Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
TensorBoard»ù´¡Æª
 
×÷Õߣº AL
  2532  次浏览      27
 2020-2-20
 
±à¼­ÍƼö:
±¾ÎĽ²½âLogistic»Ø¹éµÄTensorboard¿ÉÊÓ»¯£¬µ¼ÈëÊý¾Ý¼¯£¬²ÎÊýÉèÖ㬹¹½¨Ä£ÐͺͲÙ×÷£¨Ä£ÐÍ+Ëðʧº¯Êý+ÓÅ»¯+׼ȷÂÊ£©¡£Ï£Íû¶ÔÄúÓÐËù°ïÖú¡£
±¾ÎÄÀ´×ÔÓÚ¼òÊ飬ÓÉ»ðÁú¹ûÈí¼þDelores±à¼­¡¢ÍƼö¡£

TensorBoard¼ò½é

TensorBoardÊÇTensorflow×Ô´øµÄÒ»¸öÇ¿´óµÄ¿ÉÊÓ»¯¹¤¾ß£¬Ò²ÊÇÒ»¸öwebÓ¦ÓóÌÐòÌ×¼þ¡£ÔÚÖÚ¶à»úÆ÷ѧϰ¿âÖУ¬TensorflowÊÇĿǰΨһ×Ô´ø¿ÉÊÓ»¯¹¤¾ßµÄ¿â£¬ÕâÒ²ÊÇTensorflowµÄÒ»¸öÓŵ㡣ѧ»áʹÓÃTensorBoard£¬½«¿ÉÒÔ°ïÖúÎÒÃǹ¹½¨¸´ÔÓÄ£ÐÍ¡£

ÕâÀïÐèÒªÀí½â¡°¿ÉÊÓ»¯¡±µÄÒâÒå¡£¡°¿ÉÊÓ»¯¡±Ò²½Ð×öÊý¾Ý¿ÉÊÓ»¯¡£ÊǹØÓÚÊý¾ÝÖ®ÊÓ¾õ±íÏÖÐÎʽµÄÑо¿¡£ÕâÖÖÊý¾ÝµÄÊÓ¾õ±íÏÖÐÎʽ±»¶¨ÒåΪһÖÖÒÔijÖÖ¸ÅÒªÐÎʽ³éÌá³öÀ´µÄÐÅÏ¢£¬°üÀ¨ÏàÓ¦ÐÅÏ¢µ¥Î»µÄ¸÷ÖÖÊôÐԺͱäÁ¿¡£ÀýÈçÎÒÃÇÐèÒª¿ÉÊÓ»¯Ëã·¨ÔËÐеĴíÎóÂÊ£¬ÄÇôÎÒÃÇ¿ÉÒÔÈ¡Ë㷨ÿ´ÎѵÁ·µÄ´íÎóÂÊ£¬»æÖƳÉÕÛÏßͼ»òÇúÏßͼ£¬À´±í´ïѵÁ·¹ý³ÌÖдíÎóÂʵı仯¡£¿ÉÊÓ»¯µÄ·½·¨ÓкܶàÖÖ¡£µ«ÎÞÂÛÄÄÒ»ÖÖ£¬¾ùÊǶÔÊý¾Ý½øÐÐÕªÒª(summary)Óë´¦Àí¡£

ͨ³£Ê¹ÓÃTensorBoardÓÐÈý¸ö²½Ö裺

Ê×ÏÈÐèÒªÔÚÐèÒª¿ÉÊÓ»¯µÄÏà¹Ø²¿Î»Ìí¼Ó¿ÉÊÓ»¯´úÂ룬¼´´´½¨ÕªÒª¡¢Ìí¼ÓÕªÒª£»

Æä´ÎÔËÐдúÂ룬¿ÉÒÔÉú³ÉÁËÒ»¸ö»ò¶à¸öʼþÎļþ(event files)£»

×îºóÆô¶¯TensorBoardµÄWeb·þÎñÆ÷¡£

Íê³ÉÒÔÉÏÈý¸ö²½Ö裬¾Í¿ÉÒÔÔÚä¯ÀÀÆ÷ÖпÉÊÓ»¯½á¹û£¬Web·þÎñÆ÷½«»á·ÖÎöÕâ¸öʼþÎļþÖеÄÄÚÈÝ£¬²¢ÔÚä¯ÀÀÆ÷Öн«½á¹û»æÖƳöÀ´¡£

Èç¹ûÎÒÃÇÒѾ­ÓµÓÐÁËÒ»¸öʼþÎļþ£¬Ò²¿ÉÒÔÖ±½ÓÀûÓÃTensorBoard²é¿´Õâ¸öʼþÎļþÖеÄÕªÒª¡£

TensorBoardÊÓͼÈçÏÂËùʾ£º

TensorBoardʾÒâͼ

Logistic»Ø¹éµÄTensorboard¿ÉÊÓ»¯

from __future__ import print_function
import tensorflow as tf

µ¼ÈëÊý¾Ý¼¯

# Import MINST data
from tensorflow.examples.tutorials.mnist
import input_data
mnist = input_data.read_data_sets
("./data/", one_hot=True)

Extracting ./data/train-images-idx3-ubyte.gz
Extracting ./data/train-labels-idx1-ubyte.gz
Extracting ./data/t10k-images-idx3-ubyte.gz
Extracting ./data/t10k-labels-idx1-ubyte.gz

²ÎÊýÉèÖÃ

# Parameters
learning_rate = 0.01
training_epochs = 25
batch_size = 100
display_epoch = 1
logs_path = './log/example/' # log´æ·ÅλÖÃ
# tf Graph Input
# mnist data image of shape 28*28=784
#£¨name=''½«ÔÚTensorboardÖÐÏÔʾ£©
x = tf.placeholder(tf.float32,
[None, 784], name='InputData')
#ÊäÈëÊý¾Ý£¨InputData£©
# 0-9 digits recognition => 10 classes
y = tf.placeholder(tf.float32,
[None, 10], name='LabelData')
# Êä³ö±êÇ©£¨LabelData£©
# Set model weights
W = tf.Variable(tf.zeros([784, 10]),
name='Weights') #È¨ÖØ£¨Weights£©
b = tf.Variable(tf.zeros([10]),
name='Bias') #Æ«Öã¨Bias£©

¹¹½¨Ä£ÐͺͲÙ×÷£¨Ä£ÐÍ+Ëðʧº¯Êý+ÓÅ»¯+׼ȷÂÊ£©

# Construct model and encapsulating
all ops into scopes, making
# Tensorboard's Graph visualization
more convenient
with tf.name_scope('Model'):
# Model
pred = tf.nn.softmax(tf.matmul(x, W) + b)
# Softmax
with tf.name_scope('Loss'):
# Minimize error using cross entropy
cost = tf.reduce_mean(-tf.reduce_sum
(y * tf.log(pred), reduction_indices=1))
with tf.name_scope('SGD'):
# Gradient Descent
optimizer = tf.train.GradientDescentOptimizer
(learning_rate).minimize(cost)
with tf.name_scope('Accuracy'):
# Accuracy
acc = tf.equal(tf.argmax(pred, 1),
tf.argmax(y, 1))
acc = tf.reduce_mean(tf.cast(acc, tf.float32))
# Initializing the variables
init = tf.global_variables_initializer()
# Create a summary to monitor cost tensor
tf.summary.scalar("loss", cost)
# Create a summary to monitor accuracy tensor
tf.summary.scalar("accuracy", acc)
# Merge all summaries into a single op
merged_summary_op = tf.summary.merge_all()

ѵÁ·²¢±£´ælog

# Start Training
with tf.Session() as sess:
sess.run(init)
# op to write logs to Tensorboard
summary_writer = tf.summary.
FileWriter(logs_path, graph=tf.get_default_graph())
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int
(mnist.train.num_examples / batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch
(batch_size)
# Run optimization op (backprop), cost op
(to get loss value)
# and summary nodes
_, c, summary = sess.run
([optimizer, cost, merged_summary_op],
feed_dict={x: batch_xs, y: batch_ys})
# Write logs at every iteration
summary_writer.add_summary
(summary, epoch * total_batch + i)
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if (epoch+1) % display_epoch == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(avg_cost))
print("Optimization Finished!")
# Test model
# Calculate accuracy
print("Accuracy:", acc.eval
({x: mnist.test.images, y: mnist.test.labels}))
print("Run the command line:\n" \
"--> tensorboard --logdir=./log" \
"\nThen open http://0.0.0.0:6006/
into your web browser")

Epoch: 0001 cost= 1.183717763
Epoch: 0002 cost= 0.665147323
Epoch: 0003 cost= 0.552818966
Epoch: 0004 cost= 0.498699070
Epoch: 0005 cost= 0.465521080
Epoch: 0006 cost= 0.442596199
Epoch: 0007 cost= 0.425560050
Epoch: 0008 cost= 0.412205354
Epoch: 0009 cost= 0.401337254
Epoch: 0010 cost= 0.392412475
Epoch: 0011 cost= 0.384738669
Epoch: 0012 cost= 0.378180920
Epoch: 0013 cost= 0.372407395
Epoch: 0014 cost= 0.367316018
Epoch: 0015 cost= 0.362715464
Epoch: 0016 cost= 0.358595766
Epoch: 0017 cost= 0.354887394
Epoch: 0018 cost= 0.351458600
Epoch: 0019 cost= 0.348339875
Epoch: 0020 cost= 0.345448156
Epoch: 0021 cost= 0.342770365
Epoch: 0022 cost= 0.340232303
Epoch: 0023 cost= 0.337901928
Epoch: 0024 cost= 0.335753958
Epoch: 0025 cost= 0.333657109
Optimization Finished!
Accuracy: 0.9136
Run the command line:
--> tensorboard --logdir=./log
Then open http://0.0.0.0:6006/
into your web browser

ËðʧºÍ׼ȷÂʵĿÉÊÓ»¯

Loss and Accuracy Visualization

¼ÆËãͼģÐ͵Ļù±¾µ¥Ôª

¼ÆËãͼģÐ͵ĿÉÊÓ»¯

   
2532 ´Îä¯ÀÀ       27
Ïà¹ØÎÄÕÂ

»ùÓÚͼ¾í»ýÍøÂçµÄͼÉî¶Èѧϰ
×Ô¶¯¼ÝÊ»ÖеÄ3DÄ¿±ê¼ì²â
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
ÏîĿʵս£ºÈçºÎ¹¹½¨ÖªÊ¶Í¼Æ×
 
Ïà¹ØÎĵµ

5GÈ˹¤ÖÇÄÜÎïÁªÍøµÄµäÐÍÓ¦ÓÃ
Éî¶ÈѧϰÔÚ×Ô¶¯¼ÝÊ»ÖеÄÓ¦ÓÃ
ͼÉñ¾­ÍøÂçÔÚ½»²æÑ§¿ÆÁìÓòµÄÓ¦ÓÃÑо¿
ÎÞÈË»úϵͳԭÀí
Ïà¹Ø¿Î³Ì

È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ&TensorFlow
»úÆ÷ÈËÈí¼þ¿ª·¢¼¼Êõ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
ͼÏñ´¦ÀíËã·¨·½·¨Óëʵ¼ù