Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
Hadoop MapReduceÔ­Àí¼°ÊµÀý
 
  4209  次浏览      27
 2018-5-11
 
±à¼­ÍƼö:
±¾ÎÄÀ´×ÔÓÚcsdn£¬½éÉÜÁËʵÀý¼°´úÂëʵÏÖ£¬±àдJava´úÂ룬ÔËÐУ¬½øÒ»²½Àí½âMapReduceµÈ֪ʶ¡£

MapReduceÊÇÓÃÓÚÊý¾Ý´¦ÀíµÄÒ»ÖÖ±à³ÌÄ£ÐÍ£¬¼òµ¥µ«×㹻ǿ´ó£¬×¨ÃÅΪ²¢Ðд¦Àí´óÊý¾Ý¶øÉè¼Æ¡£

1. ͨË×Àí½âMapReduce

MapReduceµÄ´¦Àí¹ý³Ì·ÖΪÁ½¸ö²½Ö裺mapºÍreduce¡£Ã¿¸ö½×¶ÎµÄÊäÈëÊä³ö¶¼ÊÇkey-valueµÄÐÎʽ£¬keyºÍvalueµÄÀàÐÍ¿ÉÒÔ×ÔÐÐÖ¸¶¨¡£map½×¶Î¶ÔÇзֺõÄÊý¾Ý½øÐв¢Ðд¦Àí£¬´¦Àí½á¹û´«Ê䏸reduce£¬ÓÉreduceº¯ÊýÍê³É×îºóµÄ»ã×Ü¡£

ÀýÈç´Ó´óÁ¿ÀúÊ·Êý¾ÝÖÐÕÒ³öÍùÄê×î¸ßÆøÎ£¬NCDC¹«¿ªÁ˹ýȥÿһÄêµÄËùÓÐÆøÎµÈÌìÆøÊý¾ÝµÄ¼ì²â£¬Ã¿Ò»ÐмǼһÌõ¹Û²â¼Ç¼£¬¸ñʽÈçÏ£º

ΪÁËʹÓÃMapReduceÕÒ³öÀúÊ·ÉÏÿÄêµÄ×î¸ßζȣ¬ÎÒÃǽ«ÐÐÊý×÷ΪmapÊäÈëµÄkey£¬Ã¿Ò»ÐеÄÎı¾×÷ΪmapÊäÈëµÄvalue£º

ÉÏͼÖдÖÌ岿·Ö·Ö±ð±íʾÄê·ÝºÍζȡ£mapº¯Êý¶ÔÿһÐмǼ½øÐд¦Àí£¬ÌáÈ¡³ö£¨Äê·Ý£¬Î¶ȣ©ÐÎʽµÄ¼üÖµ¶Ô£¬×÷ΪmapµÄÊä³ö£º

(1950,0)
(1950,22)
(1950,-11)
(1949,111)
(1947,78)

ºÜÃ÷ÏÔ£¬ÓÐЩÊý¾ÝÊÇÔàµÄ£¬Òò´ËmapÒ²ÊǽøÐÐÔàÊý¾Ý´¦ÀíºÍ¹ýÂ˵ĺõط½¡£ÔÚmapÊä³ö±»´«Êäµ½reduce֮ǰ£¬MapReduce¿ò¼Ü»á¶Ô¼üÖµ¶Ô½øÐÐÅÅÐò£¬¸ù¾Ýkey½øÐзÖ×飬ÉõÖÁÔÚkeyÏàͬµÄÒ»×éÄÚÏÈͳ¼Æ³ö×î¸ßÆøÎ£¬ËùÒÔreduceÊÕµ½µÄÊý¾Ý¸ñʽÏñÕâÑù£º

(1949,[111,78]
(1950,[0,22,-11]

Èç¹ûÓжà¸ömapÈÎÎñͬʱÔËÐУ¨Í¨³£¶¼ÊÇÕâÑù£©£¬ÄÇôÿ¸ömapÈÎÎñÍê³Éºó£¬¶¼»áÏòreduce·¢ËÍÉÏÃæ¸ñʽµÄÊý¾Ý£¬·¢ËÍÊý¾ÝµÄ¹ý³Ì½Ðshuffle¡£

mapµÄÊä³ö»á×÷ΪreduceµÄÊäÈ룬reduceÊÕµ½µÄÊÇkey¼ÓÉÏÒ»¸öÁÐ±í£¬È»ºó¶ÔÕâ¸öÁÐ±í½øÐд¦Àí£¬ÌìÆøÊý¾ÝµÄÀý×ÓÖУ¬¾ÍÊÇÕÒ³ö×î´óÖµ×÷Ϊ×î¸ßÆøÎ¡£×îºóreduceÊä³ö¼´ÎªÃ¿Äê×î¸ßÆøÎ£º

(1949,111)
(1950,22)

Õû¸öMapReduceÊý¾ÝÁ÷ÈçÏÂͼ£º

ÆäÖеÄ3¸öºÚȦȦ·Ö±ðΪmap£¬shuffleºÍreduce¹ý³Ì¡£ÔÚHadoopÖУ¬mapºÍreduceµÄ²Ù×÷¿ÉÒÔÓɶàÖÖÓïÑÔÀ´±àд£¬ÀýÈçJava¡¢Python¡¢RubyµÈ¡£

ÔÚʵ¼ÊµÄ·Ö²¼Ê½¼ÆËãÖУ¬ÉÏÊö¹ý³ÌÓÉÕû¸ö¼¯ÈºÐ­µ÷Íê³É£¬ÎÒÃǼÙÉèÏÖÔÚÓÐ5Ä꣨2011-2015£©µÄÌìÆøÊý¾Ý£¬·Ö²¼´æ·ÅÔÚ3¸öÎļþÖÐ: weather1.txt£¬weather2.txt£¬weather3.txt¡£ÔÙ¼ÙÉèÎÒÃÇÏÖÔÚÓÐÒ»¸ö3̨»úÆ÷µÄ¼¯Èº£¬b²¢ÇÒmapÈÎÎñʵÀýÊýÁ¿Îª3£¬reduceʵÀýÊýÁ¿2¡£ÄÇôʵ¼ÊÔËÐÐMapReduce×ö×÷ҵʱ£¬Õû¸öÁ÷³ÌÀàËÆÓÚÕâÑù£º

×¢Òâµ½2014ÄêµÄÊý¾Ý·Ö²¼ÔÚÁ½¸ö²»Í¬µÄÎļþÖУ¬»ÆÉ«µÄ´ÖÏß²¿·Ö£¬´ú±í2014ÄêµÄ2¸ömap×÷ÒµµÄÊä³ö¶¼Í³Ò»´«Êäµ½Ò»¸öreduce£¬ÒòΪËûÃǵÄkeyÏàͬ£¨2014£©¡£ÆäʵÕâ¸ö¹ý³Ì·Ç³£ºÃÀí½â£¬ÏÖʵÉú»îÖУ¬±ÈÈçÆÚÄ©¿¼ÊÔÍêÁË£¬ÄÇ¿¼¾íÓɲ»Í¬µÄÀÏʦÅú¸Ä£¬Íê³ÉºóÈç¹ûÏëÖªµÀÈ«Äê¼¶×î¸ß·Ö£¬ÄÇô¿ÉÒÔÕâô×ö£º

1£©¸÷¸öÀÏʦ¸ù¾Ý×Ô¼ºÅú¸Ä¹ýµÄËùÓÐÊÔ¾í·ÖÊýÕûÀí³öÀ´£¨map£©:

=>(course,[score1,score2,...])

2£©¸÷¸öÀÏʦ°Ñ×î¸ß·Ö»ã±¨¸øÏµÖ÷ÈΣ¨shuffle£©

3£©ÏµÖ÷ÈÎͳ¼Æ×î¸ß·Ö£¨reduce£©

=>(courese, highest_score)

µ±È»£¬Èç¹ûÒª¶àÃſγ̻ìÔÚÒ»Æð£¬ÏµÖ÷Èι¤×÷Á¿Ì«´ó£¬ÓÚÊǸ±Ö÷ÈÎÒ²ÉÏ£¨Ï൱ÓÚ2¸öreduce£©£¬ÔòÀÏʦÔڻ㱨×î¸ß·ÖµÄʱºò£¬Ïàͬ¿Î³ÌÒª»ã±¨¸øÍ¬Ò»¸öÈË£¨Ïàͬkey´«Êä¸øÍ¬Ò»¸öreduce£©£¬ÀýÈçÊýѧӢÓï»ã±¨¸øÖ÷ÈΣ¬ÕþÖλ㱨¸ø¸±Ö÷ÈΡ£

2. ʵÀý¼°´úÂëʵÏÖ

life is short , show me the code

MapReduceµÄ¸ÅÄî¿ò¼ÜÓÐGoogleÌá³ö£¬HadoopÌṩÁ˾­µäµÄ¿ªÔ´ÊµÏÖ¡£µ«ÊDz¢²»ÊÇHadoopÌØÓеģ¬ÀýÈçÔÚÎĵµÐÍÊý¾Ý¿âMongoDBÖУ¬¿ÉÒÔͨ¹ýJSÀ´±àдMap-Reduce£¬¶ÔÊý¾Ý¿âÖеÄÊý¾Ý½øÐд¦Àí¡£ÎÒÃÇÕâÀïÒÔHadoopΪÀý˵Ã÷¡£

Êý¾Ý×¼±¸

Ê×ÏȽ«±¾µØµÄÎļþÉÏ´«µ½HDFS£º

hadoop fs -copyFromLocal /home /data /hadoop _book _ input / hdfs ://master:9000 /input

¿ÉÒÔ²é¹ÜÀí½çÃæ²é¿´ÊÇ·ñ³É¹¦ÉÏ´«£º

²é¿´Ò»ÏÂÊý¾ÝÄÚÈÝ£º

hadoop fs -text hdfs: //master: 9000/input /ncdc / sample .txt

 

±àдJava´úÂë

Ê×ÏÈʵÏÖMapperÀ࣬MapperÔÚа汾HadoopÖиıäΪÀࣨ¾É°æÎª½Ó¿Ú£©¶¨ÒåÈçÏ£º

// Ö§³Ö·ºÐÍ£¬·ºÐͶ¨ÒåmapÊäÈëÊä³öµÄ¼üÖµÀàÐÍ
public class Mapper <KEYIN, VALUEIN, KEYOUT, VALUEOUT > {
public Mapper() {
// mapÈÎÎñ¿ªÊ¼µÄʱºòµ÷ÓÃÒ»´Î£¬ÓÃÓÚ×ö×¼±¸¹¤×÷
protected void setup(Context context) throws IOException , InterruptedException {
// ¿ÕʵÏÖ
}
// mapÂß¼­ ĬÈÏÖ±½Ó½«ÊäÈë½øÐÐÀàÐÍת»»ºóÊä³ö
protected void map (KEYIN key, VALUEIN value,
Context context) throws IOException, Interrupted Exception {
context.write ((KEYOUT) key, (VALUEOUT) value);
}
// ÈÎÎñ½áÊøºóµ÷ÓÃÒ»´Î£¬ÇåÀí¹¤×÷£¬Óësetup¶ÔÓ¦
protected void cleanup (Context context
) throws IOException, InterruptedException {
// ¿ÕʵÏÖ
}
// mapµÄʵ¼ÊÔËÐйý³Ì¾ÍÊǵ÷ÓÃrun·½·¨£¬Ò»°ãÓÃÓڸ߼¶ÊµÏÖ£¬¸ü¾«Ï¸µØ¿ØÖÆ ÈÎÎñµÄÖ´Ðйý³Ì, Ò»°ãÇé¿ö²»ÐèÒª¸²¸ÇÕâ¸ö·½·¨
public void run (Context context) throws IOExcep tion , InterruptedException {
// ×¼±¸¹¤×÷
setup(context);
try {
// ±éÀú·ÖÅ䏸¸ÃÈÎÎñµÄÊý¾Ý£¬Ñ­»·µ÷ÓÃmap
while (context.nextKeyValue()) {
map (context.getCurrentKey(), context .get CurrentValue (), context );
}
} finally {
// ÇåÀí¹¤×÷
cleanup (context);
}
}
}

ʵÏÖÖÐÎÒÃÇÖ»¸²¸Çmap·½·¨£¬ÆäËû±£Áô²»±ä¡£¾ßÌåʵÏÖÈçÏ£º

public class MaxTemperatureMapper
extends Mapper <LongWritable, Text, Text, Int Writable> {
// 9999´ú±íÊý¾Ý¶ªÊ§
private static final int MISSING = 9999;
@Override
public void map (LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// ÐÐ×÷ΪÊäÈëÖµ keyÔÚÕâÀïÔÝʱ²»ÐèҪʹÓÃ
String line = value.toString ();
// ÌáÈ¡Äê·Ý
String year = line.substring (15, 19);
// ÌáÈ¡ÆøÎÂ
int airTemperature = parseTemperature( line );
String quality = line.substring (92, 93);
// ¹ýÂËÔàÊý¾Ý
boolean isRecordClean = airTemperature != MISSING && quality.matches ("[01459]");
if ( isRecordClean ) {
// Êä³ö£¨Äê·Ý£¬Î¶ȣ©¶Ô
context.write(new Text(year), new IntWritable ( airTemperature ));
}
}
private int parse Temperature (String line){
int airTemperature;
if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs
airTemperature = Integer.parseInt (line.substring (88, 92) );
} else {
airTemperature = Integer.parseInt (line. substring ( 87, 92 ));
}
return airTemperature;
}
}

½Ó×ÅʵÏÖReducer£¬¿´¿´¶¨Ò壺

public class Reducer <KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
// ReducerÉÏÏÂÎÄÀඨÒå
public abstract class Context
implements ReduceContext <KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
}
// ³õʼ»¯ ÔÚ Reduce ÈÎÎñ¿ªÊ¼Ê±µ÷ÓÃÒ»´Î
protected void setup (Context context
) throws IOException, InterruptedException {
// ¿ÕʵÏÖ
}
/**
* map shuffle ¹ýÀ´µÄÊý¾ÝÖУ¬Ã¿Ò»¸ökeyµ÷ÓÃÒ»´ÎÕâ¸ö·½·¨
*/
@SuppressWarnings ("unchecked")
protected void reduce(KEYIN key, Iterable <VALUEIN> values, Context context
) throws IOException , InterruptedException {
// ĬÈϽ«ËùÓеÄÖµÒ»Ò»Êä³ö
for(VALUEIN value: values) {
context.write ((KEYOUT) key, (VALUEOUT) value);
}
}
protected void cleanup (Context context
) throws IOException, InterruptedException {
// ¿ÕʵÏÖ ÊÕβ¹¤×÷
}
// ReducerµÄÔËÐÐÂß¼­ ¹©¸ü¸ß¼¶µÄ¶¨ÖÆ
public void run (Context context) throws IOException, InterruptedException {
setup (context);
try {
// ±éÀúÊäÈëkey
while (context.nextKey()) {
reduce(context. getCurrentKey (), context.getValues (), context );
// Ò»¸ökey´¦ÀíÍêҪתÏòÏÂÒ»¸ö keyʱ£¬ÖØÖÃÖµ±éÀúÆ÷
Iterator <VALUEIN> iter = context.getValues().iterator();
if (iter instanceof ReduceContext.ValueIterator) {
( (ReduceContext.ValueIterator <VALUEIN>) iter). resetBackupStore ();
}
}
} finally {
cleanup (context);
}
}
}

ÎÒÃǵÄReducerʵÏÖÖ÷ÒªÊÇÕÒ³ö×î¸ßÆøÎ£º

public class MaxTemperatureReducer
extends Reducer <Text, IntWritable, Text, IntWritable> {
@Override
public void reduce (Text key, Iterable < Int Writable > values,
Context context)
throws IOException , InterruptedException {
int maxValue = findMax ( values );
context. write (key, new IntWritable(maxValue));
}
private static int findMax (Iterable<IntWritable> values){
int maxValue = Integer.MIN_VALUE;
for (IntWritable value : values) {
maxValue = Math.max(maxValue, value.get());
}
return maxValue;
}
}

MapperºÍReducerʵÏÖºó£¬ÐèÒªÒ»¸öÈë¿ÚÌá½»×÷Òµµ½Hadoop¼¯Èº£¬ÔÚа汾ÖУ¬Ê¹ÓÃYARN¿ò¼ÜÀ´ÔËÐÐMapReduce×÷Òµ¡£×÷ÒµÅäÖÃÈçÏ£º

public class MaxTemperature {
public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: MaxTemperature < input path > <output path>");
System.exit (-1);
}
// ÉèÖÃjar°ü¼°×÷ÒµÃû³Æ
Job job = new Job();
job.setJarByClass (MaxTemperature.class);
job.setJobName ("Max temperature");
// ÊäÈëÊä³ö·¾¶
FileInputFormat.addInputPath (job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path (args [ 1 ]));
// ÉèÖÃMapperºÍReducerʵÏÖ
job.setMapperClass (MaxTemperatureMapper.class);
job.setReducerClass (MaxTemperatureReducer.class);
// ÉèÖÃÊä³ö¸ñʽ
job.setOutputKeyClass (Text.class);
job.setOutputValueClass (IntWritable.class);
// µÈ´ý×÷ÒµÍê³ÉºóÍ˳ö
System.exit (job.waitForCompletion(true) ? 0 : 1);
}
}

ÊäÈëÊä³ö·¾¶Ê¹ÓÃFileInputFormat/FileOutputFormatµÄ¾²Ì¬·½·¨À´ÉèÖã¬ÔÚÔËÐÐ×÷ҵ֮ǰ£¬Êä³öĿ¼²»ÄÜ´æÔÚ£¬ÕâÊÇΪÁ˱ÜÃ⸲¸ÇÊý¾Ýµ¼ÖÂÊý¾Ý¶ªÊ§¡£ÔËÐÐ֮ǰÈç¹û¼ì²âµ½Ä¿Â¼ÒѾ­´æÔÚ£¬×÷Òµ½«ÎÞ·¨ÔËÐС£OK£¬°ÑÏîÄ¿´ò°ü£¬Èç¹ûʹÓÃEclipse£¬Ê¹ÓÃExport¹¦ÄÜ¡£Èç¹ûʹÓÃMaven¿ª·¢£¬ÔòÖ±½ÓÔËÐÐpackageÃüÁî¡£¼ÙÉèÎÒÃÇ×îºóµÄjar°üΪmax-temp.jar.°Ñjar°üÉÏ´«µ½ÄãµÄ¼¯Èº»úÆ÷ÉÏ£¬»òÕß·ÅÔÚ°²×°ÁËHadoopµÄ¿Í»§¶Ë»úÆ÷ÉÏ£¬ÕâÀï¼ÙÉèjar°ü·ÅÔÚ/opt/jobĿ¼Ï¡£

ÔËÐÐ

Ê×ÏȰÑ×÷Òµjar°ü·Åµ½CLASSPATH£º

cd /opt/job
export HADOOP_CLASSPATH=max-temp.jar

ÔËÐÐ:

hadoop MaxTemperature /input/ncdc/sample.txt / output

hadoop»á×Ô¶¯°ÑHADOOP_CLASSPATÉèÖõÄ·¾¶¼ÓÈëµ½CLASSPATHÖУ¬Í¬Ê±°ÑHADOOPÏà¹ØµÄÒÀÀµ°üÒ²¼ÓÈëCLASSPATH£¬È»ºóÆô¶¯Ò»¸öJVMÔËÐÐMaxTemperatureÕâ¸ö´øÓÐmain·½·¨µÄÀà¡£

½á¹ûÈçÏ£º

ÈÕÖ¾ÖпÉÒÔ¿´µ½×÷ÒµµÄһЩÔËÐÐÇé¿ö£¬ÀýÈçmapÈÎÎñÊýÁ¿£¬reduceÈÎÎñÊýÁ¿£¬ÒÔ¼°ÊäÈëÊä³öµÄ¼Ç¼Êý£¬¿ÉÒÔ¿´µ½¸úʵ¼ÊÇé¿öÍêÈ«ÎǺϡ£

ÎÒÃÇ¿´Ò»ÏÂÊä³öĿ¼/output:

hadoop fs -ls /output

¿ÉÒÔ¿´µ½¸ÃĿ¼ÏÂÓиö³É¹¦±êʶÎļþ_SUCCESSºÍ½á¹ûÊä³öÎļþpart-r-0000£¬Ã¿¸öreducer»áÊä³öÒ»¸öÎļþ¡£²é¿´Ò»ÏÂÕâ¸öÊä³öÎļþµÄÄÚÈÝ£º

hadoop fs -text hdfs://master:9000/output /part - r - 00000

ÈçÉÏͼËùʾ£¬ÎÒÃdzɹ¦µÃµ½ÁË1949ºÍ1950ÄêµÄ×î¸ßζȣ¬ÎÞÐè¹Ü½á¹ûÊÇ·ñºÏÀí£¬Ö»Òª°´ÕÕÎÒÃÇÏëÒªµÄÂß¼­ÔËÐм´¿É¡£

YARN¹ÜÀí½çÃæÒ²¿ÉÒÔ¿´µ½¸Ã×÷ÒµµÄÇé¿ö£º

3. ½øÒ»²½Àí½âMapReduce

Ò»¸öMapReduce×÷ҵͨ³£°üÀ¨ÊäÈëÊý¾Ý¡¢MapReduce³ÌÐòÒÔ¼°Ò»Ð©ÅäÖÃÐÅÏ¢¡£Hadoop°Ñ×÷Òµ·Ö½âΪtaskÔËÐУ¬task·ÖΪmapÈÎÎñºÍreduceÈÎÎñ£¬ÔÚа汾µÄHadoopÖУ¬ÕâЩTaskͨ¹ý×ÊÔ´¹ÜÀí¿ò¼Ü½øÐе÷¶È£¬Èç¹ûÈÎÎñʧ°Ü£¬MapReduceÓ¦Óÿò¼Ü»áÖØÐÂÔËÐÐÈÎÎñ¡£

×÷ÒµµÄÊäÈë±»»ªÎªÎª¹Ì¶¨´óСµÄ·ÖƬ£¬½Ðinput splits£¬¼ò³Æsplits¡£È»ºóΪÿһ¸ösplit·Ö¿é´´½¨Ò»¸ömapÈÎÎñ£¬mapÈÎÎñ¶ÔÿһÌõ¼Ç¼ÔËÐÐÓû§¶¨ÒåµÄmapº¯Êý¡£»®·ÖΪsplitÖ®ºó£¬²»Í¬ÅäÖõĻúÆ÷¾Í¿ÉÒÔ¸ù¾Ý×Ô¼ºµÄ×ÊÔ´¼°ÔËËãÄÜÁ¦ÔËÐÐÊʵ±µÄÈÎÎñ£¬¼´Ê¹ÊÇÏàͬÅäÖõĻúÆ÷£¬×îºóÔËÐеÄÈÎÎñÊýÒ²ÍùÍù²»µÈ£¬ÕâÑùÄÜÓÐЧÀûÓÃÕû¸ö¼¯ÈºµÄ¼ÆËãÄÜÁ¦¡£µ«ÊÇsplitÒ²²»ÒÑÌ«¶à£¬·ñÔò»áºÄ·ÑºÜ¶àʱ¼äÔÚ´´½¨mapÈÎÎñÉÏ£¬Í¨³£¶øÑÔ£¬°´¼¯ÈºBlock´óС£¨Ä¬ÈÏΪ128M£©À´»®·ÖsplitÊǺÏÀíµÄ¡£

Hadoop»á°ÑmapÈÎÎñÔËÐÐÔÚÀïÊý¾Ý×î½üµÄ½ÚµãÉÏ£¬×îºÃµÄÇé¿öÊÇÖ±½ÓÔÚÊý¾Ý£¨split£©ËùÔڵĽڵãÉÏÔËÐÐmapÈÎÎñ£¬ÕâÑù²»ÐèÒªÕ¼Óôø¿í£¬ÕâÒ»ÓÅ»¯½Ð×öÊý¾Ý±¾µØÓÅ»¯£¨data locality optimization)¡£ÏÂͼµÄmapѡַ·½°¸´Ó×îÓŵ½×î´ÎΪa£¬b£¬c£º

¹ØÓÚHadoopÈçºÎºâÁ¿Á½¸ö¼¯Èº½ÚµãµÄ¾àÀ룬²Î¿¼ÎÒµÄÁíÒ»Åú²©¿Í ÉîÈëÀí½âHDFS£ºHadoop·Ö²¼Ê½Îļþϵͳ¡£µ«Êǽڵã¾àÀë²»ÊÇ·ÖÅätask¿¼ÂǵÄΨһÒòËØ£¬»¹»á¿¼Âǽڵ㵱ǰ¸ºÔصÈÒòËØ¡£

ReduceÈÎÎñͨ³£ÎÞ·¨ÀûÓñ¾µØÊý¾ÝµÄÓÅ»¯£¬´ó¶àÊýÇé¿öÏ£¬reduceµÄÊäÈë¶¼À´×Ô¼¯ÈºµÄÆäËû½Úµã¡£reduceÕë¶Ôÿһ¸ökeyÔËÐÐreduceº¯ÊýÖ®ºó£¬Êä³ö½á¹ûͨ³£±£´æÔÚHDFSÖУ¬²¢ÇÒ´æ´¢Ò»¶¨µÄ¸±±¾Êý£¬µÚÒ»¸ö¸±±¾´æÔÚÔËÐÐreduceÈÎÎñµÄ±¾µØ»úÆ÷£¬ÆäËû¸±±¾¸ù¾ÝHDFSдÈëµÄ¹ÜµÀ·Ö±ðдÈë½Úµã£¬¹ØÓÚ¸ü¶àHDFSµÄÊý¾ÝдÈëÁ÷³Ì£¬²Î¿¼ÕâÀï¡£

ÏÂͼÊÇÒ»¸öµ¥reduceµÄÊý¾ÝÁ÷ʾÀý£º

Èç¹ûÓжà¸öreduceÈÎÎñ£¬ÄÇômapÈÎÎñµÄÊä³öµ½µ×¸Ã´«Êäµ½ÄÄÒ»¸öreduceÈÎÎñÄØ£¿¾ö¶¨Ä³¸ökeyµÄÊý¾Ý£¨key,[value1, value2,...])¸Ã·¢Ë͸øÄǸöreduceµÄ¹ý³Ì½Ðpartition¡£Ä¬ÈÏÇé¿öÏ£¬MapReduceʹÓÃkeyµÄ¹þÏ£º¯Êý½øÐзÖͰ£¬Õâͨ³£¹¤×÷µÄºÜºÃ¡£Èç¹ûÐèÒª×ÔÐÐÖ¸¶¨·ÖÇøº¯Êý£¬¿ÉÒÔ×Ô¼ºÊµÏÖÒ»¸öPartitioner²¢ÅäÖõ½×÷ÒµÖС£keyÏàͬµÄmapÈÎÎñÊä³öÒ»¶¨»á·¢Ë͵½Í¬Ò»¸öreduceÈÎÎñ¡£mapÈÎÎñµÄÊä³öÊý¾Ý´«Êäµ½reduceÈÎÎñËùÔÚ½ÚµãµÄ¹ý³Ì£¬½Ð×öshuffle¡£ÏÂÃæÊÇÒ»¸ö¸üͨÓõÄMapReduceÊý¾ÝÁ÷ͼ£º

µ±È»£¬ÓÐЩ×÷ÒµÖÐÎÒÃÇ¿ÉÄܸù±¾²»ÐèÒªÓÐreduceÈÎÎñ£¬ËùÓй¤×÷ÔÚmapÈÎÎñ²¢ÐÐÖ´ÐÐÍêÖ®ºó¾ÍÍê±ÏÁË£¬ÀýÈçHadoopÌṩµÄ²¢Ðи´Öƹ¤×÷distcp£¬ÆäÄÚ²¿ÊµÏÖ¾ÍÊDzÉÓÃÒ»¸öÖ»ÓÐMapper£¬Ã»ÓÐReducerµÄMapReduce×÷Òµ£¬ÔÚmapÍê³ÉÎļþ¸´ÖÆÖ®ºó×÷Òµ¾ÍÍê³ÉÁË£¬ÈçÏÂͼËùʾ£º

ÔÚÉÏÃæ¼ÆËã×î¸ßÌìÆøµÄÀý×ÓÖУ¬Ã¿¸ömap½«Ã¿Ò»Ìõ¼Ç¼Ëù²úÉúµÄ£¨Äê·Ý£¬Î¶ȣ©¼Ç¼¶¼shuffleµ½reduce½Úµã£¬µ±Êý¾ÝÁ¿½Ï´óʱ£¬½«Õ¼ÓÃºÜ¶à´ø¿í£¬ºÄ·ÑºÜ³¤Ê±¼ä¡£ÊÂʵÉÏ£¬¿ÉÒÔÔÚmapÈÎÎñËùÔڵĽڵãÉÏ×ö¸ü¶à¹¤×÷¡£mapÈÎÎñÔËÐÐÍêÖ®ºó£¬¿ÉÒÔ°ÑËùÓнá¹û°´Äê·Ý·Ö×飬²¢Í³¼Æ³öÿһÄêµÄ×î¸ßζȣ¨ÀàËÆÓÚsqlÖÐµÄ select max(temperature) from table group by year£©£¬Õâ¸ö×î¸ßζÈÊǾֲ¿µÄ£¬Ö»ÔÚ±¾ÈÎÎñÖØ²úÉúµÄÊý¾Ý×ö±È½Ï¡£×öÍê¾Ö²¿Í³¼ÆÖ®ºó£¬½«½á¹û·¢Ë͸øreduce×ö×îÖյĻã×Ü£¬ÕÒ³ö È«¾Ö×î¸ßζȡ£¹ý³ÌʾÒâͼÈçÏ£º

Õâô×öÖ®ËùÒÔ·ûºÏÂß¼­£¬ÊÇ»ùÓÚÒÔϵÄÊÂʵ£º

max(0,20,10,25,15)=max(max(0,20,10) , max (25,15))

·ûºÏÉÏÊöÐÔÖʵĺ¯Êý³ÆÎªÊÇcommutativeºÍassociative£¬ÓÐʱºòÒ²³ÉΪÊÇdistributive¡£Èç¹ûÊǼÆËãÆ½¾ùζȣ¬Ôò²»ÄÜʹÓÃÕâÒ»µÄ·½Ê½¡£

ÉÏÊöµÄ¾Ö²¿¼ÆËãÔÚHadoopÖÐʹÓÃCombinerÀ´±íʾ¡£ÎªÁËÔÚ×÷ÒµÖÐʹÓÃCombiner£¬ÎÒÃÇÐèÒªÃ÷È·Ö¸¶¨£¬ÔÚÇ°ÃæµÄÀý×ÓÖУ¬¿ÉÒÔÖ±½ÓʹÓÃReducer×÷ΪCombiner£¬ÒòΪÁ½ÕßÂß¼­ÊÇÒ»ÑùµÄ£º

// ÉèÖÃMapperºÍReducerʵÏÖ
job.setMapperClass (MaxTemperatureMapper.class);
job.setCombinerClass (MaxTemperatureReducer .class ) ;
job.setReducerClass (MaxTemperatureReducer.class);

4. Hadoop Streaming

HadoopÍêÈ«ÔÊÐíÎÒÃÇʹÓÃJavaÒÔÍâµÄÓïÑÔÀ´±àдmapºÍreduceº¯Êý¡£Hadoop StreamingʹÓÃUnix±ê×¼Á÷×÷ΪHadoopºÍÆäËûÓ¦ÓóÌÐòµÄ½Ó¿Ú¡£Êý¾ÝÁ÷µÄ´óÖÂʾÒâͼÈçÏ£º

Õû¸öÊý¾ÝÔÚHadoop MapReduceÓëRubyÓ¦Óᢱê×¼ÊäÈëÊä³öÖ®¼äÁ÷ת£¬Òò´Ë½ÐStreaming¡£ÎÒÃǼÌÐøÊ¹ÓÃÇ°ÃæÆøÎµÄÀý×ÓÀ´ËµÃ÷£¬ÏÈʹÓÃrubyÀ´±àдmapºÍreduce£¬È»ºóʹÓÃunixµÄ¹ÜµÀÀ´Ä£ÄâÕû¸ö¹ý³Ì£¬×îºóÇ¨ÒÆµ½HadoopÉÏÔËÐС£

Ruby°æ±¾µÄmapº¯Êý´Ó±ê×¼Á÷ÖжÁÈ¡Êý¾Ý£¬ÔËËãºó½«½á¹ûÊä³öµ½±ê×¼Êä³öÁ÷£º

#!/usr/bin/ruby
STDIN.each_line do |line|
val = line
year , temp , q = val[15,4],val[87,5],val[92,1]
puts "#{year}\t#{temp}" if (temp != "+9999" && q =~/[01459]/)
end

Âß¼­ÓëJava°æ±¾ÍêȫһÑù£¬STDINÊÇrubyµÄ±ê×¼ÊäÈ룬each_lineÕë¶ÔÿһÐнøÐвÙ×÷£¬Âß¼­·â×°ÔÚdoºÍendÖ®¼ä¡£putsÊÇruby±ê×¼Êä³öº¯Êý£¬´òÓ¡tab·Ö¸îµÄ¼Ç¼µ½±ê×¼Êä³öÁ÷¡£

ÒòΪÕâ¸ö½Å±¾Óë±ê×¼ÊäÈëÊä³ö½»»¥£¬ËùÒÔºÜÈÝÒ×½áºÏlinuxµÄ¹ÜµÀÀ´²âÊÔ£º

cat input/ncdc/sample.txt | ruby max_temp_ map.rb

Ò»ÑùÓÃruby½Å±¾À´Íê³ÉreduceµÄ¹¦ÄÜ£º

last_key , max_val = nil , -1000000
STDIN.each_line do |line|
key , val = line.split("\t")
if last_key && last_key != key
puts "#{last_key}\t#{max_val}"
last_key , max_val = key , val.to_i
else
last_key , max_val = key,[max_val , val.to_ i].max
end
end
# ´¦Àí×îºóÒ»¸ökeyµÄÊä³ö
put "#{last_key} \t#{max_val}" if last _ key

map´¦ÀíÍêÖ®ºó£¬Í¬Ò»¸ökeyµÄÒ»×é¼üÖµ¶ÔÖУ¬valueÊÇÅÅÐòµÄ£¬ËùÒÔµ±Ç°¶Áµ½µÄkeyÈç¹û²»Í¬ÓÚÉÏÒ»¸ökey£¬±íʾÕâ¸ökeyµÄËùÓÐÖµ¶¼´¦ÀíÍêÁË£¨Ç°ÎÄÌáµ½»áÔÚÇл»key֮ǰresetÊäÈ룩¡£ÎÒÃÇʹÓÃsortÃüÁîÀ´Ìæ´úMapReduceÖеÄÅÅÐò¹ý³Ì£¬°ÑmapµÄ±ê×¼Êä³ö×÷ΪsortµÄÊäÈ룬sortͨ¹ý¹ÜµÀÁ¬½Óµ½map£º

cat / home/data/hadoop_book_input /ncdc/sample.txt | ruby max _ temp_map.rb | sort | ruby max_temp_ reduce .rb

Êä³ö½á¹ûÈçÏÂͼ£¬ÓëǰÎÄÍêȫһÖ¡£

ºÜºÃ£¬ÎÒÃÇÔÚHadoopÉÏÔËÐÐÕâ¸ö×÷Òµ¡£·ÇJavaÓïÑÔµÄMapReduce×÷Òµ£¬ÐèҪʹÓÃHadoop StreamingÀ´ÔËÐС£Hadoop Streaming»á¸ºÔð×÷ÒµµÄTask·Ö½â£¬°ÑÊäÈëÊý¾Ý×÷Ϊ±ê×¼ÊäÈëÁ÷´«µÝ¸øRubyдµÄmap½Å±¾£¬²¢½ÓÊÜÀ´×Ômap½Å±¾µÄ±ê×¼Êä³ö£¬ÅÅÐòºóshuffleµ½reduce½ÚµãÉÏ£¬²¢ÒÔ±ê×¼ÊäÈë´«µÝ¸øreduce£¬×îºó°ÑreduceµÄ±ê×¼Êä³ö±£´æµ½HDFSÎļþÖС£

ÎÒÃÇʹÓÃhadoop jarÃüÁî,ͬʱָ¶¨ÊäÈëÊä³öĿ¼£¬½Å±¾Î»Öõȡ£

hadoop jar /home/hadoop-2.6.0/share/hadoop /tools/ lib / hadoop - streaming -2.6.0.jar - files max_ temp _ map. rb,max _temp_ reduce.rb -input /input /ncdc /sample.txt - output /output/max-tem-ruby - mapper max_ temp_map.rb -reducer max_temp_ reduce. rb

-file²ÎÊý°ÑÕâЩÎļþÉÏ´«µ½¼¯ÈºÖС£×¢ÒâmapºÍreduce½Å±¾ÐèÒªÔÚCLASSPATHÏ£¬ÎÒÊÇÔÚµ±Ç°Ä¿Â¼ÏÂÔËÐеģ¬Ä¬ÈϼÓÈëµ½Àà·¾¶ÖС£ÁíÍâÇëÈ·±£¼¯ÈºÖеÄËùÓлúÆ÷¶¼°²×°ÁËruby£¬·ñÔò¿ÉÄܳöÏÖÀàËÆsubprocess failed with code 127¡£ÕâÀïµÄÊä³öÎļþÊÇ/outp/max-tem-ruby£¬MapReduce²»ÔÊÐí¶à¸ö×÷ÒµÊä³öµ½Í¬Ò»¸öĿ¼¡£

²é¿´Êä³öÎļþ£¬ÓëJava°æ±¾ÍêȫһÖ¡£OK£¬ÎÒÃÇÉèÖÃcombiner£¬È»ºóÔÚ´óµÄÊý¾Ý¼¯ÉϸÐÊÜһϣº

hadoop jar /home/hadoop-2.6.0/share /hadoop/tools /lib /hadoop - streaming - 2.6.0.jar -files max_ temp _ map. rb,max_temp_reduce.rb -input /input /ncdc / all -output /output/max-tem-all -mapper max_ temp_ map.rb -combiner x_ temp_ reduce.rb -reducer max_ temp_reduce.rb

¼ÆËã½á¹û£º

mapºÍreduceÒ²Ò»Ñù¿ÉÒÔÓÃPythonÀ´ÊµÏÖ£¬ÓÃÓëRubyÒ»ÑùµÄ·½Ê½À´ÔËÐС£

   
4209 ´Îä¯ÀÀ       27
Ïà¹ØÎÄÕÂ

»ùÓÚEAµÄÊý¾Ý¿â½¨Ä£
Êý¾ÝÁ÷½¨Ä££¨EAÖ¸ÄÏ£©
¡°Êý¾Ýºþ¡±£º¸ÅÄî¡¢ÌØÕ÷¡¢¼Ü¹¹Óë°¸Àý
ÔÚÏßÉ̳ÇÊý¾Ý¿âϵͳÉè¼Æ ˼·+Ч¹û
 
Ïà¹ØÎĵµ

GreenplumÊý¾Ý¿â»ù´¡Åàѵ
MySQL5.1ÐÔÄÜÓÅ»¯·½°¸
ijµçÉÌÊý¾ÝÖÐ̨¼Ü¹¹Êµ¼ù
MySQL¸ßÀ©Õ¹¼Ü¹¹Éè¼Æ
Ïà¹Ø¿Î³Ì

Êý¾ÝÖÎÀí¡¢Êý¾Ý¼Ü¹¹¼°Êý¾Ý±ê×¼
MongoDBʵս¿Î³Ì
²¢·¢¡¢´óÈÝÁ¿¡¢¸ßÐÔÄÜÊý¾Ý¿âÉè¼ÆÓëÓÅ»¯
PostgreSQLÊý¾Ý¿âʵսÅàѵ