃConsumerÏÂÒ»´ÎÔÙ¶Á¸ÃPartitionʱ»á´ÓÏÂÒ»Ìõ¿ªÊ¼¶ÁÈ¡£»Èçδcommit£¬ÏÂÒ»´Î¶ÁÈ¡µÄ¿ªÊ¼Î»Öûá¸úÉÏÒ»´ÎcommitÖ®ºóµÄ¿ªÊ¼Î»ÖÃÏàͬ

ÏÖʵµÄÎÊÌ⣺µ½µ×ÊÇÏÈ´¦ÀíÏûÏ¢ÔÙcommit£¬»¹ÊÇÏÈcommitÔÙ´¦ÀíÏûÏ¢£¿

ÏÈ´¦ÀíÏûÏ¢ÔÙcommit

Èç¹ûÔÚ´¦ÀíÍêÏûÏ¢ÔÙ½øÐÐcommit֮ǰConsumer·¢Éúå´»ú£¬Ï´ÎÖØÐ¿ªÊ¼¹¤×÷ʱ»¹»á´¦Àí¸Õ¸ÕδcommitµÄÏûÏ¢£¬Êµ¼ÊÉϸÃÏûÏ¢ÒѾ­±»´¦Àí¹ýÁË¡£Õâ¾Í¶ÔÓ¦ÓÚAt least once

ÒµÎñ³¡¾°Ê¹ÓÃÃݵÈÐÔ£ºÏûÏ¢¶¼ÓÐÒ»¸öÖ÷¼ü£¬ËùÒÔÏûÏ¢µÄ´¦ÀíÍùÍù¾ßÓÐÃݵÈÐÔ£¬¼´¶à´Î´¦ÀíÕâÒ»ÌõÏûÏ¢¸úÖ»´¦ÀíÒ»´ÎÊǵÈЧµÄ£¬ÄǾͿÉÒÔÈÏΪÊÇExactly once¡£

ÏÈcommitÔÙ´¦ÀíÏûÏ¢

Èç¹ûConsumerÔÚcommitºó»¹Ã»À´µÃ¼°´¦ÀíÏûÏ¢¾Íå´»úÁË£¬Ï´ÎÖØÐ¿ªÊ¼¹¤×÷ºó¾ÍÎÞ·¨¶Áµ½¸Õ¸ÕÒÑÌá½»¶øÎ´´¦ÀíµÄÏûÏ¢£¬Õâ¾Í¶ÔÓ¦ÓÚAt most once

ÏûÏ¢´«µÝÓïÒå: Consumer : Lower Level API

Exactly onceµÄʵÏÖ˼Ï룺Эµ÷offsetºÍÏûÏ¢Êý¾Ý

¾­µä×ö·¨ÊÇÒýÈëÁ½½×¶ÎÌá½»

offsetºÍÏûÏ¢Êý¾Ý·ÅÔÚͬһ¸öµØ·½£ºConsumerÄõ½Êý¾Ýºó¿ÉÄܰÑÊý¾Ý·Åµ½¹²Ïí¿Õ¼äÖУ¬Èç¹û°Ñ×îеÄoffsetºÍÊý¾Ý±¾ÉíÒ»Æðдµ½¹²Ïí¿Õ¼ä£¬ÄǾͿÉÒÔ±£Ö¤Êý¾ÝµÄÊä³öºÍoffsetµÄ¸üÐÂҪô¶¼Íê³É£¬ÒªÃ´¶¼²»Íê³É£¬¼ä½ÓʵÏÖExactly once

High level API¶øÑÔ£¬offsetÊÇ´æÓÚZookeeperÖеģ¬ÎÞ·¨»ñÈ¡£¬¶øLow level APIµÄoffsetÊÇÓÉ×Ô¼ºÈ¥Î¬»¤µÄ£¬¿ÉÒÔʵÏÖÒÔÉÏ·½°¸

4.¸ß¿ÉÓÃÐÔ

ͬһ¸öPartition¿ÉÄÜ»áÓжà¸öReplica£¬ÐèÒª±£Ö¤Í¬Ò»¸öPartitionµÄ¶à¸öReplicaÖ®¼äµÄÊý¾ÝÒ»ÖÂÐÔ

¶øÕâʱÐèÒªÔÚÕâЩReplicationÖ®¼äÑ¡³öÒ»¸öLeader£¬ProducerºÍConsumerÖ»ÓëÕâ¸öLeader½»»¥£¬ÆäËüReplica×÷ΪFollower´ÓLeaderÖи´ÖÆÊý¾Ý

¸±±¾Óë¸ß¿ÉÓÃÐÔ£º¸±±¾Leader ElectionËã·¨

ZookeeperÖеÄÑ¡¾ÙËã·¨»Ø¹Ë

ÉÙÊý·þ´Ó¶àÊý£ºÈ·±£¼¯ÈºÖÐÒ»°ëÒÔÉϵĻúÆ÷µÃµ½Í¬²½

ÊʺϹ²Ïí¼¯ÈºÅäÖõÄϵͳÖУ¬¶ø²¢²»ÊʺÏÐèÒª´æ´¢´óÁ¿Êý¾ÝµÄϵͳ£¬ÒòΪÐèÒª´óÁ¿¸±±¾¼¯¡£f¸öReplicaʧ°ÜÇé¿öÏÂÐèÒª2f+1¸ö¸±±¾

KafkaµÄ×ö·¨

ISR(in-sync replicas)£¬Õâ¸öISRÀïµÄËùÓи±±¾¶¼¸úÉÏÁËLeader£¬Ö»ÓÐISRÀïµÄ³ÉÔ±²ÅÓб»Ñ¡ÎªLeaderµÄ¿ÉÄÜ

ÔÚÕâÖÖģʽÏ£¬¶ÔÓÚf+1¸ö¸±±¾£¬Ò»¸öPartitionÄÜÔÚ±£Ö¤²»¶ªÊ§ÒѾ­commitµÄÏûÏ¢µÄǰÌáÏÂÈÝÈÌf¸ö¸±±¾µÄʧ°Ü

ISRÐèÒªµÄ×ܵĸ±±¾µÄ¸öÊý¼¸ºõÊÇ¡°ÉÙÊý·þ´Ó¶àÊý¡±µÄÒ»°ë

¸±±¾Óë¸ß¿ÉÓÃÐÔ£ºReplica·ÖÅäËã·¨

½«ËùÓÐReplica¾ùÔÈ·Ö²¼µ½Õû¸ö¼¯Èº

½«ËùÓÐn¸öBrokerºÍ´ý·ÖÅäµÄPartitionÅÅÐò

½«µÚi¸öPartition·ÖÅäµ½µÚ(i mod n)¸öBrokerÉÏ

½«µÚi¸öPartitionµÄµÚj¸öReplica·ÖÅäµ½µÚ((i + j) mode n)¸öBrokerÉÏ

5. Á㿽±´

Kafkaͨ¹ýMessage·Ö×éºÍSendfileϵͳµ÷ÓÃʵÏÖÁËzero-copy

´«Í³µÄsocket·¢ËÍÎļþ¿½±´

1.ÄÚºË̬

2.Óû§Ì¬

3.ÄÚºË̬

4.Íø¿¨»º´æ

¾­ÀúÁËÄÚºË̬ºÍÓû§Ì¬µÄ¿½±´

sendfileϵͳµ÷ÓÃ

±ÜÃâÁËÄÚºË̬ÓëÓû§Ì¬µÄÉÏÏÂÎÄÇл»¶¯×÷

Èý. Use Cases

Real-Time Stream Processing(combined with Spark Streaming)

General purpose Message Bus

Collecting User Activity Data

Collecting Operational Metrics from applications,servers or devices

Log Aggregation

Change Data Capture

Commit Log for distributed systems

ËÄ. Development with Kafka

Îå. Administration

list && describe

echo "´ËKafka¼¯ÈºËùÓеÄTopic : "
kafka-topics -- list -- zookeeper dc226. dooioo.cn:2181, dc227.dooioo.cn:2181, dc229. dooioo.cn:2181 /kafka
echo " ÄúÒª²é¿´µÄTopicÏêϸ : "
kafka- topics - -describe -- zookeeper dc226. dooioo.cn: 2181, dc227.dooioo.cn: 2181,dc229. dooioo.cn:2181 /kafka --topic $ topicName

create topic

kafka-topics --create -- zookeeper dc226.dooioo.cn:2181,dc227. dooioo.cn:2181,dc229. dooioo.cn:2181 /kafka -- replication- factor 1 --pa
rtitions 1 --topic $topicName

open producer

kafka-console- producer -- broker- list 10.22. 253.227:9092 --topic $topicName

open consumer

kafka-console-consumer --zookeeper 10.22.253.226: 2181, 10.22. 253 .227: 2181,10.22. 253.229:2181 /kafka -- topic $topicName -- from- beginning

Áù. Cluster Planning

Æß. Compare

   
2636 ´Îä¯ÀÀ       27
Ïà¹ØÎÄÕÂ

»ùÓÚEAµÄÊý¾Ý¿â½¨Ä£
Êý¾ÝÁ÷½¨Ä££¨EAÖ¸ÄÏ£©
¡°Êý¾Ýºþ¡±£º¸ÅÄî¡¢ÌØÕ÷¡¢¼Ü¹¹Óë°¸Àý
ÔÚÏßÉ̳ÇÊý¾Ý¿âϵͳÉè¼Æ ˼·+Ч¹û
 
Ïà¹ØÎĵµ

GreenplumÊý¾Ý¿â»ù´¡Åàѵ
MySQL5.1ÐÔÄÜÓÅ»¯·½°¸
ijµçÉÌÊý¾ÝÖÐ̨¼Ü¹¹Êµ¼ù
MySQL¸ßÀ©Õ¹¼Ü¹¹Éè¼Æ
Ïà¹Ø¿Î³Ì

Êý¾ÝÖÎÀí¡¢Êý¾Ý¼Ü¹¹¼°Êý¾Ý±ê×¼
MongoDBʵս¿Î³Ì
²¢·¢¡¢´óÈÝÁ¿¡¢¸ßÐÔÄÜÊý¾Ý¿âÉè¼ÆÓëÓÅ»¯
PostgreSQLÊý¾Ý¿âʵսÅàѵ