Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
»ùÓÚÉî¶ÈѧϰµÄÄ¿±ê¼ì²â
 
  4027  次浏览      27
 2019-8-27
 
±à¼­ÍƼö:

±¾ÎÄÀ´×Ôcnblogs£¬±¾ÎĽéÉÜ»ùÓÚÇøÓòÌáÃûµÄ·½·¨£¬°üÀ¨R-CNN¡¢SPP-net¡¢Fast R-CNN¡¢Faster R-CNN¡¢R-FCNºÍ¶Ëµ½¶Ë£¨End-to-End£©µÄÄ¿±ê¼ì²â·½·¨£¬°üÀ¨YOLOºÍSSD¡£

ÆÕͨµÄÉî¶Èѧϰ¼à¶½Ëã·¨Ö÷ÒªÊÇÓÃÀ´×ö·ÖÀ࣬Èçͼ1(1)Ëùʾ£¬·ÖÀàµÄÄ¿±êÊÇҪʶ±ð³öͼÖÐËùʾÊÇһֻè¡£¶øÔÚILSVRC£¨ImageNet Large Scale Visual Recognition Challenge)¾ºÈüÒÔ¼°Êµ¼ÊµÄÓ¦ÓÃÖУ¬»¹°üÀ¨Ä¿±ê¶¨Î»ºÍÄ¿±ê¼ì²âµÈÈÎÎñ¡£ÆäÖÐÄ¿±ê¶¨Î»ÊDz»½ö½öҪʶ±ð³öÀ´ÊÇʲôÎïÌ壨¼´·ÖÀࣩ£¬¶øÇÒ»¹ÒªÔ¤²âÎïÌåµÄλÖã¬Î»ÖÃÒ»°ãÓñ߿ò£¨bounding box£©±ê¼Ç£¬Èçͼ1(2)Ëùʾ¡£¶øÄ¿±ê¼ì²âʵÖÊÊǶàÄ¿±êµÄ¶¨Î»£¬¼´ÒªÔÚͼƬÖж¨Î»¶à¸öÄ¿±êÎïÌ壬°üÀ¨·ÖÀàºÍ¶¨Î»¡£±ÈÈç¶Ôͼ1(3)½øÐÐÄ¿±ê¼ì²â£¬µÃµ½µÄ½á¹ûÊǺü¸Ö»²»Í¬¶¯ÎËûÃǵÄλÖÃÈçͼ3Öв»Í¬ÑÕÉ«µÄ¿òËùʾ¡£

ͼ1 Ä¿±ê·ÖÀà¡¢¶¨Î»¡¢¼ì²âʾÀý

¼òµ¥À´Ëµ£¬·ÖÀà¡¢¶¨Î»ºÍ¼ì²âµÄÇø±ðÈçÏ£º

·ÖÀࣺÊÇʲô£¿

¶¨Î»£ºÔÚÄÄÀÊÇʲô£¿£¨µ¥¸öÄ¿±ê£©

¼ì²â£ºÔÚÄÄÀ·Ö±ðÊÇʲô£¿£¨¶à¸öÄ¿±ê£©

Ä¿±ê¼ì²â¶ÔÓÚÈËÀàÀ´Ëµ²¢²»À§ÄÑ£¬Í¨¹ý¶ÔͼƬÖв»Í¬ÑÕɫģ¿éµÄ¸ÐÖªºÜÈÝÒ×¶¨Î»²¢·ÖÀà³öÆäÖÐÄ¿±êÎïÌ壬µ«¶ÔÓÚ¼ÆËã»úÀ´Ëµ£¬Ãæ¶ÔµÄÊÇRGBÏñËØ¾ØÕ󣬺ÜÄÑ´ÓͼÏñÖÐÖ±½ÓµÃµ½¹·ºÍèÕâÑùµÄ³éÏó¸ÅÄî²¢¶¨Î»ÆäλÖã¬ÔÙ¼ÓÉÏÓÐʱºò¶à¸öÎïÌåºÍÔÓÂҵı³¾°»ìÔÓÔÚÒ»Æð£¬Ä¿±ê¼ì²â¸ü¼ÓÀ§ÄÑ¡£µ«ÕâÄѲ»µ¹¿ÆÑ§¼ÒÃÇ£¬ÔÚ´«Í³ÊÓ¾õÁìÓò£¬Ä¿±ê¼ì²â¾ÍÊÇÒ»¸ö·Ç³£ÈÈÃŵÄÑо¿·½Ïò£¬Ò»Ð©Ìض¨Ä¿±êµÄ¼ì²â£¬±ÈÈçÈËÁ³¼ì²âºÍÐÐÈ˼ì²âÒѾ­Óзdz£³ÉÊìµÄ¼¼ÊõÁË¡£ÆÕͨµÄÄ¿±ê¼ì²âÒ²ÓйýºÜ¶àµÄ³¢ÊÔ£¬µ«ÊÇЧ¹û×ÜÊDzîÇ¿ÈËÒâ¡£

´«Í³µÄÄ¿±ê¼ì²âÒ»°ãʹÓû¬¶¯´°¿ÚµÄ¿ò¼Ü£¬Ö÷Òª°üÀ¨Èý¸ö²½Ö裺

ÀûÓò»Í¬³ß´çµÄ»¬¶¯´°¿Ú¿òסͼÖеÄijһ²¿·Ö×÷ΪºòÑ¡ÇøÓò£»

ÌáÈ¡ºòÑ¡ÇøÓòÏà¹ØµÄÊÓ¾õÌØÕ÷¡£±ÈÈçÈËÁ³¼ì²â³£ÓõÄHarrÌØÕ÷£»ÐÐÈ˼ì²âºÍÆÕͨĿ±ê¼ì²â³£ÓõÄHOGÌØÕ÷µÈ£»

ÀûÓ÷ÖÀàÆ÷½øÐÐʶ±ð£¬±ÈÈç³£ÓõÄSVMÄ£ÐÍ¡£

´«Í³µÄÄ¿±ê¼ì²âÖУ¬¶à³ß¶ÈÐα䲿¼þÄ£ÐÍDPM£¨Deformable Part Model£©[13]ÊdzöÀà°ÎÝ͵ģ¬Á¬Ðø»ñµÃVOC£¨Visual Object Class£©2007µ½2009µÄ¼ì²â¹Ú¾ü£¬2010ÄêÆä×÷ÕßFelzenszwalb Pedro±»VOCÊÚÓ衱ÖÕÉí³É¾Í½±¡±¡£DPM°ÑÎïÌå¿´³ÉÁ˶à¸ö×é³ÉµÄ²¿¼þ£¨±ÈÈçÈËÁ³µÄ±Ç×Ó¡¢×ì°ÍµÈ£©£¬Óò¿¼þ¼äµÄ¹ØÏµÀ´ÃèÊöÎïÌ壬Õâ¸öÌØÐԷdz£·ûºÏ×ÔÈ»½çºÜ¶àÎïÌåµÄ·Ç¸ÕÌåÌØÕ÷¡£DPM¿ÉÒÔ¿´×öÊÇHOG+SVMµÄÀ©Õ¹£¬ºÜºÃµÄ¼Ì³ÐÁËÁ½ÕßµÄÓŵ㣬ÔÚÈËÁ³¼ì²â¡¢ÐÐÈ˼ì²âµÈÈÎÎñÉÏÈ¡µÃÁ˲»´íµÄЧ¹û£¬µ«ÊÇDPMÏà¶Ô¸´ÔÓ£¬¼ì²âËÙ¶ÈÒ²½ÏÂý£¬´Ó¶øÒ²³öÏÖÁ˺ܶà¸Ä½øµÄ·½·¨¡£Õýµ±´ó¼ÒÈÈ»ð³¯Ìì¸Ä½øDPMÐÔÄܵÄʱºò£¬»ùÓÚÉî¶ÈѧϰµÄÄ¿±ê¼ì²âºá¿Õ³öÊÀ£¬Ñ¸ËٸǹýÁËDPMµÄ·çÍ·£¬ºÜ¶à֮ǰÑо¿´«Í³Ä¿±ê¼ì²âËã·¨µÄÑо¿ÕßÒ²¿ªÊ¼×ªÏòÉî¶Èѧϰ¡£

»ùÓÚÉî¶ÈѧϰµÄÄ¿±ê¼ì²â·¢Õ¹ÆðÀ´ºó£¬ÆäʵЧ¹ûÒ²Ò»Ö±ÄÑÒÔÍ»ÆÆ¡£±ÈÈçÎÄÏ×[6]ÖеÄËã·¨ÔÚVOC 2007²âÊÔ¼¯ºÏÉϵÄmAPÖ»ÄÜ30%¶àÒ»µã£¬ÎÄÏ×[7]ÖеÄOverFeatÔÚILSVRC 2013²âÊÔ¼¯ÉϵÄmAPÖ»ÄÜ´ïµ½24.3%¡£2013ÄêR-CNNµ®ÉúÁË£¬VOC 2007²âÊÔ¼¯µÄmAP±»ÌáÉýÖÁ48%£¬2014Äêʱͨ¹ýÐÞ¸ÄÍøÂç½á¹¹ÓÖì­Éýµ½ÁË66%£¬Í¬Ê±ILSVRC 2013²âÊÔ¼¯µÄmAPÒ²±»ÌáÉýÖÁ31.4%¡£

R-CNNÊÇRegion-based Convolutional Neural NetworksµÄËõд£¬ÖÐÎÄ·­ÒëÊÇ»ùÓÚÇøÓòµÄ¾í»ýÉñ¾­ÍøÂ磬ÊÇÒ»ÖÖ½áºÏÇøÓòÌáÃû£¨Region Proposal£©ºÍ¾í»ýÉñ¾­ÍøÂ磨CNN£©µÄÄ¿±ê¼ì²â·½·¨¡£Ross GirshickÔÚ2013ÄêµÄ¿ªÉ½Ö®×÷¡¶Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation¡·[1]µì¶¨ÁËÕâ¸ö×ÓÁìÓòµÄ»ù´¡£¬ÕâÆªÂÛÎĺóÐø°æ±¾·¢±íÔÚCVPR 2014[2]£¬ÆÚ¿¯°æ±¾·¢±íÔÚPAMI 2015[3]¡£

ÆäʵÔÚR-CNN֮ǰÒѾ­ÓкܶàÑо¿Õß³¢ÊÔÓÃDeep LearningµÄ·½·¨À´×öÄ¿±ê¼ì²âÁË£¬°üÀ¨OverFeat[7]£¬µ«R-CNNÊǵÚÒ»¸öÕæÕý¿ÉÒÔ¹¤Òµ¼¶Ó¦ÓõĽâ¾ö·½°¸£¬ÕâÒ²ºÍÉî¶Èѧϰ±¾ÉíµÄ·¢Õ¹ÀàËÆ£¬Éñ¾­ÍøÂç¡¢¾í»ýÍøÂç¶¼²»ÊÇʲôиÅÄµ«ÔÚ±¾ÊÀ¼ÍÍ»È»ÕæÕý±äµÃ¿ÉÐУ¬¶øÒ»µ©¿ÉÐÐÖ®ºóÔÙѸÃÍ·¢Õ¹Ò²²»×ãÎªÆæÁË¡£

R-CNNÕâ¸öÁìÓòĿǰÑо¿·Ç³£»îÔ¾£¬ÏȺó³öÏÖÁËR-CNN[1,2,3,18]¡¢SPP-net[4,19]¡¢Fast R-CNN[14, 20] ¡¢Faster R-CNN[5,21]¡¢R-FCN[16,24]¡¢YOLO[15,22]¡¢SSD[17,23]µÈÑо¿¡£Ross Girshick×÷ΪÕâ¸öÁìÓòµÄ¿ªÉ½±Ç׿×ÜÊÇÉñÒ»ÑùµÄ´æÔÚ£¬R-CNN¡¢Fast R-CNN¡¢Faster R-CNN¡¢YOLO¶¼ºÍËûÓйء£ÕâЩ´´ÐµĹ¤×÷ÆäʵºÜ¶àʱºòÊǰÑһЩ´«Í³ÊÓ¾õÁìÓòµÄ·½·¨ºÍÉî¶Èѧϰ½áºÏÆðÀ´ÁË£¬±ÈÈçÑ¡ÔñÐÔËÑË÷£¨Selective Search)ºÍͼÏñ½ð×ÖËþ£¨Pyramid£©µÈ¡£

Éî¶ÈѧϰÏà¹ØµÄÄ¿±ê¼ì²â·½·¨Ò²¿ÉÒÔ´óÖ·ÖΪÁ½ÅÉ£º

»ùÓÚÇøÓòÌáÃûµÄ£¬ÈçR-CNN¡¢SPP-net¡¢Fast R-CNN¡¢Faster R-CNN¡¢R-FCN£»

¶Ëµ½¶Ë£¨End-to-End£©£¬ÎÞÐèÇøÓòÌáÃûµÄ£¬ÈçYOLO¡¢SSD¡£

ĿǰÀ´Ëµ£¬»ùÓÚÇøÓòÌáÃûµÄ·½·¨ÒÀȻռ¾ÝÉϷ磬µ«¶Ëµ½¶ËµÄ·½·¨ËÙ¶ÈÉÏÓÅÊÆÃ÷ÏÔ£¬ºóÐøµÄ·¢Õ¹ÊÃÄ¿ÒÔ´ý¡£

1.1 Ïà¹ØÑо¿

±¾ÎÄ×÷ΪĿ±ê¼ì²âµÄһƪ»Ø¹Ë£¬ÏÈÀ´¿´¿´Ä¿±ê¼ì²âÖй㷺ʹÓõÄÇøÓòÌáÃû¡ª¡ªÑ¡ÔñÐÔËÑË÷£¬ÒÔ¼°ÓÃÉî¶Èѧϰ×öÄ¿±ê¼ì²âµÄÔçÆÚ¹¤×÷¡ª¡ªOverfeat ¡£

1.1.1 Ñ¡ÔñÐÔËÑË÷

Ä¿±ê¼ì²âµÄµÚÒ»²½ÊÇÒª×öÇøÓòÌáÃû£¨Region Proposal£©£¬Ò²¾ÍÊÇÕÒ³ö¿ÉÄܵĸÐÐËÈ¤ÇøÓò£¨Region Of Interest, ROI£©¡£ÇøÓòÌáÃûÀàËÆÓÚ¹âѧ×Ö·ûʶ±ð£¨OCR£©ÁìÓòµÄÇз֣¬OCRÇзֳ£ÓùýÇзַ½·¨£¬¼òµ¥Ëµ¾ÍÊǾ¡Á¿ÇÐË鵽СµÄÁ¬Í¨Óò£¨±ÈÈçСµÄ±Ê»­Ö®Àࣩ£¬È»ºóÔÙ¸ù¾ÝÏàÁÚ¿éµÄһЩÐÎÌ¬Ñ§ÌØÕ÷½øÐкϲ¢¡£µ«Ä¿±ê¼ì²âµÄ¶ÔÏóÏà±ÈOCRÁìÓòǧ²îÍò±ð£¬¶øÇÒͼÐβ»¹æÔò£¬´óС²»Ò»£¬ËùÒÔÒ»¶¨³Ì¶ÈÉÏ¿ÉÒÔËµÇøÓòÌáÃûÊDZÈOCRÇзָüÄѵÄÒ»¸öÎÊÌâ¡£

ÇøÓòÌáÃû¿ÉÄܵķ½·¨ÓУº

Ò»¡¢»¬¶¯´°¿Ú¡£»¬¶¯´°¿Ú±¾ÖÊÉϾÍÊÇÇî¾Ù·¨£¬ÀûÓò»Í¬µÄ³ß¶ÈºÍ³¤¿í±È°ÑËùÓпÉÄܵĴó´óССµÄ¿é¶¼Çî¾Ù³öÀ´£¬È»ºóËÍȥʶ±ð£¬Ê¶±ð³öÀ´¸ÅÂÊ´óµÄ¾ÍÁôÏÂÀ´¡£ºÜÃ÷ÏÔ£¬ÕâÑùµÄ·½·¨¸´ÔÓ¶ÈÌ«¸ß£¬²úÉúÁ˺ܶàµÄÈßÓàºòÑ¡ÇøÓò£¬ÔÚÏÖʵµ±Öв»¿ÉÐС£

¶þ¡¢¹æÔò¿é¡£ÔÚÇî¾Ù·¨µÄ»ù´¡ÉϽøÐÐÁËһЩ¼ôÖ¦£¬Ö»Ñ¡Óù̶¨µÄ´óСºÍ³¤¿í±È¡£ÕâÔÚÒ»Ð©ÌØ¶¨µÄÓ¦Óó¡¾°ÊǺÜÓÐЧµÄ£¬±ÈÈçÅÄÕÕËÑÌâAPPСԳËÑÌâÖеĺº×Ö¼ì²â£¬ÒòΪºº×Ö·½·½ÕýÕý£¬³¤¿í±È´ó¶à±È½ÏÒ»Ö£¬Òò´ËÓùæÔò¿é×öÇøÓòÌáÃûÊÇÒ»ÖֱȽϺÏÊʵÄÑ¡Ôñ¡£µ«ÊǶÔÓÚÆÕͨµÄÄ¿±ê¼ì²âÀ´Ëµ£¬¹æÔò¿éÒÀÈ»ÐèÒª·ÃÎʺܶàµÄλÖ㬸´ÔӶȸߡ£

Èý¡¢Ñ¡ÔñÐÔËÑË÷¡£´Ó»úÆ÷ѧϰµÄ½Ç¶ÈÀ´Ëµ£¬Ç°ÃæµÄ·½·¨ÕÙ»ØÊDz»´íÁË£¬µ«ÊǾ«¶È²îÇ¿ÈËÒ⣬ËùÒÔÎÊÌâµÄºËÐÄÔÚÓÚÈçºÎÓÐЧµØÈ¥³ýÈßÓàºòÑ¡ÇøÓò¡£ÆäʵÈßÓàºòÑ¡ÇøÓò´ó¶àÊÇ·¢ÉúÁËÖØµþ£¬Ñ¡ÔñÐÔËÑË÷ÀûÓÃÕâÒ»µã£¬×Ôµ×ÏòÉϺϲ¢ÏàÁÚµÄÖØµþÇøÓò£¬´Ó¶ø¼õÉÙÈßÓà¡£

ÇøÓòÌáÃû²¢²»Ö»ÓÐÒÔÉÏËù˵µÄÈýÖÖ·½·¨£¬Êµ¼ÊÉÏÕâ¿éÊǷdz£Áé»îµÄ£¬Òò´Ë±äÖÖÒ²ºÜ¶à£¬ÓÐÐËȤµÄ¶ÁÕß²»·Á²Î¿¼Ò»ÏÂÎÄÏ×[12]¡£

Ñ¡ÔñÐÔËÑË÷µÄ¾ßÌåË㷨ϸ½Ú[8]ÈçËã·¨1Ëùʾ¡£×ÜÌåÉÏÑ¡ÔñÐÔËÑË÷ÊÇ×Ôµ×ÏòÉϲ»¶ÏºÏ²¢ºòÑ¡ÇøÓòµÄµü´ú¹ý³Ì¡£

ÊäÈë: Ò»ÕÅͼƬ

Êä³ö£ººòÑ¡µÄÄ¿±êλÖü¯ºÏL

Ëã·¨£º

1: ÀûÓùýÇзַ½·¨µÃµ½ºòÑ¡µÄÇøÓò¼¯ºÏR = {r1,r2,¡­,rn}

2: ³õʼ»¯ÏàËÆ¼¯ºÏS = ?

3: foreach ÁÚ¾ÓÇøÓò¶Ô(ri,rj) do

4: ¼ÆËãÏàËÆ¶Ès(ri,rj)

5: S = S ¡È s(ri,rj)

6: while S not=? do

7: µÃµ½×î´óµÄÏàËÆ¶Ès(ri,rj)=max(S)

8: ºÏ²¢¶ÔÓ¦µÄÇøÓòrt = ri ¡È rj

9: ÒÆ³ýri¶ÔÓ¦µÄËùÓÐÏàËÆ¶È£ºS = S\s(ri,r*)

10: ÒÆ³ýrj¶ÔÓ¦µÄËùÓÐÏàËÆ¶È£ºS = S\s(r*,rj)

11: ¼ÆËãrt¶ÔÓ¦µÄÏàËÆ¶È¼¯ºÏSt

12: S = S ¡È St

13: R = R ¡È rt

14: L = RÖÐËùÓÐÇøÓò¶ÔÓ¦µÄ±ß¿ò

Ëã·¨1 Ñ¡ÔñÐÔËÑË÷Ëã·¨

´ÓËã·¨²»ÄÑ¿´³ö£¬RÖеÄÇøÓò¶¼ÊǺϲ¢ºóµÄ£¬Òò´Ë¼õÉÙÁ˲»ÉÙÈßÓ࣬Ï൱ÓÚ׼ȷÂÊÌáÉýÁË£¬µ«ÊDZðÍüÁËÎÒÃÇ»¹ÐèÒª¼ÌÐø±£Ö¤ÕÙ»ØÂÊ£¬Òò´ËËã·¨1ÖеÄÏàËÆ¶È¼ÆËã²ßÂÔ¾ÍÏԵ÷dz£¹Ø¼üÁË¡£Èç¹û¼òµ¥²ÉÓÃÒ»ÖÖ²ßÂÔºÜÈÝÒ×´íÎóºÏ²¢²»ÏàËÆµÄÇøÓò£¬±ÈÈçÖ»¿¼ÂÇÂÖÀªÊ±£¬²»Í¬ÑÕÉ«µÄÇøÓòºÜÈÝÒ×±»ÎóºÏ²¢¡£Ñ¡ÔñÐÔËÑË÷²ÉÓöàÑùÐÔ²ßÂÔÀ´Ôö¼ÓºòÑ¡ÇøÓòÒÔ±£Ö¤Õٻأ¬±ÈÈçÑÕÉ«¿Õ¼ä¿¼ÂÇRGB¡¢»Ò¶È¡¢HSV¼°Æä±äÖֵȣ¬ÏàËÆ¶È¼ÆËãʱ¼È¿¼ÂÇÑÕÉ«ÏàËÆ¶È£¬ÓÖ¿¼ÂÇÎÆÀí¡¢´óС¡¢ÖصþÇé¿öµÈ¡£

×ÜÌåÉÏ£¬Ñ¡ÔñÐÔËÑË÷ÊÇÒ»ÖÖ±È½ÏÆÓËØµÄÇøÓòÌáÃû·½·¨£¬±»ÔçÆÚµÄ»ùÓÚÉî¶ÈѧϰµÄÄ¿±ê¼ì²â·½·¨£¨°üÀ¨OverfeatºÍR-CNNµÈ£©¹ã·ºÀûÓ㬵«±»µ±Ç°µÄз½·¨ÆúÓÃÁË¡£

1.1.2 OverFeat

OverFeat[7][9]ÊÇÓÃCNNͳһÀ´×ö·ÖÀà¡¢¶¨Î»ºÍ¼ì²âµÄ¾­µäÖ®×÷£¬×÷ÕßÊÇÉî¶Èѧϰ´óÉñÖ®Ò»¡ª¡ª¡ª¡ªYann LecunÔÚŦԼ´óѧµÄÍŶӡ£OverFeatÒ²ÊÇILSVRC 2013ÈÎÎñ3£¨·ÖÀà+¶¨Î»£©µÄ¹Ú¾üµÃÖ÷[10]¡£

OverFeatµÄºËÐÄ˼ÏëÓÐÈýµã£º

ÇøÓòÌáÃû£º½áºÏ»¬¶¯´°¿ÚºÍ¹æÔò¿é£¬¼´¶à³ß¶È£¨multi-scale)µÄ»¬¶¯´°¿Ú£»

·ÖÀàºÍ¶¨Î»£ºÍ³Ò»ÓÃCNNÀ´×ö·ÖÀàºÍÔ¤²â±ß¿òλÖã¬Ä£ÐÍÓëAlexNet[12]ÀàËÆ£¬ÆäÖÐ1-5²ãÎªÌØÕ÷³éÈ¡²ã£¬¼´½«Í¼Æ¬×ª»»Îª¹Ì¶¨Î¬¶ÈµÄÌØÕ÷ÏòÁ¿£¬6-9²ãΪ·ÖÀà²ã(·ÖÀàÈÎÎñרÓÃ)£¬²»Í¬µÄÈÎÎñ£¨·ÖÀà¡¢¶¨Î»¡¢¼ì²â£©¹«ÓÃÌØÕ÷³éÈ¡²ã£¨1-5²ã£©£¬Ö»Ìæ»»6-9²ã£»

ÀÛ»ý£ºÒòΪÓÃÁË»¬¶¯´°¿Ú£¬Í¬Ò»¸öÄ¿±ê¶ÔÏó»áÓжà¸öλÖã¬Ò²¾ÍÊǶà¸öÊӽǣ»ÒòΪÓÃÁ˶à³ß¶È£¬Í¬Ò»¸öÄ¿±ê¶ÔÏóÓÖ»áÓжà¸ö´óС²»Ò»µÄ¿é¡£ÕâЩ²»Í¬Î»ÖúͲ»Í¬´óС¿éÉϵķÖÀàÖÃÐÅ¶È»á½øÐÐÀÛ¼Ó£¬´Ó¶øÊ¹µÃÅж¨¸üΪ׼ȷ¡£

OverFeatµÄ¹Ø¼ü²½ÖèÓÐËIJ½£º

ÀûÓû¬¶¯´°¿Ú½øÐв»Í¬³ß¶ÈµÄÇøÓòÌáÃû£¬È»ºóʹÓÃCNNÄ£ÐͶÔÿ¸öÇøÓò½øÐзÖÀ࣬µÃµ½Àà±ðºÍÖÃÐŶȡ£´Óͼ2ÖпÉÒÔ¿´³ö£¬²»Í¬Ëõ·Å±ÈÀýʱ£¬¼ì²â³öÀ´µÄÄ¿±ê¶ÔÏóÊýÁ¿ºÍÖÖÀà´æÔڽϴó²îÒ죻

ͼ2 Overfeat¹Ø¼ü²½ÖèÒ»

ÀûÓöà³ß¶È»¬¶¯´°¿ÚÀ´Ôö¼Ó¼ì²âÊýÁ¿£¬ÌáÉý·ÖÀàЧ¹û£¬Èçͼ3Ëùʾ£»

ͼ3 Overfeat¹Ø¼ü²½Öè¶þ

ÓûعéÄ£ÐÍÔ¤²âÿ¸ö¶ÔÏóµÄλÖ㬴Óͼ4ÖÐÀ´¿´£¬·Å´ó±ÈÀý½Ï´óµÄͼƬ£¬±ß¿òÊýÁ¿Ò²½Ï¶à£»

ͼ4 Overfeat¹Ø¼ü²½ÖèÈý

±ß¿òºÏ²¢¡£

ͼ5 Overfeat¹Ø¼ü²½ÖèËÄ

OverfeatÊÇCNNÓÃÀ´×öÄ¿±ê¼ì²âµÄÔçÆÚ¹¤×÷£¬Ö÷Ҫ˼ÏëÊDzÉÓÃÁ˶à³ß¶È»¬¶¯´°¿ÚÀ´×ö·ÖÀà¡¢¶¨Î»ºÍ¼ì²â£¬ËäÈ»ÊǶà¸öÈÎÎñµ«ÖØÓÃÁËÄ£ÐÍÇ°Ãæ¼¸²ã£¬ÕâÖÖÄ£ÐÍÖØÓõÄ˼·ҲÊǺóÀ´R-CNNϵÁв»¶ÏÑØÓú͸ĽøµÄ¾­µä×ö·¨¡£

µ±È»OverfeatÒ²ÊÇÓв»ÉÙȱµãµÄ£¬ÖÁÉÙËٶȺÍЧ¹û¶¼Óкܴó¸Ä½ø¿Õ¼ä£¬ºóÃæµÄR-CNNϵÁÐÔÚÕâÁ½·½Ãæ×öÁ˺ܶàÌáÉý¡£

1.2 »ùÓÚÇøÓòÌáÃûµÄ·½·¨

±¾Ð¡½ÚÖ÷Òª½éÉÜ»ùÓÚÇøÓòÌáÃûµÄ·½·¨£¬°üÀ¨R-CNN¡¢SPP-net¡¢Fast R-CNN¡¢Faster R-CNN¡¢R-FCN¡£

1.2.1 R-CNN

ÈçÇ°ÃæËùÊö£¬ÔçÆÚµÄÄ¿±ê¼ì²â£¬´ó¶¼Ê¹Óû¬¶¯´°¿ÚµÄ·½Ê½½øÐд°¿ÚÌáÃû£¬ÕâÖÖ·½Ê½±¾ÖÊÊÇÇî¾Ù·¨£¬R-CNN[1,2,3]²ÉÓõÄÊÇSelective Search¡£

ÒÔÏÂÊÇR-CNNµÄÖ÷Òª²½Ö裺

ÇøÓòÌáÃû£ºÍ¨¹ýSelective Search´ÓԭʼͼƬÌáÈ¡2000¸ö×óÓÒÇøÓòºòÑ¡¿ò£»

ÇøÓò´óС¹éÒ»»¯£º°ÑËùÓкîÑ¡¿òËõ·Å³É¹Ì¶¨´óС£¨Ô­ÎIJÉÓÃ227¡Á227£©£»

ÌØÕ÷ÌáÈ¡£ºÍ¨¹ýCNNÍøÂ磬ÌáÈ¡ÌØÕ÷£»

·ÖÀàÓë»Ø¹é£ºÔÚÌØÕ÷²ãµÄ»ù´¡ÉÏÌí¼ÓÁ½¸öÈ«Á¬½Ó²ã£¬ÔÙÓÃSVM·ÖÀàÀ´×öʶ±ð£¬ÓÃÏßÐԻعéÀ´Î¢µ÷±ß¿òλÖÃÓë´óС£¬ÆäÖÐÿ¸öÀà±ðµ¥¶ÀѵÁ·Ò»¸ö±ß¿ò»Ø¹éÆ÷¡£

ÆäÖÐÄ¿±ê¼ì²âϵͳµÄ½á¹¹Èçͼ6Ëùʾ£¬×¢Ò⣬ͼÖеĵÚ2²½¶ÔÓ¦²½ÖèÖеÄ1¡¢2²½£¬¼´°üÀ¨ÇøÓòÌáÃûºÍÇøÓò´óС¹éÒ»»¯¡£

ͼ6 R-CNN¿ò¼Ü

Overfeat¿ÉÒÔ¿´×öÊÇR-CNNµÄÒ»¸öÌØÊâÇé¿ö£¬Ö»ÐèÒª°ÑSelective Search»»³É¶à³ß¶ÈµÄ»¬¶¯´°¿Ú£¬Ã¿¸öÀà±ðµÄ±ß¿ò»Ø¹éÆ÷»»³ÉͳһµÄ±ß¿ò»Ø¹éÆ÷£¬SVM»»Îª¶à²ãÍøÂç¼´¿É¡£µ«ÊÇOverfeatʵ¼Ê±ÈR-CNN¿ì9±¶£¬ÕâÖ÷ÒªµÃÒæÓÚ¾í»ýÏà¹ØµÄ¹²Ïí¼ÆËã¡£

ÊÂʵÉÏ£¬R-CNNÓкܶàȱµã£º

ÖØ¸´¼ÆË㣺R-CNNËäÈ»²»ÔÙÊÇÇî¾Ù£¬µ«ÒÀÈ»ÓÐÁ½Ç§¸ö×óÓҵĺòÑ¡¿ò£¬ÕâЩºòÑ¡¿ò¶¼ÐèÒª½øÐÐCNN²Ù×÷£¬¼ÆËãÁ¿ÒÀÈ»ºÜ´ó£¬ÆäÖÐÓв»ÉÙÆäʵÊÇÖØ¸´¼ÆË㣻

SVMÄ£ÐÍ£º¶øÇÒ»¹ÊÇÏßÐÔÄ£ÐÍ£¬ÔÚ±ê×¢Êý¾Ý²»È±µÄʱºòÏÔÈ»²»ÊÇ×îºÃµÄÑ¡Ôñ£»

ѵÁ·²âÊÔ·ÖΪ¶à²½£ºÇøÓòÌáÃû¡¢ÌØÕ÷ÌáÈ¡¡¢·ÖÀà¡¢»Ø¹é¶¼ÊǶϿªµÄѵÁ·µÄ¹ý³Ì£¬ÖмäÊý¾Ý»¹ÐèÒªµ¥¶À±£´æ£»

ѵÁ·µÄ¿Õ¼äºÍʱ¼ä´ú¼ÛºÜ¸ß£º¾í»ý³öÀ´µÄÌØÕ÷ÐèÒªÏÈ´æÔÚÓ²ÅÌÉÏ£¬ÕâÐ©ÌØÕ÷ÐèÒª¼¸°ÙGµÄ´æ´¢¿Õ¼ä£»

Âý£ºÇ°ÃæµÄȱµã×îÖÕµ¼ÖÂR-CNN³öÆæµÄÂý£¬GPUÉÏ´¦ÀíÒ»ÕÅͼƬÐèÒª13Ã룬CPUÉÏÔòÐèÒª53Ãë[2]¡£

µ±È»£¬R-CNNÕâ´ÎÊdzå×ÅЧ¹ûÀ´µÄ£¬ÆäÖÐILSVRC 2013Êý¾Ý¼¯ÉϵÄmAPÓÉOverfeatµÄ24.3%ÌáÉýµ½ÁË31.4%£¬µÚÒ»´ÎÓÐÁËÖʵĸı䡣

1.2.2 SPP-net

SPP-net[4,19]ÊÇMSRAºÎâýÃ÷µÈÈËÌá³öµÄ£¬ÆäÖ÷Ҫ˼ÏëÊÇÈ¥µôÁËԭʼͼÏñÉϵÄcrop/warpµÈ²Ù×÷£¬»»³ÉÁËÔÚ¾í»ýÌØÕ÷ÉϵĿռä½ð×ÖËþ³Ø»¯²ã£¨Spatial Pyramid Pooling£¬SPP£©£¬Èçͼ7Ëùʾ¡£ÎªºÎÒªÒýÈëSPP²ã £¬Ö÷ÒªÔ­ÒòÊÇCNNµÄÈ«Á¬½Ó²ãÒªÇóÊäÈëͼƬÊÇ´óСһֵ쬶øÊµ¼ÊÖеÄÊäÈëͼƬÍùÍù´óС²»Ò»£¬Èç¹ûÖ±½ÓËõ·Åµ½Í¬Ò»³ß´ç£¬ºÜ¿ÉÄÜÓеÄÎïÌå»á³äÂúÕû¸öͼƬ£¬¶øÓеÄÎïÌå¿ÉÄÜÖ»ÄÜÕ¼µ½Í¼Æ¬µÄÒ»½Ç¡£´«Í³µÄ½â¾ö·½°¸ÊǽøÐв»Í¬Î»ÖõIJüô£¬µ«ÊÇÕâЩ²Ã¼ô¼¼Êõ¶¼¿ÉÄܻᵼÖÂһЩÎÊÌâ³öÏÖ£¬±ÈÈçͼ7ÖеÄcrop»áµ¼ÖÂÎïÌ岻ȫ£¬warpµ¼ÖÂÎïÌå±»À­ÉìºóÐαäÑÏÖØ£¬SPP¾ÍÊÇΪÁ˽â¾öÕâÖÖÎÊÌâµÄ¡£SPP¶ÔÕûͼÌáÈ¡¹Ì¶¨Î¬¶ÈµÄÌØÕ÷£¬ÔÙ°ÑͼƬ¾ù·Ö³É4·Ý£¬Ã¿·ÝÌáÈ¡Ïàͬά¶ÈµÄÌØÕ÷£¬ÔÙ°ÑͼƬ¾ù·ÖΪ16·Ý£¬ÒÔ´ËÀàÍÆ¡£¿ÉÒÔ¿´³ö£¬ÎÞÂÛͼƬ´óСÈçºÎ£¬ÌáÈ¡³öÀ´µÄά¶ÈÊý¾Ý¶¼ÊÇÒ»Öµģ¬ÕâÑù¾Í¿ÉÒÔͳһËÍÖÁÈ«Á¬½Ó²ãÁË¡£SPP˼ÏëÔÚºóÀ´µÄR-CNNÄ£ÐÍÖÐÒ²±»¹ã·ºÓõ½¡£

ͼ7 ´«Í³crop/warp½á¹¹ºÍ¿Õ¼ä½ð×ÖËþ³Ø»¯ÍøÂçµÄ¶Ô±È

SPP-netµÄÍøÂç½á¹¹Èçͼ8Ëùʾ£¬ÊµÖÊÊÇ×îºóÒ»²ã¾í»ý²ãºó¼ÓÁËÒ»¸öSPP²ã£¬½«Î¬¶È²»Ò»µÄ¾í»ýÌØÕ÷ת»»ÎªÎ¬¶ÈÒ»ÖµÄÈ«Á¬½ÓÊäÈë¡£

ͼ8 SPP-netÍøÂç½á¹¹

SPP-net×öÄ¿±ê¼ì²âµÄÖ÷Òª²½ÖèΪ£º

ÇøÓòÌáÃû£ºÓÃSelective Search´ÓԭͼÖÐÉú³É2000¸ö×óÓҵĺòÑ¡´°¿Ú£»

ÇøÓò´óСËõ·Å£ºSPP-net²»ÔÙ×öÇøÓò´óС¹éÒ»»¯£¬¶øÊÇËõ·Åµ½min(w, h)=s£¬¼´Í³Ò»³¤¿íµÄ×î¶Ì±ß³¤¶È£¬sÑ¡×Ô{480,576,688,864,1200}ÖеÄÒ»¸ö£¬Ñ¡ÔñµÄ±ê×¼ÊÇʹµÃËõ·ÅºóµÄºòÑ¡¿ò´óСÓë224¡Á224×î½Ó½ü£»

ÌØÕ÷ÌáÈ¡£ºÀûÓÃSPP-netÍøÂç½á¹¹ÌáÈ¡ÌØÕ÷£»

·ÖÀàÓë»Ø¹é£ºÀàËÆR-CNN£¬ÀûÓÃSVM»ùÓÚÉÏÃæµÄÌØÕ÷ѵÁ··ÖÀàÆ÷Ä£ÐÍ£¬Óñ߿ò»Ø¹éÀ´Î¢µ÷ºòÑ¡¿òµÄλÖá£

SPP-net½â¾öÁËR-CNNÇøÓòÌáÃûʱcrop/warp´øÀ´µÄÆ«²îÎÊÌ⣬Ìá³öÁËSPP²ã£¬Ê¹µÃÊäÈëµÄºòÑ¡¿ò¿É´ó¿ÉС£¬µ«ÆäËû·½ÃæÒÀÈ»ºÍR-CNNÒ»Ñù£¬Òò¶øÒÀÈ»´æÔÚ²»ÉÙÎÊÌ⣬Õâ¾ÍÓÐÁ˺óÃæµÄFast R-CNN¡£

1.2.3 Fast R-CNN

Fast R-CNNÊÇÒª½â¾öR-CNNºÍSPP-netÁ½Ç§¸ö×óÓÒºòÑ¡¿ò´øÀ´µÄÖØ¸´¼ÆËãÎÊÌ⣬ÆäÖ÷Ҫ˼ÏëΪ£º

ʹÓÃÒ»¸ö¼ò»¯µÄSPP²ã ¡ª¡ª RoI£¨Region of Interesting£© Pooling²ã£¬²Ù×÷ÓëSPPÀàËÆ£»

ѵÁ·ºÍ²âÊÔÊDz»Ôٷֶಽ£º²»ÔÙÐèÒª¶îÍâµÄÓ²ÅÌÀ´´æ´¢Öмä²ãµÄÌØÕ÷£¬ÌݶÈÄܹ»Í¨¹ýRoI Pooling²ãÖ±½Ó´«²¥£»´ËÍ⣬·ÖÀàºÍ»Ø¹éÓÃMulti-taskµÄ·½Ê½Ò»Æð½øÐУ»

SVD£ºÊ¹ÓÃSVD·Ö½âÈ«Á¬½Ó²ãµÄ²ÎÊý¾ØÕó£¬Ñ¹ËõΪÁ½¸ö¹æÄ£Ð¡ºÜ¶àµÄÈ«Á¬½Ó²ã¡£

Èçͼ9Ëùʾ£¬Fast R-CNNµÄÖ÷Òª²½ÖèÈçÏ£º

ÌØÕ÷ÌáÈ¡£ºÒÔÕûÕÅͼƬΪÊäÈëÀûÓÃCNNµÃµ½Í¼Æ¬µÄÌØÕ÷²ã£»

ÇøÓòÌáÃû£ºÍ¨¹ýSelective SearchµÈ·½·¨´ÓԭʼͼƬÌáÈ¡ÇøÓòºòÑ¡¿ò£¬²¢°ÑÕâЩºòÑ¡¿òһһͶӰµ½×îºóµÄÌØÕ÷²ã£»

ÇøÓò¹éÒ»»¯£ºÕë¶ÔÌØÕ÷²ãÉϵÄÿ¸öÇøÓòºòÑ¡¿ò½øÐÐRoI Pooling²Ù×÷£¬µÃµ½¹Ì¶¨´óСµÄÌØÕ÷±íʾ£»

·ÖÀàÓë»Ø¹é£ºÈ»ºóÔÙͨ¹ýÁ½¸öÈ«Á¬½Ó²ã£¬·Ö±ðÓÃsoftmax¶à·ÖÀà×öÄ¿±êʶ±ð£¬ÓûعéÄ£ÐͽøÐб߿òλÖÃÓë´óС΢µ÷¡£

ͼ9 Fast R-CNN¿ò¼Ü

Fast R-CNN±ÈR-CNNµÄѵÁ·ËÙ¶È£¨´óÄ£ÐÍL£©¿ì8.8±¶£¬²âÊÔʱ¼ä¿ì213±¶£¬±ÈSPP-netѵÁ·ËÙ¶È¿ì2.6±¶£¬²âÊÔËÙ¶È¿ì10±¶×óÓÒ¡£

ͼ10 Fast R-CNN, R-CNN, SPP-netµÄÔËÐÐʱ¼ä±È½Ï

1.2.4 Faster R-CNN

Fast R-CNNʹÓÃSelective SearchÀ´½øÐÐÇøÓòÌáÃû£¬ËÙ¶ÈÒÀÈ»²»¹»¿ì¡£Faster R-CNNÔòÖ±½ÓÀûÓÃRPN£¨Region Proposal Networks)ÍøÂçÀ´¼ÆËãºòÑ¡¿ò¡£RPNÒÔÒ»ÕÅÈÎÒâ´óСµÄͼƬΪÊäÈ룬Êä³öÒ»Åú¾ØÐÎÇøÓòÌáÃû£¬Ã¿¸öÇøÓò¶ÔÓ¦Ò»¸öÄ¿±ê·ÖÊýºÍλÖÃÐÅÏ¢¡£Faster R-CNNÖеÄRPN½á¹¹Èçͼ11Ëùʾ¡£

ͼ11 Region Proposal Network(RPN)

Faster R-CNNµÄÖ÷Òª²½ÖèÈçÏ£º

ÌØÕ÷ÌáÈ¡£ºÍ¬Fast R-CNN£¬ÒÔÕûÕÅͼƬΪÊäÈ룬ÀûÓÃCNNµÃµ½Í¼Æ¬µÄÌØÕ÷²ã£»

ÇøÓòÌáÃû£ºÔÚ×îÖյľí»ýÌØÕ÷²ãÉÏÀûÓÃk¸ö²»Í¬µÄ¾ØÐοò£¨Anchor Box£©½øÐÐÌáÃû£¬kÒ»°ãÈ¡9£»

·ÖÀàÓë»Ø¹é£º¶Ôÿ¸öAnchor Box¶ÔÓ¦µÄÇøÓò½øÐÐobject/non-object¶þ·ÖÀ࣬²¢ÓÃk¸ö»Ø¹éÄ£ÐÍ£¨¸÷×Ô¶ÔÓ¦²»Í¬µÄAnchor Box£©Î¢µ÷ºòÑ¡¿òλÖÃÓë´óС£¬×îºó½øÐÐÄ¿±ê·ÖÀà¡£

×ÜÖ®£¬Faster R-CNNÅׯúÁËSelective Search£¬ÒýÈëÁËRPNÍøÂ磬ʹµÃÇøÓòÌáÃû¡¢·ÖÀà¡¢»Ø¹éÒ»Æð¹²Óþí»ýÌØÕ÷£¬´Ó¶øµÃµ½Á˽øÒ»²½µÄ¼ÓËÙ¡£µ«ÊÇ£¬Faster R-CNNÐèÒª¶ÔÁ½Íò¸öAnchor BoxÏÈÅжÏÊÇ·ñÊÇÄ¿±ê£¨Ä¿±êÅж¨£©£¬È»ºóÔÙ½øÐÐÄ¿±êʶ±ð£¬·Ö³ÉÁËÁ½²½¡£

1.2.5 R-FCN

Ç°ÃæµÄÄ¿±ê¼ì²â·½·¨¶¼¿ÉÒÔϸ·ÖΪÁ½¸ö×ÓÍøÂ磺

¹²ÏíµÄÈ«¾í»ýÍøÂ磻

²»¹²Ïí¼ÆËãµÄROIÏà¹ØµÄ×ÓÍøÂ磨±ÈÈçÈ«Á¬½ÓÍøÂ磩¡£

R-FCNÔò½«×îºóµÄÈ«Á¬½Ó²ãÖ®À໻ΪÁËÒ»¸öλÖÃÃô¸ÐµÄµÄ¾í»ýÍøÂ磬´Ó¶øÈÃËùÓмÆËã¶¼¿ÉÒÔ¹²Ïí¡£¾ßÌåÀ´Ëµ£¬ÏȰÑÿ¸öÌáÃûÇøÓò»®·ÖΪk¡Ák¸öÍø¸ñ£¬±ÈÈçR-FCNÔ­ÎÄÖÐkµÄȡֵΪ3£¬Ôò¶ÔÓ¦µÄ¾Å¸öÍø¸ñ·Ö±ð±íʾ£º×óÉÏtop-left£¬ÉÏÖÐtop-center£¬¡­¡­£¬ÓÒÏÂbottom-right£¬¶ÔӦͼ12ÖеľŹ¬¸ñ¼°Í¼13ÖеIJ»Í¬ÑÕÉ«µÄ¿é£¬Ã¿¸öGrid¶¼ÓжÔÓ¦µÄ±àÂ룬µ«Ô¤²âʱºò»áÓÐC+1¸öÊä³ö£¬C±íʾÀà±ðÊýÄ¿£¬+1ÊÇÒòΪÓб³¾°Àà±ð£¬È«²¿µÄÊä³öͨµÀÊýÁ¿Îªk2¡Á(C+1)¡£

ͼ12 R-FCNµÄperson·ÖÀà¿ÉÊÓ»¯¹ý³Ì

ͼ13 R-FCN

ÐèҪעÒâµÄÊÇ£¬Í¼12¡¢13Öв»Í¬Î»Öö¼´æÔÚÒ»¸ö¾Å¹¬¸ñ£¬µ«ÊÇPoolingʱºòÖ»ÓÐÒ»¸öÆð×÷Ó㬱ÈÈçbottom-right²ãÖ»ÓÐÓÒϽǵÄС¿éÆð×÷Óá£ÄÇôÎÊÌâÀ´ÁË£¬ÕâÒ»²ãÆäËûµÄ8¸ö¿òÓÐʲô×÷ÓÃÄØ£¿´ð°¸ÊÇËüÃÇ¿ÉÒÔ×÷ΪÆäËûROI£¨Æ«×ó»òÆ«ÉÏһЩµÄROI£©µÄÓÒϽǡ£

R-FCNµÄ²½ÖèΪ£º

ÇøÓòÌáÃû£ºÊ¹ÓÃRPN£¨Region Proposal Network£¬ÇøÓòÌáÃûÍøÂ磩£¬RPN±¾ÉíÊÇÈ«¾í»ýÍøÂç½á¹¹£»

·ÖÀàÓë»Ø¹é£ºÀûÓúÍRPN¹²ÏíµÄÌØÕ÷½øÐзÖÀà¡£µ±×öbbox»Ø¹éʱ£¬Ôò½«CÉèÖÃΪ4¡£

1.3 ¶Ëµ½¶ËµÄ·½·¨

±¾Ð¡½Ú½éÉܶ˵½¶Ë£¨End-to-End£©µÄÄ¿±ê¼ì²â·½·¨£¬ÕâЩ·½·¨ÎÞÐèÇøÓòÌáÃû£¬°üÀ¨YOLOºÍSSD¡£

1.3.1 YOLO

YOLOµÄȫƴÊÇYou Only Look Once£¬¹ËÃû˼Òå¾ÍÊÇÖ»¿´Ò»´Î£¬½øÒ»²½°ÑÄ¿±êÅж¨ºÍÄ¿±êʶ±ðºÏ¶þΪһ£¬ËùÒÔʶ±ðÐÔÄÜÓÐÁ˺ܴóÌáÉý£¬´ïµ½Ã¿Ãë45Ö¡£¬¶øÔÚ¿ìËÙ°æYOLO(Fast YOLO£¬¾í»ý²ã¸üÉÙ)ÖУ¬¿ÉÒԴﵽÿÃë155Ö¡¡£

ÍøÂçµÄÕûÌå½á¹¹Èçͼ14Ëùʾ£¬Õë¶ÔÒ»ÕÅͼƬ£¬YOLOµÄ´¦Àí²½ÖèΪ£º

°ÑÊäÈëͼƬËõ·Åµ½448¡Á448´óС£»

ÔËÐоí»ýÍøÂ磻

¶ÔÄ£ÐÍÖÃÐŶȿ¨ãÐÖµ£¬µÃµ½Ä¿±êλÖÃÓëÀà±ð¡£

ͼ14 YOLO¼ì²âϵͳ

ÍøÂçµÄÄ£ÐÍÈçͼ15Ëùʾ£¬½«448¡Á448´óСµÄͼÇгÉS¡ÁSµÄÍø¸ñ£¬Ä¿±êÖÐÐĵãËùÔڵĸñ×Ó¸ºÔð¸ÃÄ¿±êµÄÏà¹Ø¼ì²â£¬Ã¿¸öÍø¸ñÔ¤²âB¸ö±ß¿ò¼°ÆäÖÃÐŶȣ¬ÒÔ¼°CÖÖÀà±ðµÄ¸ÅÂÊ¡£YOLOÖÐS=7£¬B=2£¬CÈ¡¾öÓÚÊý¾Ý¼¯ÖÐÎïÌåÀà±ðÊýÁ¿£¬±ÈÈçVOCÊý¾Ý¼¯¾ÍÊÇC=20¡£¶ÔVOCÊý¾Ý¼¯À´Ëµ£¬YOLO¾ÍÊǰÑͼƬͳһËõ·Åµ½448¡Á448£¬È»ºóÿÕÅͼƽ¾ù»®·ÖΪ7¡Á7=49¸öС¸ñ×Ó£¬Ã¿¸ö¸ñ×ÓÔ¤²â2¸ö¾ØÐοò¼°ÆäÖÃÐŶȣ¬ÒÔ¼°20ÖÖÀà±ðµÄ¸ÅÂÊ¡£

ͼ15 YOLOÄ£ÐÍ

YOLO¼ò»¯ÁËÕû¸öÄ¿±ê¼ì²âÁ÷³Ì£¬ËٶȵÄÌáÉýÒ²ºÜ´ó£¬µ«ÊÇYOLO»¹ÊÇÓв»ÉÙ¿ÉÒԸĽøµÄµØ·½£¬±ÈÈçS¡ÁSµÄÍø¸ñ¾ÍÊÇÒ»¸ö±È½ÏÆô·¢Ê½µÄ²ßÂÔ£¬Èç¹ûÁ½¸öСĿ±êͬʱÂäÈëÒ»¸ö¸ñ×ÓÖУ¬Ä£ÐÍÒ²Ö»ÄÜÔ¤²âÒ»¸ö£»ÁíÒ»¸öÎÊÌâÊÇLossº¯Êý¶Ô²»Í¬´óСµÄbboxδ×öÇø·Ö¡£

1.3.2 SSD

SSD[17,23]µÄȫƴÊÇSingle Shot MultiBox Detector£¬³å×ÅYOLOµÄȱµãÀ´µÄ¡£SSDµÄ¿ò¼ÜÈçͼ16Ëùʾ£¬Í¼16(a)±íʾ´øÓÐÁ½¸öGround Truth±ß¿òµÄÊäÈëͼƬ£¬Í¼16(b)ºÍ(c)·Ö±ð±íʾ8¡Á8Íø¸ñºÍ4¡Á4Íø¸ñ£¬ÏÔȻǰÕßÊʺϼì²âСµÄÄ¿±ê£¬±ÈÈçͼƬÖеÄ裬ºóÕßÊʺϼì²â´óµÄÄ¿±ê£¬±ÈÈçͼƬÖеĹ·¡£ÔÚÿ¸ö¸ñ×ÓÉÏÓÐһϵÁй̶¨´óСµÄBox£¨ÓеãÀàËÆÇ°ÃæÌáµ½µÄAnchor Box£©£¬ÕâЩÔÚSSD³ÆÎªDefault Box£¬ÓÃÀ´¿ò¶¨Ä¿±êÎïÌåµÄλÖã¬ÔÚѵÁ·µÄʱºòGround Truth»á¸³Óè¸øÄ³¸ö¹Ì¶¨µÄBox£¬±ÈÈçͼ16(b)ÖеÄÀ¶¿òºÍͼ16(c)Öеĺì¿ò¡£

ͼ16 SSD¿ò¼Ü

SSDµÄÍøÂç·ÖΪÁ½²¿·Ö£¬Ç°ÃæµÄÊÇÓÃÓÚͼÏñ·ÖÀàµÄ±ê×¼ÍøÂ磨ȥµôÁË·ÖÀàÏà¹ØµÄ²ã£©£¬ºóÃæµÄÍøÂçÊÇÓÃÓÚ¼ì²âµÄ¶à³ß¶ÈÌØÕ÷Ó³Éä²ã£¬´Ó¶ø´ïµ½¼ì²â²»Í¬´óСµÄÄ¿±ê¡£SSDºÍYOLOµÄÍøÂç½á¹¹¶Ô±ÈÈçͼ17Ëùʾ¡£

ͼ17 SSDºÍYOLOµÄÍøÂç½á¹¹¶Ô±È

SSDÔÚ±£³ÖYOLO¸ßËÙµÄͬʱЧ¹ûÒ²ÌáÉýºÜ¶à£¬Ö÷ÒªÊÇ½è¼øÁËFaster R-CNNÖеÄAnchor»úÖÆ£¬Í¬Ê±Ê¹ÓÃÁ˶à³ß¶È¡£µ«ÊÇ´ÓÔ­ÀíÒÀÈ»¿ÉÒÔ¿´³ö£¬Default BoxµÄÐÎ×´ÒÔ¼°Íø¸ñ´óСÊÇÊÂÏȹ̶¨µÄ£¬ÄÇô¶ÔÌØ¶¨µÄͼƬСĿ±êµÄÌáÈ¡»á²»¹»ºÃ¡£

1.4 ×ܽá

»ùÓÚÉî¶ÈѧϰµÄÄ¿±ê¼ì²â×ÜÌåÉÏ·ÖΪÁ½ÅÉ£º

»ùÓÚÇøÓòÌáÃûµÄR-CNNϵÁУ»

ÎÞÐèÇøÓòÌáÃûµÄYOLO¡¢SSDϵÁС£

±í1´óÖ¶ԱÈÁ˸÷ÖÖ·½·¨µÄÐÔÄÜ£¨Fps£¬Ã¿ÃëÖ¡Êý£©ºÍVOC 2007ÉϵÄMAP¶Ô±È¡£×¢ÒâÏà¹ØÊý¾ÝËѼ¯×Ô²»Í¬µÄpaper£¬ÓÉÓÚÆÀ²âÓ²¼þºÍ»·¾³µÈÇø±ð£¬Êý¾Ý½ö¹©²Î¿¼£¬²»¾ßÓоø¶Ô¶Ô±ÈÒâÒå¡£

±í1 ²»Í¬Ä¿±ê¼ì²âËã·¨µÄÖ¸±ê¶Ô±È

×¢£ºÊý¾ÝÈ¡×Ô¸÷×Ôpaper£¬ÓÉÓÚÆÀ²âÓ²¼þºÍ»·¾³µÈÇø±ð£¬Êý¾Ý²¢²»¾ßÓоø¶Ô¶Ô±ÈÒâÒ壬½ö¹©²Î¿¼¡£

»ùÓÚÉî¶ÈѧϰµÄÄ¿±ê¼ì²âµÄÑо¿Ä¿Ç°ÒÀÈ»·Ç³£»ðÈÈ£¬Í¼18ΪVOC2012Ä¿±ê¼ì²âÅÅÐаñ[25]£¨2016-10-18½á¹û£©£¬ºÜ¸ßÐË¿´µ½ºÜ¶à»ªÈ˺͹úÄÚͬÈÊÔÚÕâ·½Ãæ¸÷Áì·çɧ¡£

ͼ18 VOC2012Ä¿±ê¼ì²âÅÅÐаñ

µ±È»£¬Ä¿±ê¼ì²â»¹Óкܳ¤µÄ·Ҫ×ߣ¬±ÈÈçÒµ½ç¹«ÈϽÏÄѵÄСĿ±ê¼ì²âÎÊÌâ¡£

СÊÔÉíÊÖ£¬À´Ò»ÕÅʵ¼ÊµÄÈýÀïÍÍÕÕÆ¬£¬YOLOµÄ¼ì²â½á¹ûÈçͼ19Ëùʾ£¬¿ÉÒÔ¿´³ö©¼ìÁ˲»ÉÙÄ¿±ê¡£

ͼ19 YOLO¼ì²â½á¹û

ÔÙÀ´¿´¿´Í¼20ÖÐSSDµÄЧ¹û£¬¿´ÆðÀ´Ð§¹ûºÃ²»ÉÙ£¬µ«±»ÕÚµ²µÄÈË»¹ÊÇ©¼ìÁË¡£

ͼ20 SSD¼ì²â½á¹û

ÆÚ´ýδÀ´»ùÓÚÉî¶ÈѧϰµÄÄ¿±ê¼ì²âµÄ½øÒ»²½Í»ÆÆ£¡

   
4027 ´Îä¯ÀÀ       27
Ïà¹ØÎÄÕÂ

»ùÓÚͼ¾í»ýÍøÂçµÄͼÉî¶Èѧϰ
×Ô¶¯¼ÝÊ»ÖеÄ3DÄ¿±ê¼ì²â
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
ÏîĿʵս£ºÈçºÎ¹¹½¨ÖªÊ¶Í¼Æ×
 
Ïà¹ØÎĵµ

5GÈ˹¤ÖÇÄÜÎïÁªÍøµÄµäÐÍÓ¦ÓÃ
Éî¶ÈѧϰÔÚ×Ô¶¯¼ÝÊ»ÖеÄÓ¦ÓÃ
ͼÉñ¾­ÍøÂçÔÚ½»²æÑ§¿ÆÁìÓòµÄÓ¦ÓÃÑо¿
ÎÞÈË»úϵͳԭÀí
Ïà¹Ø¿Î³Ì

È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ&TensorFlow
»úÆ÷ÈËÈí¼þ¿ª·¢¼¼Êõ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
ͼÏñ´¦ÀíËã·¨·½·¨Óëʵ¼ù