Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
Ö§¸¶±¦µÚÎå´ú·ç¿ØÒýÇæAlphaRiskÄ£ÐͽâÎö
 
×÷Õߣº°¢Àï¼¼Êõ
  2566  次浏览      29
 2020-3-19
 
±à¼­ÍƼö:
±¾ÎÄÖ÷Òª½éÉÜÁËÒ»ÖÖ»ùÓÚÖ÷¶¯Ñ§Ï°Óë°ë¼à¶½½áºÏµÄ·½·¨Active PU Learning²¢½éÉÜÏà¹ØËã·¨ÒÔ¼°Ë㷨ʵÏÖÏ£ÍûÄܸø´ó¼Ò´øÀ´Ò»Ð©°ïÖú¡£
±¾ÎÄÀ´×ÔÓÚËѺü£¬ÓÉ»ðÁú¹ûÈí¼þAlice±à¼­¡¢ÍƼö¡£

1.±³¾°

ÓµÓÐÊÀ½ç¼¶ÁìÏÈµÄ·ç¿Ø¼¼ÊõÄÜÁ¦£¬Àú¾­Ê®¶àÄêµÄ·¢Õ¹£¬Ö§¸¶±¦ÒÑ´ÓÔ­ÏȵÄCTU´óÄÔÈ«Ãæ½øÈëÈ˹¤ÖÇÄÜʱ´ú£¬AlphaRisk[1]×÷ΪµÚÎå´ú·ç¿ØÒýÇæ£¬ÆäºËÐÄÕýÊÇÓÉAIÇý¶¯µÄÖÇÄÜ·çÏÕʶ±ðÌåϵAI Detect¡£

AI DetectÊÇÒ»Ì×ÖÇÄÜ¡¢¸ßЧµÄ·çÏÕʶ±ðËã·¨Ìåϵ£¬²»½ö°üº¬ÁË´«Í³µÄÏñGBDT£¬¼¯³ÉѧϰÕâÖÖÓмලѧϰËã·¨£¬»¹°üÀ¨ÁË´óÁ¿»ùÓÚÉî¶ÈѧϰµÄÎÞ¼àÌØÕ÷Éú³ÉËã·¨£¬ÒÔ¼°¼à¶½&Î޼ල¸ÅÄîÖ®ÍâµÄÐÂËã·¨£¬±¾ÎĽéÉܵŤ×÷ÕýÊÇÆäÖÐÖ®Ò»¡£

µ±ÄãÕ¾ÔÚ³¬ÊÐÊÕÒøÌ¨Ç°£¬´Óµã¿ªÖ§¸¶±¦¶þάÂë¸øÉ¨ÂëǹɨÃ裬µ½Ö§¸¶³É¹¦µÄ¶Ì¶Ìʱ¼äÄÚ£¬Ö§¸¶±¦·ç¿ØÏµÍ³µÄÉϰٸöÄ£ÐÍÒѾ­¶ÔÕâ±Ê½»Ò×Íê³É֨֨ɍÃ裬ÒÔ¼ì²éÊÇ·ñÊÖ»ú¶ªÊ§ÕË»§±»µÁÓã¬ÊÇ·ñÆÛÕ©±»Æ­£¬ÊÇ·ñÓÐÎ¥·¨Ì×ÏֵȷçÏÕ¡£

ʵ¼ùÖУ¬²»Í¬µÄ·çÏÕÀàÐÍ»á¸ø½¨Ä£´øÀ´²»Í¬µÄÌôÕ½¡£

Ò»°ã¶øÑÔ£¬Ê¶±ðÌ×ÏÖ·çÏÕµÄÄ£Ðͽ¨ÉèÏà±ÈµÁÓÃºÍÆÛÕ©¸üÀ§ÄÑһЩ£¬ÒòΪȱÉÙÖ÷¶¯µÄÍⲿ·´À¡»úÖÆ£¬¼´È±ÉÙÑù±¾ÉϵĺڰױêÇ©¡£Óû§ÔÚ±»µÁ¡¢±»Æ­Ö®ºóÍùÍù»áÁªÏµÖ§¸¶±¦£¬¸æÖªÄÄЩ½»Ò׷DZ¾È˲Ù×÷£¬ÒÖ»òÄÄЩ½»Ò×ÊDZ»Æ­µÄ£¬ÕâЩ·´À¡¿ÉÒÔÏà¶Ô׼ȷÓÐЧµØ³Áµí³ÉÀúÊ·Êý¾ÝµÄ±êÇ©¡£È»¶ø²»»áÓÐÌ×ÏÖµÄÈËÔÚ½»Ò׺óÖ÷¶¯¸æËßÖ§¸¶±¦»òÕßÒøÐУ¬Õâ±Ê½»Ò×ËûÊÇÔÚ×öÌ×ÏÖ£¬¶øÁíÒ»±Ê²»ÊÇ¡£

¶ÔÓÚ×î³£¼ûµÄÓмලËã·¨À´Ëµ£¬Ã»ÓбêÇ©¾Í»áÃæÁÙÇɸ¾ÄÑΪÎÞÃ×Ö®´¶µÄÀ§¾³¡£Òò´Ë£¬ÏÖÓеÄÌ×ÏÖ·çÏÕʶ±ð·½°¸¶àÊÇ»ùÓÚÎ޼ලģÐÍ£¬ÈçÒì³£¼ì²â¡¢Í¼Ëã·¨µÈ¡£

Î޼ලģÐ͵ÄÓÅÊÆÕýÈçÆä×ÖÃæÒâÒå¶øÑÔ£¬¼´²»ÐèÒª±êÇ©£¬µ±È»ÕâÒ²ÓÐÆä´ú¼Û¡£

¾ÙÀýÀ´Ëµ£¬Òì³£¼ì²âÄ£ÐÍ(ÈçIsolation Forest)¶ÔÓÚÊäÈëÌØÕ÷µÄÒªÇóÔ¶¸ßÓÚÒ»°ãµÄÓмලģÐÍ£¬Í¨³£ÔÚÌØÕ÷ÊýÁ¿ÉÔ¶àµÄÇé¿öϾÍÄÑÒÔ±£³ÖÆä·ÖÖµ¶¥²¿µÄÐÔÄÜ¡£

¶øÍ¼Ëã·¨ÔòÍùÍùÐèÒª¾Þ´óµÄÔËËãÄÜÁ¦£¬²ÅÄÜÓ¦¸¶Ö§¸¶±¦Ã¿ÈÕÒÚ¼¶±ðµÄÖ§¸¶±ÊÊý£¬Òâζןü´óµÄ¼¼ÊõÄѶȺͼÆËã³É±¾¡£

µ±È»£¬ÎÒÃÇ»¹¿ÉÒÔÓÃÁíÒ»ÖÖ·½·¨½â¾öÎÞ±êÇ©µÄÎÊÌ⣺ÄǾÍÊÇ»ùÓÚÈ˵ÄÒµÎñ¾­Ñé½øÐÐÈ˹¤±ê×¢£¬Ëæºó»ùÓÚ±ê×¢½øÐÐÓмලѧϰµÃµ½Ä£ÐÍ¡£µ«ÕâÒ²Ãæ¶Ô×Ų»ÉÙÀ§ÄÑ£º

±ê×¢³É±¾¸ß£ºÔÚÎÒÃǵij¡¾°ÖУ¬È˹¤±ê×¢Ò»¸öÑù±¾ËùÐèʱ¼äͨ³£ÔÚ5¡«15·ÖÖÓ£¬ÇÒÐèÒª¾ß±¸ÏàÓ¦µÄרҵ֪ʶ²ÅÄÜʤÈΣ¬ÕâʹµÃÎÒÃÇÄÑÒÔ´óÁ¿±ê×¢Ñù±¾£¬¶Ô±ê×¢Ñù±¾ÐÅÏ¢Á¿ÒÔ¼°Ñù±¾Ê¹ÓÃЧÂÊÒªÇóºÜ¸ß¡£

±ê×¢´æÔÚÒ»¶¨Îó²î£º¼´Ê¹ÊÇÁìÓòר¼Ò£¬ÔںܶసÀýÖÐÒ²ÄÑÒÔ±£Ö¤×Ô¼ºÅжϵÄ׼ȷÂÊ¡£Ò»°ãÀ´Ëµ£¬×¨¼Ò¶ÔÓÚÅж¨ÎªºÚµÄÍùÍù±È½ÏÓÐÐÅÐÄ£¬ÒòΪͨ³£ÓÐÖ¤¾Ý¿ÉÑ­¡£È»¶øÒªÅж¨Îª°×£¬ÔòÐèÒªÅųýËùÓв»¿ÉÄÜ£¬ÕâÔÚÊÂʵÉÏÊÇÄÑÒÔÕæÕý×öµ½µÄ¡£

ÔÚÈ˹¤±ê×¢¹¤×÷Á¿ÓÐÏÞµÄÇé¿öÏ£¬¸ÄÉÆÁËǰÊöÁ½µãÀ§ÄÑ£¬²¢»ùÓڸ÷½·¨Õë¶ÔÐÅÓÿ¨½»Ò×£¬¿ª·¢ÁËÒ»¸öÌ×ÏÖ·çÏÕµÄʶ±ðÄ£ÐÍ£¬ÔÚÏàͬ׼ȷÂÊÏ£¬Ïà±ÈÎ޼ලģÐÍIsolation ForestÌáÉýÌ×ÏÖ½»Ò×ʶ±ðÁ¿3±¶¡£

2.Ïà¹ØËã·¨½éÉÜ

2.1 Active Learning

Active LearningÀ´×ÔÓÚÒ»¸öÆÓËØµÄÏë·¨£¬¼ÙÈçµÃµ½±êÇ©µÄ³É±¾ºÜ¸ß°º£¬ÄǾÍÓ¦¸ÃȥѰÕÒÄܶԵ±Ç°Ëã·¨ÌáÉý×î´óµÄÑù±¾ÇëÇó´ò±ê£¬Æðµ½Ê°빦±¶µÄЧ¹û¡£¸Ã·½·¨¼ÙÉèÁËÒ»¸öactive learnerÓëר¼Ò½øÐжàÂÖÖ÷¶¯µÄ½»»¥£¬²¢³ÖÐøµØ¸ù¾Ýר¼Ò±ê×¢·µ»ØµÄ½á¹û¸üзÖÀàÆ÷¡£

ÏÂͼһֱ¹ÛµØÕ¹Ê¾ÁËActive LearningµÄ»ù±¾¹¤×÷Á÷³Ì¡£

£¨ ͼһ £©

2.2 PU Learning

AL±¾Éí²¢²»ÏÞÖÆÍ¼Ò»ÖзÖÀàÆ÷µÄ¾ßÌåÖÖÀ࣬ÔÚ¸üÐÂÑù±¾ºó£¬°´ÕÕеÄÑù±¾¿âÖ±½Ó½øÐжþ·ÖÀàµÄÓмල·ÖÀàÊÇ×î¼òµ¥Ö±½ÓµÄ·½·¨£¬µ«¿¼Âǵ½ÎÒÃÇÑù±¾±ê×¢µÄÀ´Ö®²»Ò×ÒÔ¼°PÑù±¾¼¯µÄ¸ß¿É¿¿ÐÔ£¬ÎÒÃÇÔÚÕâÀï²ÉÓÃÒ»ÖÖ°ë¼à¶½µÄËã·¨Two-step PU Learning£¬ÒÔÌáÉýÑù±¾µÄʹÓÃЧÂÊ¡£

PU Learning¼Ù¶¨ÎÒÃÇÃæ¶ÔµÄÊý¾ÝÖУ¬ÕæÊµºÚÑù±¾ÖеÄС²¿·ÖÒѾ­±»±ê¼ÇÁ˳öÀ´£¬¹¹³É¼¯ºÏP(Positve)£¬Ê£ÏÂËùÓÐÊý¾Ý¶¼ÎÞ±ê¼Ç¹¹³É¼¯ºÏU(Unlabeled)£¬ÈçºÎ½¨ÉèÄ£ÐÍ¿ÉÒÔ¶Ôδ±ê×¢µÄÑù±¾½øÐкڰ׷ÖÀࣿ

°ÑUÖеÄÑù±¾±êÇ©ÊÓΪȱʧ£¬ÄÇôÎÒÃDZã¿ÉÒÔ¿¼ÂÇʹÓÃEM(Expectation Maximization)µÄ˼Ï룬EM¿ÉÒÔÀí½âΪÊÇ´æÔÚÒþ±äÁ¿Ê±MLE(Maximum Likelihood Estimation)µÄÒ»ÖָĽø·½·¨£¬ÕâÀïÎÒÃÇÔÚE²½¶Ôȱʧֵ½øÐÐÌî³ä£¬M²½»ùÓÚÉÏ´ÎÌî³ä½á¹û½øÐеü´ú£¬ÈçÊǶàÂÖÖ®ºó²ú³ö×îÖÕÄ£ÐÍ£¬Õâ¾ÍÊÇԭʼµÄPU¡£

Two-step PU LearningÊÇÔÚԭʼµÄPU LearningÉϵĽøÒ»²½·¢Õ¹£¬¼ÙÈçPÔÚÕæÊµºÚÑù±¾¼¯ÉÏÊÇÓÐÆ«µÄ£¬ÄÇô¶àÂÖµÄEM·´¶øºÜÓпÉÄÜ»áÆðµ½¸ºÏòµÄЧ¹û¡£Two-step PU LearningÒýÈëÁËspy»úÖÆ£¬¿ÉÒÔ¸ü¿É¿¿µÄÉú³É°×Ñù±¾¡£

ÏÂÎÄËùÌáµ½µÄPU Learning£¬Èç²»×÷ÌØÊâ˵Ã÷£¬¶¼Ö¸´útwo-step PU Learning¡£

3.Ë㷨ʵÏÖ

3.1 Ëã·¨Workflow

Algorithm: Active PU Learning1.Éú³ÉÑù±¾³Ø£ºÑ¡È¡ÎÊÌâËùÐèµÄÑù±¾¼¯£¬²¢¸ù¾ÝÆäËûÁìÓòÇ¨ÒÆ¶øÀ´µÄ֪ʶ¸ø²¿·ÖÑù±¾´òÉÏÕýÀý±êÇ©2.while ²»Âú×ãÍ£Ö¹Ìõ¼þ do3. ²ÉÑù£º»ùÓÚÌØ¶¨µÄ²ÉÑù·½·¨£¬ÔÚ²ÉÑù»·½Úѡȡ³ö´ý±ê×¢Ñù±¾4. ±ê×¢£º¶Ô´ý±ê×¢Ñù±¾½øÐÐÈ˹¤±ê×¢5. ¸üÐÂÑù±¾£º²ÉÓÃÌØ¶¨µÄ·½·¨¸üÐÂÑù±¾¿â6. ¸üÐÂÄ£ÐÍ£ºÊ¹ÓÃtwo-step PU Learning·½·¨¸üÐÂÄ£ÐÍ7.end while

Ïà±ÈStikic[4]Öеķ½·¨£¬ÎÒÃǽ«²ÉÑùÓëÄ£Ð͸üз½Ê½¸Ä½øÎªÅúÁ¿²ÉÑùÒÔ¼°two-step PU Learning¡£

3.2 ²ÉÑù

ÔںܶàActive Learning¹¤×÷ÖУ¬²ÉÑùÓëµü´úÊÇÁ÷ʽµÄ£¬Ò²¼´ÊÇ»ùÓÚµ±Ç°Ëã·¨²ÉÑùÒ»¸ö£¬±ê×¢Ò»¸ö£¬Ëã·¨µü´úÒ»´Î£¬»ùÓÚµ±Ç°Ëã·¨²ÉÑùÒ»¸ö,¡­,ÈçÊÇÑ­»·¡£¸Ã·½·¨µÄʱ¼äЧÂʽϵͣ¬¼ÙÈç±ê×¢100¸öÑù±¾£¬ÄǾÍÐèÒªµü´ú100´ÎÄ£ÐÍ£¬¶ÔÓڽϴóµÄѵÁ·Êý¾Ý¼¯ºÍ½ÏΪ¸´ÔÓµÄÄ£ÐÍ£¬Æäʱ¼ä³É±¾ÊDz»¿É½ÓÊܵġ£

×÷ÎªÌæ´ú£¬ÎÒÃDzÉÈ¡ÁËmini-batchµÄ·½·¨ÅúÁ¿²ÉÑù£¬Ã¿´Î²ÉÑù¶à¸ö¼Í¼£¬²ÉÑùÈ«¶¼±ê×¢Íê³ÉºóËã·¨²Å¸üУ¬ÔÚÏàͬ±ê×¢ÊýÁ¿ÏÂÏÔÖø¼õÉÙÁËʱ¼ä³É±¾¡£

²ÉÑùµÄ·½Ê½»ùÓÚUncertainty & Diversity±ê×¼£¬¼´¾¡Á¿È¡³öµ±Ç°Ä£ÐÍ×ȷ¶¨Í¬Ê±ÓÖÓÐ×ŷḻµÄ¶àÑùÐÔµÄÑù±¾¼¯¡£¾ßÌåÁ÷³ÌΪ£º

¶ÔеÄÊý¾ÝDnew£¬Ê¹Óõ±Ç°Ä£ÐÍ´ò·Ö¡£

³éÈ¡³öÈô¸É¸öÄ£ÐÍ×ȷ¶¨µÄ°×Ñù±¾¹¹³ÉDuncertain£¬²»È·¶¨ÐԵĺâÁ¿»ùÓÚÄ£ÐÍ´ò·Ö¶øÀ´¡£

¶ÔDuncertain½øÐÐK-Means¾ÛÀ࣬ÔÚÿ¸öÀàÖÐÈ¡³ö×ȷ¶¨µÄÈô¸É¸öÑù±¾£¬¹¹³É×îÖյĴý±ê×¢Ñù±¾¡£

3.3 ±ê×¢

ר¼Ò½øÐбê×¢£¬ÓÉÓÚÎÒÃǵķ½·¨¶ÔÓÚP¼¯ºÏµÄÐÅÏ¢»á³ä·ÖµÄÐÅÀµÓëÀûÓã¬Òò´ËÒªÇóר¼ÒÅжÏʱ£¬½ö°Ñ¾ßÓгä·ÖÐÅÐĵÄÑù±¾±êעΪ1£¬±£Ö¤P¼¯ºÏµÄÕýÈ·ÐÔ¡£

3.4 ¸üÐÂÑù±¾

ÔÚÕâÒ»»·½Ú£¬ÓÉÓÚÎÒÃǶÔÓÚר¼Ò±ê×¢µÄ0ÎÞ·¨ÍêÈ«ÐÅÈΣ¬Òò´Ë»áÑ¡Ôñ½«±êΪ0µÄ²¿·Ö·ÅÈëU¼¯ºÏÖУ¬¼ÙװûÓбê×¢¹ý¡£¶ø¶ÔÓÚ±êעΪ1µÄ²¿·Ö£¬Ôò½øÐж౶µÄÉϲÉÑùºóÈ«¶¼·ÅÈëP¼¯ºÏ£¬ÒÔÇ¿»¯ÕâÅúÑù±¾ÔÚÏÂÒ»ÂÖÄ£Ð͸üÐÂÖеÄ×÷Óá£

3.5 ¸üÐÂÄ£ÐÍ

³£¹æµÄActive Learningͨ³£Èçͼ¶þ×ó±ßËùʾ£¬×¨¼Ò»á¶à´Î±ê×¢£¬Öð½¥À©³äL(Labeled)¼¯ºÏ£¬active learnerÔò»áÔÚ¶à´ÎѧϰL¼¯ºÏʱ²»Í£ÌáÉý×Ô¼ºµÄÐÔÄÜ£¬ÎÒÃdzÆÖ®ÎªLU setting¡£

È»¶øÔÚ±¾³¡¾°£¬ÎÒÃǸüÏñÊÇÒ»¸öPU setting£¬×¨¼Ò¶à´Î±ê×¢£¬À©³äP(Positive)¼¯ºÏ£¬LearnerÔòÔÚÿ´Îµü´úµÄʱºò£¬»ùÓÚPU Learning½øÐÐѧϰ¡£

£¨ ͼ¶þ £©

ʹÓÃPU LearningµÄÔ­ÒòÓÐÁ½¸ö£¬Ò»ÊÇÎÒÃÇÏ£ÍûеÄÄ£ÐÍÄܹ»Éú³¤ÔÚÒÑÓÐ֪ʶµÄ»ù´¡ÉÏ£¬µ±Ç°ÎÒÃÇÒѾ­ÓдóÁ¿µÄ»ù´¡Ä£¿éµÄÐÅÏ¢´øÀ´¸ß׼ȷÂʵ«µÍÕÙ»ØÂʵĺÚÑù±¾±ê×¢¡£¶þÊÇÔÚÑù±¾±ê×¢Á¿½ÏСµÄÇé¿öÏ£¬U(Uncertain)¼¯ºÏÖеÄÐÅÏ¢¶ÔÓÚÄ£ÐÍѵÁ·Ô¤ÆÚ»á´øÀ´¸ü¶àµÄ°ïÖú¡£

ÎÒÃÇ»ùÓÚtwo-step PUʵÏÖÄ£Ð͸üУ¬Ö®ËùÒÔ³ÆÎªtwo-step PUÊÇÒòΪËü¿ÉÒÔ·ÖΪÁ½²½£¬µÚÒ»²½Êǽ«P¼¯ºÏÖв¿·ÖÑù±¾×÷Ϊspy»ìÈëU¼¯ºÏÖв¢½øÐжàÂÖEMµü´ú£¬µÚ¶þ²½ÔòÊÇ¿¼²ìspyÑù±¾µÄ·ÖÖµ·Ö²¼£¬½«U¼¯ºÏÖÐËùÓзÖֵСÓÚspyÖÐ10%·ÖλģÐÍ·ÖÖµµÄÑù±¾±ê¼ÇΪ0£¬Éú³ÉN(Negative)¼¯ºÏ£¬²¢»ùÓڴ˽øÐжàÂÖEMµü´ú¡£

EMµü´úµÄ˼·ÔÚtwo-step PU¹ý³ÌÖж¼ÊÇÒ»Öµģ¬½«P¼¯ºÏµÄÑù±¾score±ê¼ÇΪ1£¬U¼¯ºÏµÄÑù±¾score¼Ì³ÐÉÏÒ»ÂÖÄ£ÐÍ´ò·Ö£¬ÑµÁ·ÐµÄÄ£ÐÍÄâºÏÑù±¾score²¢¸ø³öеÄÄ£ÐÍ´ò·Ö£¬¼´Íê³ÉÒ»ÂÖµü´ú¡£

ÎÒÃDzÉÓÃÁËGBRT£¨Gradient Boosting Regression Tree£©×÷ΪActive LearningµÄ»ù·ÖÀàÆ÷£¬ÕâÒâζ×ÅÔÚÕû¸öѧϰ¹ý³Ì½áÊøºó£¬ÎÒÃǽ«²ú³öÒ»¸öGBRTÄ£ÐÍ¡£

4.ʵÑé½á¹û

ÎÒÃÇ×ܹ²Éè¼ÆÁËÈý¸öʵÑ飬·Ö±ðÖ¤Ã÷ÁËtwo-step PUµÄÓÐЧÐÔ£¬Active LearningµÄÓÐЧÐÔ£¬ÒÔ¼°Active PU LearningµÄ·½°¸ÓÐЧÐÔ¡£

ÓÉÓÚʵÑé³É±¾½Ï¸ß£¬Èý×éʵÑ鲢ûÓвÉÈ¡ÍêȫһÑùµÄsettingÓ뿼²ì·½·¨¡£ÔÚÈý×éʵÑéÖУ¬ÑµÁ·¼¯µÄÑù±¾Á¿¶¼ÔÚ°ÙÍò¼¶±ð£¬ÆÀ¹À¼¯¶¼¾­¹ýÌØÊâµÄ·Ç¾ùÔȲÉÑùÒÔÌáÉý¼ÆËãЧÂÊ¡£

4.1 two-step PU Learning ÓÐЧÐÔ

ÎÒÃǵ¥¶À¿¼²ìÁËtwo-step PUµÄËã·¨ÓÐЧÐÔ£¬¿¼²ì·½·¨ÈçÏ£º

1. »ùÓÚÏàͬµÄѵÁ·Êý¾Ý¼¯£¬ÑµÁ·Èý¸öÄ£ÐÍ£¬Î޼ලģÐÍIF(Isolation Forest), ÓмලģÐÍGBRT£¬two-step PU Learningµü´úÉú³ÉµÄGBRT£¨¼ò³ÆPU GBRT£©;

2. ͬһʱ¼ä¶ÎµÄÐÅÓÿ¨½»Ò×£¬IF, GBRT, PU GBRT·Ö±ð´ò·Ö;

3. ÔÚ¸÷×ÔµÄ95¡«100·Öλ²ÉÑù£¬µÃµ½Èô¸ÉÑù±¾;

4. ÆÀ¹ÀµÃµ½IF&GBRT׼ȷÂÊΪ60%£¬PU GBRTΪ70%;

½á¹ûÖ¤Ã÷ÁË£¬PU²ú³öµÄÄ£ÐÍÊǸüÓŵġ£

4.2 Active Learning ÓÐЧÐÔ

ͬÑù£¬ÎÒÃǵ¥¶À¿¼²ìÁËActive LearningµÄÓÐЧÐÔ£¬ALµÄÓÐЧÐÔ¿¼²ì¿ÉÒÔ·Ö³ÉÈý¿é£º

ÒµÎñÐÔÄÜÌáÉý¿¼²ì£º¶Ô±Èµ±Ç°Î޼ලģÐÍ£¬¿¼²ìÊÇ·ñAL´øÀ´Ä£ÐÍÐÔÄÜÌáÉý£»

AL¿ò¼ÜÓÐЧÐÔ¿¼²ì£º¶Ô±È²»ÀûÓÃÈ˹¤±ê×¢Êý¾ÝµÄÓмලGBRTÄ£ÐÍ£¬¿¼²ìALѵÁ·³öÀ´µÄGBRTÄ£ÐÍÊÇ·ñÓÐÌáÉý£»

AL²ÉÑù·½·¨ÓÐЧÐÔ¿¼²ì£º¶Ô±ÈËæ»ú²ÉÑù±ê×¢Ïàͬ¸öÊýѵÁ·µÃµ½GBRTÄ£ÐÍ£¬¿¼²ìAL²ÉÑù·½·¨ÑµÁ·³öÀ´µÄGBRTÄ£ÐÍÊÇ·ñÓÐÌáÉý¡£

¿¼²ì1µÄ·½·¨ÈçÏ£º

»ùÓÚѵÁ·Êý¾Ý¼¯A£¬ÑµÁ·Î޼ලģÐÍIF;

ÔÚÊý¾Ý¼¯AÉÏÓ¦ÓÃActive Learning£¬¶îÍâ±ê×¢²¿·ÖÊý¾Ý²¢¶àÂÖµü´úÉú³ÉRF(Random Forest)(¼ò³ÆAL RF);

ͬһʱ¼ä¶ÎµÄÐÅÓÿ¨½»Ò×£¬IFºÍAL RF·Ö±ð´ò·Ö;

·Ö±ðÔÚ¸÷×ÔµÄ99·ÖλÒÔÉÏ£¬95¡«99·Ö룬90¡«95·Ö룬80¡«90·Öλ²ÉÑù£¬µÃµ½Èô¸ÉÑù±¾;

ÆÀ¹ÀµÃµ½IF׼ȷÂÊΪ91%£¬AL RF׼ȷÂÊΪ94% ¡£

½á¹ûÖ¤Ã÷ÁË£¬AL²ú³öµÄÄ£ÐÍÊǸüÓŵġ£¿¼²ì2Ó뿼²ì3µÄ·½·¨Ààͬ£¬ÊµÑé½á¹ûÒ²¶¼ÊÇÕýÃæµÄ£¬´Ë´¦²»ÔÙ׸Êö¡£

4.3 Active PU Learning·½°¸ÓÐЧÐÔ

×îºó£¬ÎÒÃÇ¿¼²ìÁËActive PU LearningÊÇ·ñÓµÓÐÁ¼ºÃµÄÐÔÄÜ£¨²Î¼ûͼÈý£©£¬¿¼²ì·½·¨ÈçÏ£º

»ùÓÚÏàͬµÄѵÁ·Êý¾Ý¼¯A£¬ÑµÁ·Á½¸öÄ£ÐÍ£¬Î޼ලģÐÍIF, ÓмලģÐÍGBRT;

ÔÚÊý¾Ý¼¯AÉÏÓ¦ÓÃActive PU Learning£¬µü´úÉú³ÉGBRT(¼ò³ÆAPU GBRT);

ͬһʱ¼ä¶ÎµÄÐÅÓÿ¨½»Ò×£¬IF, GBRT, APU GBRT·Ö±ð´ò·Ö;

ÔÚ¸÷×ÔµÄ85-90·Ö룬90-95·Ö룬95-99·Ö룬99-100·Öλ³éÈ¡Èô¸ÉÑù±¾£¬½øÐÐÈ˹¤±ê×¢;

ºáÏò±È½ÏÏàͬPercentileÏ£¬²»Í¬Ä£Ð͵ıêע׼ȷÂÊ£¬ÔÚÿ¸öÇø¼äÉÏ£¬APU GBRT¶¼Ê¤ÓÚ»òµÈͬÓÚÁíÁ½¸öÄ£Ð͵Ä׼ȷÂÊ¡£

£¨ ͼÈý £©

5.×ܽáÓëÕ¹Íû

ÔÚ¸÷Ðи÷ÒµµÄ»úÆ÷ѧϰÎÊÌâÖУ¬È±ÉÙ±êÇ©»òÕß±êÇ©»ñÈ¡´ú¼Û°º¹óµÄÏÖÏóÊÇÆÕ±é´æÔڵ쬴ÓÒµÕßΪÁËÔÚÕâÀೡ¾°Öн¨Éè¿É¿¿µÄÄ£ÐÍʵ¼ùÁ˸÷ÖÖ·½·¨¡£

±¾ÎĵÄActive PU Learning·½·¨¼¯ÖÐÔÚÁËÈçºÎÒÔ½ÏСµÄ´ú¼Û£¬ÒýÈë¸ü¶àµÄÍⲿÐÅÏ¢£¬²¢ÇÒ¸üºÃµØÀûÓõ±Ç°ÒÑÓбêǩ֪ʶ¡£

Ïà±È֮ǰµÄͬÀ๤×÷£¬Active PU LearningÖ÷Òª¹±Ï×ÔÚÓÚÒýÈëÁËtwo-step PU Learning¸Ä½øÁËActive LearningÖÐÄ£Ð͸üÐµķ½·¨¡£µ±È»¸Ã·½·¨Ò²ÓÐÆä¾ÖÏÞ£¬Ëã·¨¶ÔÈ˹¤±ê×¢µÄÖÊÁ¿ÓкܸߵÄÒªÇó£¬ÕûÌ×·½°¸µÄѵÁ·Á÷³ÌÏà±È³£¹æµÄGBRTÒ²¸üºÄʱ¡£

Ŀǰ£¬ÎÒÃÇÔÚ·´Ì×Ïָó¡¾°Ó¦ÓÃActive PU Learning²ú³öµÄÄ£Ðͺó£¬Ïà±È»ùÓÚIsolation Forest·½·¨ÔÚÏàͬ׼ȷÂÊÏ£¬Ê¶±ðÁ¿ÌáÉý3±¶¡£

×÷ΪһÖÖÑéÖ¤ÒÑÓгÉЧµÄ·½·¨ÂÛ£¬ÔÚÄÚÎÒÃÇÕýÔÚ»ý¼«µÄÍØÕ¹Ó¦Óó¡¾°£¬¶ÔÍâÔòÏ£Íû±¾ÎÄÄܸøËùÓеĶÁÕß´øÀ´Ò»Ð©Æô·¢¡£

 

   
2566 ´Îä¯ÀÀ       29
Ïà¹ØÎÄÕÂ

»ùÓÚͼ¾í»ýÍøÂçµÄͼÉî¶Èѧϰ
×Ô¶¯¼ÝÊ»ÖеÄ3DÄ¿±ê¼ì²â
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
ÏîĿʵս£ºÈçºÎ¹¹½¨ÖªÊ¶Í¼Æ×
 
Ïà¹ØÎĵµ

5GÈ˹¤ÖÇÄÜÎïÁªÍøµÄµäÐÍÓ¦ÓÃ
Éî¶ÈѧϰÔÚ×Ô¶¯¼ÝÊ»ÖеÄÓ¦ÓÃ
ͼÉñ¾­ÍøÂçÔÚ½»²æÑ§¿ÆÁìÓòµÄÓ¦ÓÃÑо¿
ÎÞÈË»úϵͳԭÀí
Ïà¹Ø¿Î³Ì

È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ&TensorFlow
»úÆ÷ÈËÈí¼þ¿ª·¢¼¼Êõ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
ͼÏñ´¦ÀíËã·¨·½·¨Óëʵ¼ù