Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
tensorboardʹÓý̳Ì
 
×÷Õߣº AL
  2905  次浏览      30
 2020-2-24
 
±à¼­ÍƼö:
±¾ÎĽ²½âLogistic»Ø¹éµÄTensorboard¿ÉÊÓ»¯£¬µ¼ÈëÊý¾Ý¼¯£¬²ÎÊýÉèÖ㬹¹½¨Ä£ÐͺͲÙ×÷£¨Ä£ÐÍ+Ëðʧº¯Êý+ÓÅ»¯+׼ȷÂÊ£©¡£Ï£Íû¶ÔÄúÓÐËù°ïÖú¡£
±¾ÎÄÀ´×ÔÓÚ¼òÊ飬ÓÉ»ðÁú¹ûÈí¼þDelores±à¼­¡¢ÍƼö¡£

×î½üÅܳÌÐò£¬Òª¼à¿ØËðʧ±ä»¯Çé¿ö£¬·½±ãµ÷ÊÔ³ÌÐò¡£·¢ÏÖtensorboardÊǸöºÃ¹¤¾ß£¬µ«Ò»Ö±Ã»Ê¹Óᣱ¾ÎÄÊÇѧϰ±Ê¼Ç

Ö÷ÒªÓõÄÊÇtf.summary,Ö÷Òª°üÀ¨£º

1. tf.summary.histogram(Éú³ÉHistogram ºÍdistribution),

´úÂëʾÀý£º

tf.summary.histogram('layer'+str(i+1)
+'weights',weights)

2. tf.summary.scalar£º Ö÷ÒªÓÃÓڼǼÖîÈ磺׼ȷÂÊ¡¢ËðʧºÍѧϰÂʵȵ¥¸öÖµµÄ±ä»¯Ç÷ÊÆ¡£

´úÂëʾÀý£º

with tf.name_scope('accuracy'):
correct_prediction = tf.equal
(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean
(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)

3. tf.summary.image:

×÷ÓãºÈç¹ûÄãµÄÄ£ÐÍÊäÈëÊÇͼÏñ£¬Ïë¼ì²éÿ´ÎÊäÈëµÄͼÏñÒÔ±£Ö¤ÕýÈ·ÐÔ¡£iamgesÃæ°å¾Í¿ÉÒÔÏÔʾ³öÏàÓ¦µÄÊäÈëͼÏñ£¬Ä¬ÈÏÏÔʾ×îеÄÊäÈëͼÏñ¡£

´úÂëʾÀý£º

x = tf.placeholder(tf.float32,
shape=[None, N_FEATURES], name='x')
x_image = tf.transpose(tf.reshape
(x, [-1, 3, 32, 32]), perm=[0, 2, 3, 1])
tf.summary.image('input',
x_image, max_outputs=3)
y = tf.placeholder(tf.float32,
[None, N_CLASSES], name='labels')

ÆäÖвÎÊýmax_outputs±íʾ×î¶àÏÔʾ¼¸ÕÅͼƬ¡£

4. tf.summary.FileWriter£¨·Ö±ðÉú³ÉÈÕÖ¾), Ö¸¶¨Ò»¸öĿ¼À´¸æËß³ÌÐò°ÑÎļþ·Åµ½ÄÄÀȻºóÔËÐеÄʱºòʹÓÃadd_summary()À´½«Ä³Ò»²½µÄsummaryÊý¾Ý¼Ç¼µ½ÎļþÖÐ

´úÂëʾÀý£º

eval_writer = tf.summary.FileWriter
(LOGDIR + '/eval')# Some other code
seval_writer.add_summary(tf.Summary
(value=[tf.Summary.Value(tag='eval_accuracy',
simple_value=np.mean(test_acc))]), i)

5. tf.summary.merge_all(ÕûÀíÈÕÖ¾²Ù×÷µÄ£¬sess.runÒ»´Î¾Í²»ÓöÔÉÏÊö·Ö±ðrun)

GraphsÃæ°å

ÓÃÓÚ´Ó×ÜÌåÉÏ¿´Ëù¹¹½¨µÄÍøÂç½á¹¹£¬¿ÉÒÔÏÔʾѵÁ·Êý¾ÝÁ÷µÄ·½ÏòºÍ´óС£¬ÑµÁ·Ê±Ã¿¸ö½ÚµãµÄÓÃʱ£¬ºÄ·ÑÄÚ´æµÄ´óС£¬ÒÔ¼°²ÎÊýµÄ¶àÉÙ¡£Ö÷Òª·ÖΪÁ½²¿·Ö£ºÖ÷ͼ£¨ÍøÂç½á¹¹£©ºÍ¸¨Öú½Úµã£¨³õʼ»¯¡¢ÑµÁ·¡¢±£´æµÈ½Úµã£©¡£Ã¿¸ö½Úµã¶¼ÊÇÓÃtf.name_scope()À´¶¨ÒåµÄ¡£

tensorboardĬÈϲ»¼Ç¼ÿ¸ö½ÚµãµÄÓÃʱ¡¢ºÄ·ÑÄÚ´æ´óСµÈÐÅÏ¢µÄ£¬ÒªÏÔʾÕâЩÐÅÏ¢£¬ÐèÒªÔÙsess.run()ÖмÓÈëoptionsºÍrun_metadata²ÎÊý¡£Ìí¼ÓÏÂÁдúÂ룺

run_options = tf.RunOptions
(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
s, lss, acc , _ = sess.run
([merged_summary, loss, accuracy, train_step],
feed_dict={x: batch_x, y: batch_y, phase: 1},
options=run_options,
run_metadata=run_metadata)
summary_writer.add_run_metadata
(run_metadata, 'step{}'.format(i))
summary_writer.add_summary(s, i)

DistributionsÃæ°å

ÓÃÓÚÕ¹Ê¾ÍøÂçÖи÷²ÎÊýËæÑµÁ·²½ÊýÔö¼ÓµÄ±ä»¯Çé¿ö¡£Èç£ºÈ¨ÖØµÄ·Ö²¼

with tf.name_scope(name):
W = tf.Variable(tf.truncated_normal(
[k, k, channels_in, channels_out],
stddev=0.1), name='W')
b = tf.Variable(tf.constant
(0.1, shape=[channels_out]), name='b')
conv = tf.nn.conv2d(inpt, W,
strides=[1, s, s, 1], padding='SAME')
act = tf.nn.relu(conv)
tf.summary.histogram('weights', W)
tf.summary.histogram('biases', b)
tf.summary.histogram('activations', act)

HistogramsÃæ°å

ºÍdistributionsÊǶÔͬһÊý¾Ý²»Í¬·½Ê½µÄÕ¹ÏÖ¡£ÊÇÆµÊýÖ±·½Í¼µÄ¶Ñµþ¡£

ºáÖá´ú±íÈ¨ÖØÖµ£¬×ÝÖá´ú±íѵÁ·²½Êý¡£ÑÕɫԽÉî±íʾʱ¼äÔ½Ô磬Խdz±íʾԽÍí

   
2905 ´Îä¯ÀÀ       30
Ïà¹ØÎÄÕÂ

»ùÓÚͼ¾í»ýÍøÂçµÄͼÉî¶Èѧϰ
×Ô¶¯¼ÝÊ»ÖеÄ3DÄ¿±ê¼ì²â
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
ÏîĿʵս£ºÈçºÎ¹¹½¨ÖªÊ¶Í¼Æ×
 
Ïà¹ØÎĵµ

5GÈ˹¤ÖÇÄÜÎïÁªÍøµÄµäÐÍÓ¦ÓÃ
Éî¶ÈѧϰÔÚ×Ô¶¯¼ÝÊ»ÖеÄÓ¦ÓÃ
ͼÉñ¾­ÍøÂçÔÚ½»²æÑ§¿ÆÁìÓòµÄÓ¦ÓÃÑо¿
ÎÞÈË»úϵͳԭÀí
Ïà¹Ø¿Î³Ì

È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ&TensorFlow
»úÆ÷ÈËÈí¼þ¿ª·¢¼¼Êõ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
ͼÏñ´¦ÀíËã·¨·½·¨Óëʵ¼ù