±à¼ÍƼö: |
±¾ÎÄÀ´×ÔÓÚĽ¿ÎÍø£¬±¾ÎÄÖ÷Òª½éÉÜÁËʹÓÃYOLOÀ´¼ì²âÎïÌåµÄÁ÷³Ì£¬ÒÔ¼°YOLOÄ£ÐÍÏà¶ÔÓÚ֮ǰµÄÎïÌå¼ì²â·½·¨£¬Ï£Íû¶ÔÄúµÄѧϰÓÐËù°ïÖú¡£
|
|
Introduction
YOLO֮ǰµÄÎïÌå¼ì²â·½·¨Ö÷ÒªÊÇͨ¹ýregion proposal²úÉú´óÁ¿µÄ¿ÉÄܰüº¬´ý¼ì²âÎïÌåµÄ potential
bounding box£¬ÔÙÓ÷ÖÀàÆ÷È¥ÅжÏÿ¸ö bounding boxÀïÊÇ·ñ°üº¬ÓÐÎïÌ壬ÒÔ¼°ÎïÌåËùÊôÀà±ðµÄ
probability»òÕß confidence£¬ÈçR-CNN,Fast-R-CNN,Faster-R-CNNµÈ¡£Ò»Ö±ÒÔÀ´£¬ÔÚ¼ÆËã»úÊÓ¾õÁìÓòÓÐÒ»¸öÎÊÌâ´ý½â¾ö£¬ÄǾÍÊÇÈçºÎ¼ì²âÁ½¸ö¾àÀëºÜ½üµÄͬÀàµÄÄ¿±ê»ò²»Í¬ÀàÄ¿±ê£¿
´ó¶àÊýµÄËã·¨¶¼»á¶ÔÊäÈëµÄͼÏñÊý¾Ý½øÐг߶ȱ仯£¬Ëõ·Åµ½½ÏСµÄ·Ö±æÂÊÇé¿öÏ£¬µ«ÊÇÒ»°ãÔÚÕâ×ÜÇé¿öÏÂÖ»»á¸ø³öÒ»¸öBounding
Box£¬Ö÷ÒªÓÉÓÚÌØÕ÷ÌáÈ¡¹ý³ÌÖн«Õâ×ÜÇé¿öÈËΪÊÇÒ»¸öÄ¿±ê¡££¨±¾À´¾ÍºÜ½ü£¬Ò»·ÅËõÖ®¼äµÄ½ü¾àÀëÔ½·¢Ã÷ÏÔÁË£©£¬µ«ÊÇʵ¼ÊÕâÊÇÁ½¸öÏàͬ»ò²»Í¬µÄÄ¿±ê¡£Õâ¸öÄÑÌâ¾ÍÊÇÄ¿±ê¼ì²âÁìÓòÄÚµÄÒ»¸öÌôÕ½¡£¶ÔСĿ±ê¼ì²â£¬ÓкܶàеÄËã·¨£¬µ«ÊÇYOLO
V3°æ±¾È´×öµ½ÁË£¬Ëü¶ÔÕâÖÖ¾àÀëºÜ½üµÄÄ¿±ê»òÕßСĿ±êÓкܺõij°ôÐÔ£¬ËäÈ»²»Äܰٷְټì²â£¬µ«ÊÇÕâ¸öÄÑÌâµÃµ½Á˺ܴó³Ì¶ÈµÄ½â¾ö¡£
YOLOµÄV1ºÍV2¶¼²»ÈçSSDµÄËã·¨£¬Ö÷ÒªÔÒòÊÇV1µÄ448³ß´çºÍV2°æ±¾µÄ416³ß´ç¶¼²»ÈçSSDµÄ300£¬ÒÔÉϽáÂÛ¶¼ÊÇʵÑé²âÊԵģ¬V3°æ±¾µÄ416Ó¦¸Ã±ÈSSD512ºÃ£¬¿É¼ûÆäÐÔÄÜ¡£YOLO²»Í¬ÓÚÕâЩÎïÌå¼ì²â·½·¨£¬Ëü½«ÎïÌå¼ì²âÈÎÎñµ±×öÒ»¸öregressionÎÊÌâÀ´´¦Àí£¬Ê¹ÓÃÒ»¸öÉñ¾ÍøÂ磬ֱ½Ó´ÓÒ»ÕûÕÅͼÏñÀ´Ô¤²â³öbounding
box µÄ×ø±ê¡¢boxÖаüº¬ÎïÌåµÄÖÃÐŶȺÍÎïÌåµÄprobabilities¡£ÒòΪYOLOµÄÎïÌå¼ì²âÁ÷³ÌÊÇÔÚÒ»¸öÉñ¾ÍøÂçÀïÍê³ÉµÄ£¬ËùÒÔ¿ÉÒÔend
to endÀ´ÓÅ»¯ÎïÌå¼ì²âÐÔÄÜ¡£
YOLO¼ì²âÎïÌåµÄËٶȺܿ죬±ê×¼°æ±¾µÄYOLOÔÚTitan X µÄ GPU ÉÏÄÜ´ïµ½45 FPS¡£ÍøÂç½ÏСµÄ°æ±¾Fast
YOLOÔÚ±£³ÖmAPÊÇ֮ǰµÄÆäËûʵʱÎïÌå¼ì²âÆ÷µÄÁ½±¶µÄͬʱ£¬¼ì²âËÙ¶È¿ÉÒÔ´ïµ½155 FPS¡£
Ïà½ÏÓÚÆäËûµÄstate-of-the-art ÎïÌå¼ì²âϵͳ£¬YOLOÔÚÎïÌ嶨λʱ¸üÈÝÒ׳ö´í£¬µ«ÊÇÔÚ±³¾°ÉÏÔ¤²â³ö²»´æÔÚµÄÎïÌ壨false
positives£©µÄÇé¿ö»áÉÙһЩ¡£¶øÇÒ£¬YOLO±ÈDPM¡¢R-CNNµÈÎïÌå¼ì²âϵͳÄܹ»Ñ§µ½¸ü¼Ó³éÏóµÄÎïÌåµÄÌØÕ÷£¬ÕâʹµÃYOLO¿ÉÒÔ´ÓÕæÊµÍ¼ÏñÁìÓòÇ¨ÒÆµ½ÆäËûÁìÓò£¬ÈçÒÕÊõ¡£
What is Yolo?
YOLO֮ǰµÄÎïÌå¼ì²âϵͳʹÓ÷ÖÀàÆ÷À´Íê³ÉÎïÌå¼ì²âÈÎÎñ¡£ÎªÁ˼ì²âÒ»¸öÎïÌ壬ÕâЩÎïÌå¼ì²âϵͳҪÔÚÒ»ÕŲâÊÔͼµÄ²»Í¬Î»ÖúͲ»Í¬³ß´çµÄbounding
boxÉÏʹÓøÃÎïÌåµÄ·ÖÀàÆ÷È¥ÆÀ¹ÀÊÇ·ñÓиÃÎïÌå¡£ÈçDPMϵͳ£¬ÒªÊ¹ÓÃÒ»¸ö»¬´°£¨sliding window£©ÔÚÕûÕÅͼÏñÉϾùÔÈ»¬¶¯£¬Ó÷ÖÀàÆ÷ÆÀ¹ÀÊÇ·ñÓÐÎïÌå¡£
ÔÚDPMÖ®ºóÌá³öµÄÆäËû·½·¨£¬ÈçR-CNN·½·¨Ê¹ÓÃregion proposalÀ´Éú³ÉÕûÕÅͼÏñÖпÉÄܰüº¬´ý¼ì²âÎïÌåµÄpotential
bounding boxes£¬È»ºóÓ÷ÖÀàÆ÷À´ÆÀ¹ÀÕâЩboxes£¬½Ó×Åͨ¹ýpost-processingÀ´¸ÄÉÆbounding
boxes£¬Ïû³ýÖØ¸´µÄ¼ì²âÄ¿±ê£¬²¢»ùÓÚÕû¸ö³¡¾°ÖÐµÄÆäËûÎïÌåÖØÐ¶Ôboxes½øÐдò·Ö¡£Õû¸öÁ÷³ÌÖ´ÐÐÏÂÀ´ºÜÂý£¬¶øÇÒÒòΪÕâЩ»·½Ú¶¼ÊÇ·Ö¿ªÑµÁ·µÄ£¬¼ì²âÐÔÄܺÜÄѽøÐÐÓÅ»¯¡£
×÷ÕßÉè¼ÆÁËYOLO£¨you only look once£©£¬½«ÎïÌå¼ì²âÈÎÎñµ±×ö»Ø¹éÎÊÌ⣨regression
problem£©À´´¦Àí£¬Ö±½Óͨ¹ýÕûÕÅͼƬµÄËùÓÐÏñËØµÃµ½bounding boxµÄ×ø±ê¡¢boxÖаüº¬ÎïÌåµÄÖÃÐŶȺÍclass
probabilities¡£Í¨¹ýYOLO£¬Ã¿ÕÅͼÏñÖ»ÐèÒª¿´Ò»ÑÛ¾ÍÄܵóöͼÏñÖж¼ÓÐÄÄЩÎïÌåºÍÕâЩÎïÌåµÄλÖá£

ÈçͼËùʾ£¬Ê¹ÓÃYOLOÀ´¼ì²âÎïÌ壬ÆäÁ÷³ÌÊǷdz£¼òµ¥Ã÷Á˵ģº
1¡¢½«Í¼Ïñresizeµ½448 * 448×÷ΪÉñ¾ÍøÂçµÄÊäÈë
2¡¢ÔËÐÐÉñ¾ÍøÂ磬µÃµ½Ò»Ð©bounding box×ø±ê¡¢boxÖаüº¬ÎïÌåµÄÖÃÐŶȺÍclass probabilities
3¡¢½øÐзǼ«´óÖµÒÖÖÆ£¬É¸Ñ¡Boxes
ÏÂͼÊǸ÷ÎïÌå¼ì²âϵͳµÄ¼ì²âÁ÷³Ì¶Ô±È£º

YOLOÄ£ÐÍÏà¶ÔÓÚ֮ǰµÄÎïÌå¼ì²â·½·¨Óжà¸öÓŵ㣺
1¡¢YOLO¼ì²âÎïÌå·Ç³£¿ì¡£
ÒòΪûÓи´Ôӵļì²âÁ÷³Ì£¬Ö»ÐèÒª½«Í¼ÏñÊäÈëµ½Éñ¾ÍøÂç¾Í¿ÉÒԵõ½¼ì²â½á¹û£¬YOLO¿ÉÒԷdz£¿ìµÄÍê³ÉÎïÌå¼ì²âÈÎÎñ¡£±ê×¼°æ±¾µÄYOLOÔÚTitan
X µÄ GPU ÉÏÄÜ´ïµ½45 FPS¡£¸ü¿ìµÄFast YOLO¼ì²âËÙ¶È¿ÉÒÔ´ïµ½155 FPS¡£¶øÇÒ£¬YOLOµÄmAPÊÇ֮ǰÆäËûʵʱÎïÌå¼ì²âϵͳµÄÁ½±¶ÒÔÉÏ¡£
2¡¢YOLO¿ÉÒԺܺõıÜÃâ±³¾°´íÎ󣬲úÉúfalse positives¡£
²»ÏñÆäËûÎïÌå¼ì²âϵͳʹÓÃÁË»¬´°»òregion proposal£¬·ÖÀàÆ÷Ö»Äܵõ½Í¼ÏñµÄ¾Ö²¿ÐÅÏ¢¡£YOLOÔÚѵÁ·ºÍ²âÊÔʱ¶¼Äܹ»¿´µ½Ò»ÕûÕÅͼÏñµÄÐÅÏ¢£¬Òò´ËYOLOÔÚ¼ì²âÎïÌåʱÄܺܺõÄÀûÓÃÉÏÏÂÎÄÐÅÏ¢£¬´Ó¶ø²»ÈÝÒ×ÔÚ±³¾°ÉÏÔ¤²â³ö´íÎóµÄÎïÌåÐÅÏ¢¡£ºÍFast-R-CNNÏà±È£¬YOLOµÄ±³¾°´íÎó²»µ½Fast-R-CNNµÄÒ»°ë¡£
3¡¢YOLO¿ÉÒÔѧµ½ÎïÌåµÄ·º»¯ÌØÕ÷¡£
µ±YOLOÔÚ×ÔȻͼÏñÉÏ×öѵÁ·£¬ÔÚÒÕÊõ×÷Æ·ÉÏ×ö²âÊÔʱ£¬YOLO±íÏÖµÄÐÔÄܱÈDPM¡¢R-CNNµÈ֮ǰµÄÎïÌå¼ì²âϵͳҪºÃºÜ¶à¡£ÒòΪYOLO¿ÉÒÔѧϰµ½¸ß¶È·º»¯µÄÌØÕ÷£¬´Ó¶øÇ¨ÒƵ½ÆäËûÁìÓò¡£
¾¡¹ÜYOLOÓÐÕâЩÓŵ㣬ËüÒ²ÓÐһЩȱµã£º
1¡¢YOLOµÄÎïÌå¼ì²â¾«¶ÈµÍÓÚÆäËûstate-of-the-artµÄÎïÌå¼ì²âϵͳ¡£
2¡¢YOLOÈÝÒײúÉúÎïÌåµÄ¶¨Î»´íÎó¡£
3¡¢YOLO¶ÔСÎïÌåµÄ¼ì²âЧ¹û²»ºÃ£¨ÓÈÆäÊÇÃܼ¯µÄСÎïÌ壬ÒòΪһ¸öÕ¤¸ñÖ»ÄÜÔ¤²â2¸öÎïÌ壩¡£
ÏÂͼÊǸ÷ÎïÌå¼ì²âϵͳµÄ¼ì²âÐÔÄܶԱȣº

Unified Detection
YOLO½«ÊäÈëͼÏñ»®·ÖΪS*SµÄÕ¤¸ñ£¬Ã¿¸öÕ¤¸ñ¸ºÔð¼ì²âÖÐÐÄÂäÔÚ¸ÃÕ¤¸ñÖеÄÎïÌå,ÈçÏÂͼËùʾ£º

ÿһ¸öÕ¤¸ñÔ¤²âB¸öbounding boxes£¬ÒÔ¼°ÕâЩbounding boxesµÄconfidence
scores¡£
Õâ¸ö confidence scores·´Ó³ÁËÄ£ÐͶÔÓÚÕâ¸öÕ¤¸ñµÄÔ¤²â£º¸ÃÕ¤¸ñÊÇ·ñº¬ÓÐÎïÌ壬ÒÔ¼°Õâ¸öboxµÄ×ø±êÔ¤²âµÄÓжà×¼¡£
¹«Ê½¶¨ÒåÈçÏ£º

Èç¹ûÕâ¸öÕ¤¸ñÖв»´æÔÚÒ»¸ö object£¬Ôòconfidence scoreÓ¦¸ÃΪ0£»·ñÔòµÄ»°£¬confidence
scoreÔòΪ predicted bounding boxÓë ground truth boxÖ®¼äµÄ
IOU£¨intersection over union£©¡£
YOLO¶Ôÿ¸öbounding boxÓÐ5¸öpredictions£ºx, y, w, h,
and confidence¡£
×ø±êx,y´ú±íÁËÔ¤²âµÄbounding boxµÄÖÐÐÄÓëÕ¤¸ñ±ß½çµÄÏà¶ÔÖµ¡£
×ø±êw,h´ú±íÁËÔ¤²âµÄbounding boxµÄwidth¡¢heightÏà¶ÔÓÚÕû·ùͼÏñwidth,heightµÄ±ÈÀý¡£
confidence¾ÍÊÇÔ¤²âµÄbounding boxºÍground truth boxµÄIOUÖµ¡£

ÿһ¸öÕ¤¸ñ»¹ÒªÔ¤²âC¸ö conditional class probability£¨Ìõ¼þÀà±ð¸ÅÂÊ£©£ºPr(Classi|Object)¡£¼´ÔÚÒ»¸öÕ¤¸ñ°üº¬Ò»¸öObjectµÄǰÌáÏ£¬ËüÊôÓÚij¸öÀàµÄ¸ÅÂÊ¡£
ÎÒÃÇֻΪÿ¸öÕ¤¸ñÔ¤²âÒ»×飨C¸ö£©Àà¸ÅÂÊ£¬¶ø²»¿¼ÂÇ¿òBµÄÊýÁ¿¡£

×¢Ò⣺
conditional class probabilityÐÅÏ¢ÊÇÕë¶Ôÿ¸öÍø¸ñµÄ¡£ confidenceÐÅÏ¢ÊÇÕë¶Ôÿ¸öbounding
boxµÄ¡£ÔÚ²âÊԽ׶Σ¬½«Ã¿¸öÕ¤¸ñµÄconditional class probabilitiesÓëÿ¸ö
bounding boxµÄ confidenceÏà³Ë£º

ÕâÑù¼È¿ÉµÃµ½Ã¿¸öbounding boxµÄ¾ßÌåÀà±ðµÄconfidence score¡£ Õâ³Ë»ý¼È°üº¬ÁËbounding
boxÖÐÔ¤²âµÄclassµÄ probabilityÐÅÏ¢£¬Ò²·´Ó³ÁËbounding boxÊÇ·ñº¬ÓÐObjectºÍbounding
box×ø±êµÄ׼ȷ¶È¡£

½«YOLOÓÃÓÚPASCAL VOCÊý¾Ý¼¯Ê±£º
ÂÛÎÄʹÓÃµÄ S=7£¬¼´½«Ò»ÕÅͼÏñ·ÖΪ7¡Á7=49¸öÕ¤¸ñÿһ¸öÕ¤¸ñÔ¤²âB=2¸öboxes£¨Ã¿¸öboxÓÐ
x,y,w,h,confidence£¬5¸öÔ¤²âÖµ£©£¬Í¬Ê±C=20£¨PASCALÊý¾Ý¼¯ÖÐÓÐ20¸öÀà±ð£©¡£
Òò´Ë£¬×îºóµÄpredictionÊÇ7¡Á7¡Á30 { ¼´S * S * ( B * 5 + C) }µÄTensor¡£



Network Design
YOLO¼ì²âÍøÂç°üÀ¨24¸ö¾í»ý²ãºÍ2¸öÈ«Á¬½Ó²ã,ÈçͼËùʾ£º


ÆäÖУ¬¾í»ý²ãÓÃÀ´ÌáȡͼÏñÌØÕ÷£¬È«Á¬½Ó²ãÓÃÀ´Ô¤²âͼÏñλÖúÍÀà±ð¸ÅÂÊÖµ¡£
YOLOÍøÂç½è¼øÁËGoogLeNet·ÖÀàÍøÂç½á¹¹¡£²»Í¬µÄÊÇ£¬YOLOδʹÓÃinception module£¬¶øÊÇʹÓÃ1x1¾í»ý²ã£¨´Ë´¦1x1¾í»ý²ãµÄ´æÔÚÊÇΪÁË¿çͨµÀÐÅÏ¢ÕûºÏ£©+3x3¾í»ý²ã¼òµ¥Ìæ´ú¡£
Training
Ê×ÏÈÀûÓÃImageNet 1000-classµÄ·ÖÀàÈÎÎñÊý¾Ý¼¯Pretrain¾í»ý²ã¡£Ê¹ÓÃÉÏÊöÍøÂçÖеÄǰ20
¸ö¾í»ý²ã£¬¼ÓÉÏÒ»¸ö average-pooling layer£¬×îºó¼ÓÒ»¸öÈ«Á¬½Ó²ã£¬×÷Ϊ Pretrain
µÄÍøÂ硣ѵÁ·´óÔ¼Ò»ÖܵÄʱ¼ä£¬Ê¹µÃÔÚImageNet 2012µÄÑéÖ¤Êý¾Ý¼¯Top-5µÄ¾«¶È´ïµ½ 88%£¬Õâ¸ö½á¹û¸ú
GoogleNet µÄЧ¹ûÏ൱¡£
½«PretrainµÄ½á¹ûµÄǰ20²ã¾í»ý²ãÓ¦Óõ½DetectionÖУ¬²¢¼ÓÈëʣϵÄ4¸ö¾í»ý²ã¼°2¸öÈ«Á¬½Ó¡£
ͬʱΪÁË»ñÈ¡¸ü¾«Ï¸»¯µÄ½á¹û£¬½«ÊäÈëͼÏñµÄ·Ö±æÂÊÓÉ 224* 224 ÌáÉýµ½ 448* 448¡£
½«ËùÓеÄÔ¤²â½á¹û¶¼¹éÒ»»¯µ½ 0~1, ʹÓà Leaky RELU ×÷Ϊ¼¤»îº¯Êý¡£
ΪÁË·ÀÖ¹¹ýÄâºÏ£¬ÔÚµÚÒ»¸öÈ«Á¬½Ó²ãºóÃæ½ÓÁËÒ»¸ö ratio=0.5 µÄ Dropout ²ã¡£
ΪÁËÌá¸ß¾«¶È£¬¶ÔÔʼͼÏñ×öÊý¾ÝÌáÉý¡£
Ëðʧº¯Êý
Ëðʧº¯ÊýµÄÉè¼ÆÄ¿±ê¾ÍÊÇÈÃ×ø±ê£¨x,y,w,h£©£¬confidence£¬classification
Õâ¸öÈý¸ö·½Ãæ´ïµ½ºÜºÃµÄƽºâ¡£
¼òµ¥µÄÈ«²¿²ÉÓÃÁËsum-squared error lossÀ´×öÕâ¼þÊ»áÓÐÒÔϲ»×㣺
a) 8άµÄlocalization errorºÍ20άµÄclassification errorͬµÈÖØÒªÏÔÈ»ÊDz»ºÏÀíµÄ¡£
b) Èç¹ûһЩդ¸ñÖÐûÓÐobject£¨Ò»·ùͼÖÐÕâÖÖÕ¤¸ñºÜ¶à£©£¬ÄÇô¾Í»á½«ÕâЩդ¸ñÖеÄbounding
boxµÄconfidence ÖÃΪ0£¬Ïà±ÈÓÚ½ÏÉÙµÄÓÐobjectµÄÕ¤¸ñ£¬ÕâЩ²»°üº¬ÎïÌåµÄÕ¤¸ñ¶ÔÌݶȸüÐµĹ±Ï×»áÔ¶´óÓÚ°üº¬ÎïÌåµÄÕ¤¸ñ¶ÔÌݶȸüÐµĹ±Ï×£¬Õâ»áµ¼ÖÂÍøÂç²»Îȶ¨ÉõÖÁ·¢É¢¡£

½â¾ö·½°¸ÈçÏ£º
¸üÖØÊÓ8άµÄ×ø±êÔ¤²â£¬¸øÕâЩËðÊ§Ç°Ãæ¸³Óè¸ü´óµÄloss weight, ¼ÇΪ ¦Ëcoord ,ÔÚpascal
VOCѵÁ·ÖÐÈ¡5¡££¨ÉÏͼÀ¶É«¿ò£©
¶ÔûÓÐobjectµÄbboxµÄconfidence loss£¬¸³ÓèСµÄloss weight£¬¼ÇΪ
¦Ënoobj £¬ÔÚpascal VOCѵÁ·ÖÐÈ¡0.5¡££¨ÉÏͼ³ÈÉ«¿ò£©
ÓÐobjectµÄbboxµÄconfidence loss (ÉÏͼºìÉ«¿ò) ºÍÀà±ðµÄloss £¨ÉÏͼ×ÏÉ«¿ò£©µÄloss
weightÕý³£È¡1¡£
¶Ô²»Í¬´óСµÄbboxÔ¤²âÖУ¬Ïà±ÈÓÚ´óbboxÔ¤²âƫһµã£¬Ð¡boxÔ¤²âÆ«ÏàͬµÄ³ß´ç¶ÔIOUµÄÓ°Ïì¸ü´ó¡£¶øsum-square
error lossÖжÔͬÑùµÄÆ«ÒÆlossÊÇÒ»Ñù¡£ ΪÁË»ººÍÕâ¸öÎÊÌ⣬×÷ÕßÓÃÁËÒ»¸öÇÉÃîµÄ°ì·¨£¬¾ÍÊǽ«boxµÄwidthºÍheightȡƽ·½¸ù´úÌæÔ±¾µÄheightºÍwidth¡£
ÈçÏÂͼ£ºsmall bboxµÄºáÖáÖµ½ÏС£¬·¢ÉúÆ«ÒÆÊ±£¬·´Ó¦µ½yÖáÉϵÄloss£¨ÏÂͼÂÌÉ«£©±Èbig box(ÏÂͼºìÉ«)Òª´ó¡£

ÔÚ YOLOÖУ¬Ã¿¸öÕ¤¸ñÔ¤²â¶à¸öbounding box£¬µ«ÔÚÍøÂçÄ£Ð͵ÄѵÁ·ÖУ¬Ï£Íûÿһ¸öÎïÌå×îºóÓÉÒ»¸öbounding
box predictorÀ´¸ºÔðÔ¤²â¡£ Òò´Ë£¬µ±Ç°ÄÄÒ»¸öpredictorÔ¤²âµÄbounding boxÓëground
truth boxµÄIOU×î´ó£¬Õâ¸ö predictor¾Í¸ºÔð predict object¡£ Õâ»áʹµÃÿ¸öpredictor¿ÉÒÔרÃŵĸºÔðÌØ¶¨µÄÎïÌå¼ì²â¡£Ëæ×ÅѵÁ·µÄ½øÐУ¬Ã¿Ò»¸ö
predictor¶ÔÌØ¶¨µÄÎïÌå³ß´ç¡¢³¤¿í±ÈµÄÎïÌåµÄÀà±ðµÄÔ¤²â»áÔ½À´Ô½ºÃ¡£
Éñ¾ÍøÂçÊä³öºóµÄ¼ì²âÁ÷³Ì 
·Ç¼«´óÖµÒÖÖÆ

»ñÈ¡Object Detect ½á¹û 
¹ØÓÚYOLO v3
¸ù¾ÝÆäËû²©Ö÷µÄ²âÊÔ£¬ÓÐÈç϶Թٷ½YOLOµÄʵÑéÊý¾Ý¡£ÊµÑéÖУ¬²ÉÓÃͬһ¸öÊÓÆµ¡¢Í¬Ò»ÕÅÏÔ¿¨£¬ÔÚãÐֵΪ0.3µÄǰÌáÏ£¬¶Ô±ÈÁËV3ºÍV2µÄ²âÊÔЧ¹ûÖ®ºó£¬ÓÐÁËÏÂÃæÁ½¸öÒÉÎÊ£º
V3ºÍV2µÄ²âÊÔÐÔÄÜ¿ÉÒÔÓнϴóµÄÌáÉý£¬µ«ËÙ¶ÈȴûÓнµµÍ£¿
V3ÐÔÄÜÉÏΪɶÓÐÕâô´óµÄ¸Ä½ø£¿¶ÔСĿ±ê¼ì²â±äµÃÕâôºÃ£¿
Èç¹û¿´ÁËV3ÂÛÎĵģ¬Ó¦¸ÃºÜÇå³þ½á¹û£¬ÈçÏ£º
Loss²»Í¬£º½«YOLO V3Ìæ»»ÁËV2ÖеÄSoftmax loss±ä³ÉLogistic loss£¬¶øÇÒÿ¸öGTֻƥÅäÒ»¸öÏÈÑé¿ò£»
Anchor bbox prior²»Í¬£ºV2ÓÃÁË5¸öanchor£¬V3ÓÃÁË9¸öanchor£¬Ìá¸ßÁËIOU£»
DetectionµÄ²ßÂÔ²»Í¬£ºV2Ö»ÓÐÒ»¸ödetection£¬V3ÉèÖÃÓÐ3¸ö£¬·Ö±ðÊÇÒ»¸öϲÉÑùµÄ£¬Feature
mapΪ13*13£¬»¹ÓÐ2¸öÉϲÉÑùµÄeltwise sum£¬Feature map·Ö±ðΪ26*26ºÍ52*52£¬Ò²¾ÍÊÇ˵£¬V3µÄ416°æ±¾ÒѾÓõ½ÁË52µÄFeature
map£¬¶øV2°Ñ¶à³ß¶È¿¼Âǵ½ÑµÁ·µÄdata²ÉÑùÉÏ£¬×îºóÒ²Ö»ÊÇÓõ½ÁË13µÄFeature map£¬ÕâÓ¦¸ÃÊǶÔСĿ±êÓ°Ïì×î´óµÄµØ·½£»
backbone²»Í¬£ºV2µÄDarknet-19±ä³ÉÁËV3µÄDarknet-53£¬ÕâÓëÉÏÒ»¸öÓйء£
ÁíÍâV3»¹ÊÇÓÃÁËÒ»Á¬´®µÄ3*3¡¢1*1¾í»ý£¬ÆäÖУ¬3*3µÄ¾í»ýÔö¼Óchannel£¬¶ø1*1µÄ¾í»ýÔÚÓÚѹËõ3*3¾í»ýºóµÄÌØÕ÷±íʾ£¬ÕⲨ²Ù×÷ºÜ¾ßÓÐʵÓÃÐÔ¡£
V2ÈÕÖ¾ÐÅÏ¢£º

V3µÄÈÕÖ¾ÐÅÏ¢£º




¼òµ¥·ÖÎö£º
YOLO V2ÊÇÒ»¸ö×ÝÏò×ÔÉ϶øÏµÄÍøÂç¼Ü¹¹£¬Ëæ×ÅͨµÀÊýÄ¿µÄ²»¶ÏÔö¼Ó£¬FLOPSÊDz»¶ÏÔö¼ÓµÄ£¬¶øV3ÍøÂç¼Ü¹¹ÊǺá×ݽ»²æµÄ£¬¿´×ží»ý²ã¶à£¬ÆäʵºÜ¶àͨµÀµÄ¾í»ý²ãûÓм̳ÐÐÔ£¬ÁíÍ⣬ËäÈ»V3Ôö¼ÓÁËanchor
centroid£¬µ«ÊǶÔGTµÄ¹À¼Æ±äµÃ¸ü¼Ó¼òµ¥£¬Ã¿¸öGTֻƥÅäÒ»¸öÏÈÑé¿ò£¬¶øÇÒÿ¸ö³ß¶ÈÖ»Ô¤²â3¸ö¿ò£¬V2Ô¤²â5¸ö¿ò£¬ÕâÑùµÄ»°Ò²½µµÍÁ˸´ÔÓ¶È¡£
YOLO V3
YOLO V3ÔÚPascal Titan XÉÏ´¦Àí608x608ͼÏñËÙ¶È´ïµ½20FPS£¬ÔÚ COCO
test-dev ÉÏ mAP@0.5 ´ïµ½ 57.9%£¬ÓëRetinaNetµÄ½á¹ûÏà½ü£¬²¢ÇÒËÙ¶È¿ìÁË4±¶¡£
YOLO V3µÄÄ£ÐͱÈ֮ǰµÄÄ£Ð͸´ÔÓÁ˲»ÉÙ£¬¿ÉÒÔͨ¹ý¸Ä±äÄ£ÐͽṹµÄ´óСÀ´È¨ºâËÙ¶ÈÓ뾫¶È¡£ ËٶȶԱÈÈçÏ£º

¸Ä½øÖ®´¦£º
¶à³ß¶ÈÔ¤²â£»
¸üºÃµÄ»ù´¡·ÖÀàÍøÂçºÍ·ÖÀàÆ÷¡£
¶à³ß¶ÈÔ¤²â
ÿÖֳ߶ÈÔ¤²â3¸öbox, anchorµÄÉè¼Æ·½Ê½ÈÔȻʹÓþÛÀà,µÃµ½9¸ö¾ÛÀàÖÐÐÄ,½«Æä°´ÕÕ´óС¾ù·Ö¸ø3Öг߶ȡ£
³ß¶È1£ºÔÚ»ù´¡ÍøÂçÖ®ºóÌí¼ÓһЩ¾í»ý²ãÔÙÊä³öboxÐÅÏ¢£»
³ß¶È2£º´Ó³ß¶È1Öеĵ¹ÊýµÚ¶þ²ãµÄ¾í»ý²ãÉϲÉÑù(x2)ÔÙÓë×îºóÒ»¸ö16x16´óСµÄÌØÕ÷ͼÏà¼Ó,ÔÙ´Îͨ¹ý¶à¸ö¾í»ýºóÊä³öboxÐÅÏ¢£¬Ïà±È³ß¶È1±ä´óÁ½±¶£»
³ß¶È3£ºÓë³ß¶È2ÀàËÆ,ʹÓÃÁË32x32´óСµÄÌØÕ÷ͼ¡£
·ÖÀàÆ÷-Àà±ðÔ¤²â£º
YOLO V3²»Ê¹ÓÃSoftmax¶Ôÿ¸ö¿ò½øÐзÖÀ࣬Ö÷Òª¿¼ÂÇÒòËØÓÐÁ½¸ö£º
SoftmaxʹµÃÿ¸ö¿ò·ÖÅäÒ»¸öÀà±ð£¨score×î´óµÄÒ»¸ö£©£¬¶ø¶ÔÓÚOpen ImagesÕâÖÖÊý¾Ý¼¯£¬Ä¿±ê¿ÉÄÜÓÐÖØµþµÄÀà±ð±êÇ©£¬Òò´ËSoftmax²»ÊÊÓÃÓÚ¶à±êÇ©·ÖÀࣻ
Softmax¿É±»¶ÀÁ¢µÄ¶à¸ölogistic·ÖÀàÆ÷Ìæ´ú£¬ÇÒ׼ȷÂʲ»»áϽµ¡£ ·ÖÀàËðʧ²ÉÓÃbinary
cross-entropy loss¡£
»ù´¡ÍøÂç Darknet-53
·ÂResNet, ÓëResNet-101»òResNet-152׼ȷÂʽӽü,µ«Ëٶȸü¿ì.¶Ô±ÈÈçÏÂ:

YOLO V3ÍøÂç½á¹¹ÈçÏ£º

±ß¿òÔ¤²â

ÓÅȱµã·ÖÎö£º
Óŵ㣺
¿ìËÙ£¬pipline¼òµ¥£¬±³¾°Îó¼ìÂʵͣ¬Í¨ÓÃÐÔÇ¿¡£
YOLO V3¶Ô·Ç×ÔȻͼÏñÎïÌåµÄ¼ì²âÂÊÔ¶Ô¶¸ßÓÚDPMºÍRCNNϵÁмì²â·½·¨¡£ µ«Ïà±ÈRCNNϵÁÐÎïÌå¼ì²â·½·¨£¬YOLO
V3¾ßÓÐÒÔÏÂȱµã£º
ȱµã£º
ʶ±ðÎïÌåλÖþ«×¼ÐԲÕÙ»ØÂʵ͡£
ÔÚÿ¸öÍø¸ñÖÐÔ¤²âÁ½¸öbboxÕâÖÖÔ¼Êø·½Ê½¼õÉÙÁ˶ÔͬһĿ±êµÄ¶à´Î¼ì²â(R-CNNʹÓõÄregion
proposal·½Ê½Öصþ½Ï¶à)£¬Ïà±ÈR-CNNʹÓÃSelective Search²úÉú2000¸öproposal£¨RCNN²âÊÔʱÿÕų¬¹ý40Ã룩£¬YOLO½öʹÓÃ7x7x2¸ö¡£
ʵÑé½á¹û£º


×Ô¼ºÒ²ÔÚÊý¾Ý¼¯ÉÏ×öÁËһЩʵÑ飺
ÓõÄÊý¾Ý¼¯Ò²ÊÇ×î½ü±È½Ï»ðµÄÊý¾Ý¼¯¡ª¡ªÍõÕßÈÙÒ«ÓÎÏ·Êý¾Ý¡£

|