Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
¼ÆËã»úÊÓ¾õʵսϵÁÐ01¡ª¡ªÓÃPython×öͼÏñ´¦Àí
 
  3374  次浏览      31
 2019-4-22
 
±à¼­ÍƼö:

±¾ÎÄÀ´×ÔÓÚר֪£¬±¾ÎÄʹÓÃ×îÁ÷ÐеÄPythonÓïÑÔΪ¹¤¾ß£¬¶ÔͼÏñ´¦Àí¼¼ÊõµÄ¾ßÌå²Ù×÷½øÐÐÏêϸ½²Êö£¬Ö¼ÔÚÈÃÁã»ù´¡µÄ¶ÁÕßÒ²¿ÉÒÔÇáËÉÉÏÊÖ£¡

¡¾µ¼¶Á¡¿ÔÚµ±½ñ»¥ÁªÍø·ÉËÙ·¢Õ¹µÄÉç»áÖУ¬ÊýÁ¿ÅÓ´óµÄͼÏñºÍÊÓÆµ³ä³â×ÅÎÒÃǵÄÉú»î£¬ÈÃÎÒÃÇÐèÒª¶ÔͼƬ½øÐмìË÷¡¢·ÖÀàµÈ²Ù×÷ʱ£¬ÀûÓÃÈ˹¤ÊÖ¶ÎÏÔÈ»ÊDz»ÏÖʵµÄ£¬ÓÚÊÇ£¬¼ÆËã»úÊÓ¾õÏà¹Ø¼¼Êõ±ãÓ¦Ô˶øÉú£¬²¢Çҵõ½ÁË¿ìËٵķ¢Õ¹¡£

»ù±¾µÄͼÏñ²Ù×÷ºÍ´¦Àí

PythonÖÐÓкö๤¾ß°üÓ¦ÓÃÓÚͼÏñ´¦Àíµ±ÖУ¬ÕâÒ»½Ú×÷ΪÈëÃÅÕ½ڣ¬Ê×ÏÈÀ´½éÉÜPythonÖÐ×î»ù±¾µÄ¼¸¸ö¹¤¾ß°ü£¬Ò²Ï£Íû¶ÁÕß¿ÉÒÔÔÚÖ®ºó×ÔÐÐÁ·Ï°¡£

PIL£ºPythonͼÏñ´¦ÀíÀà¿â

PIL(Python Imaging Library)ΪͼÏñ´¦ÀíÀà¿â£¬ËüΪPythonÌṩÁË»ù±¾µÄͼÏñ´¦Àí¹¦Äܺͻù±¾²Ù×÷¡£PILÖÐ×îÖØÒªµÄÄ£¿éÓÖÊÇImage£¬ÏÂÃæ£¬ÎÒÃǾÍÀ´½²Ò»½²ImageÄ£¿éµÄһЩÓ÷¨¡£

¶Áȡһ·ùͼÏñ£º

ÎÒÃÇÓÃImageÄ£¿éÖеÄopen()·½·¨ÊµÏÖ

Ê×ÏÈÇ¿µ÷Ò»µã¾ÍÊǶÔÓÚPNG¡¢BMPºÍJPGµÈ²»Í¬¸ñʽµÄ²ÊɫͼÏñÖ®¼äµÄ»¥Ïàת»»¶¼¿ÉÒÔͨ¹ýImageÄ£¿éÀ´Íê³É£¬¾ßÌåÀ´Ëµ£¬ÔÚ´ò¿ªÕâЩͼÏñʱ£¬PIL»á½«ËüÃǽâÂëΪÈýͨµÀµÄ¡°RGB¡±Í¼Ïñ¡£Óû§¿ÉÒÔ»ùÓÚÕâ¸ö¡°RGB¡±Í¼Ïñ£¬¶ÔÆä½øÐд¦Àí¡£

from PIL import Image #´ÓPIL°üÖе¼ÈëImageÄ£¿é
image = Image.open('test.jpg') #¶ÁÈ¡ÃûΪtestµÄͼƬ

ÕâÊÇtest.jpgͼƬ

ͨ¹ýÉÏÊö´úÂ룬ÎÒÃǵķµ»ØÖµimage¾ÍÊÇÒ»¸öPIL¶ÔÏ󣬵±ÎÒÃÇÐèÒª¶ÔÒ»·ùͼÏñ½øÐи÷ÖÖ²Ù×÷ʱ£¬Ê×Ïȶ¼ÒªÍ¨¹ýÉÏÊö´úÂë¶ÁȡĿ±êͼÏñ¡£

ÉÏÊö´úÂëµÄÔËÐнá¹ûʵ¼ÊÉÏΪ£º

<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1000x1436 at 0x1826BF51D68>

ÔõÑù²ÅÄܽ«Ëü±äΪ¿ÉÊÓ»¯µÄͼÏñÄØ£¿

ÎÒÃÇÐèÒªµ÷ÓÃmatplotlib.pyplotº¯Êý¼¯ºÏµÄ imshow() ºÍshow()·½·¨£¬ÍêÕû´úÂëΪ£º

from PIL import Image
import matplotlib.pyplot as plt
image = Image.open('test.jpg')
plt.imshow(image)
plt.show()# ÐèÒªµ÷ÓÃshow()·½·¨£¬²»È»Í¼ÏñÖ»»áÔÚÄÚ´æÖжø²»ÏÔʾ³öÀ´

½á¹ûÈçÏÂͼËùʾ£º

½«Í¼Ïñת»»Îª»Ò¶ÈͼÏñ£º

ÎÒÃÇʹÓÃconvert()·½·¨À´ÊµÏÖͼÏñµÄ»Ò¶Èת»¯

Convert()º¯Êý»á¸ù¾Ý´«Èë²ÎÊýµÄ²»Í¬½«Í¼Æ¬±ä³É²»Í¬µÄģʽ£¬Í¨¹ýÏà¹Ø×ÊÁÏÎÒÃÇÖªµÀPILÖÐÓоÅÖÖ²»Í¬Ä£Ê½¡£·Ö±ðΪ1£¬L£¬P£¬RGB£¬RGBA£¬CMYK£¬YCbCr£¬I£¬F¡£

ģʽ¡°1¡±Îª¶þֵͼÏñ£¬·ÇºÚ¼´°×¡£µ«ÊÇËüÿ¸öÏñËØÓÃ8¸öbit±íʾ£¬0±íʾºÚ£¬255±íʾ°×¡£

ģʽL¡±Îª»ÒɫͼÏñ£¬ËüµÄÿ¸öÏñËØÓÃ8¸öbit±íʾ£¬0±íʾºÚ£¬255±íʾ°×£¬ÆäËûÊý×Ö±íʾ²»Í¬µÄ»Ò¶È¡£ÔÚPILÖУ¬´Óģʽ¡°RGB¡±×ª»»Îª¡°L¡±Ä£Ê½Êǰ´ÕÕÏÂÃæµÄ¹«Ê½×ª»»µÄ£º

L = R * 299/1000 + G * 587/1000+ B * 114/1000

ģʽ¡°P¡±Îª8λ²ÊɫͼÏñ£¬ËüµÄÿ¸öÏñËØÓÃ8¸öbit±íʾ£¬Æä¶ÔÓ¦µÄ²ÊɫֵÊǰ´ÕÕµ÷É«°å²éѯ³öÀ´µÄ¡£

ģʽ¡°RGBA¡±Îª32λ²ÊɫͼÏñ£¬ËüµÄÿ¸öÏñËØÓÃ32¸öbit±íʾ£¬ÆäÖÐ24bit±íʾºìÉ«¡¢ÂÌÉ«ºÍÀ¶É«Èý¸öͨµÀ£¬ÁíÍâ8bit±íʾalphaͨµÀ£¬¼´Í¸Ã÷ͨµÀ¡£

ģʽ¡°CMYK¡±Îª32λ²ÊɫͼÏñ£¬ËüµÄÿ¸öÏñËØÓÃ32¸öbit±íʾ¡£Ä£Ê½¡°CMYK¡±¾ÍÊÇÓ¡Ë¢ËÄ·Öɫģʽ£¬ËüÊDzÊɫӡˢʱ²ÉÓõÄÒ»ÖÖÌ×ɫģʽ£¬ÀûÓÃÉ«ÁϵÄÈýÔ­É«»ìɫԭÀí£¬¼ÓÉϺÚÉ«ÓÍÄ«£¬¹²¼ÆËÄÖÖÑÕÉ«»ìºÏµþ¼Ó£¬ÐγÉËùν¡°È«²ÊÓ¡Ë¢¡±¡£

ģʽ¡°YCbCr¡±Îª24λ²ÊɫͼÏñ£¬ËüµÄÿ¸öÏñËØÓÃ24¸öbit±íʾ¡£YCbCrÆäÖÐYÊÇÖ¸ÁÁ¶È·ÖÁ¿£¬CbÖ¸À¶É«É«¶È·ÖÁ¿£¬¶øCrÖ¸ºìɫɫ¶È·ÖÁ¿¡£È˵ÄÈâÑÛ¶ÔÊÓÆµµÄY·ÖÁ¿¸üÃô¸Ð£¬Òò´ËÔÚͨ¹ý¶ÔÉ«¶È·ÖÁ¿½øÐÐ×Ó²ÉÑùÀ´¼õÉÙÉ«¶È·ÖÁ¿ºó£¬ÈâÑÛ½«²ì¾õ²»µ½µÄͼÏñÖÊÁ¿µÄ±ä»¯¡£

ģʽ¡°RGB¡±×ª»»Îª¡°YCbCr¡±µÄ¹«Ê½ÈçÏ£º

Y= 0.257*R+0.504*G+0.098*B+16

Cb = -0.148*R-0.291*G+0.439*B+128

Cr = 0.439*R-0.368*G-0.071*B+128

ģʽ¡°I¡±Îª32λÕûÐÍ»ÒɫͼÏñ£¬ËüµÄÿ¸öÏñËØÓÃ32¸öbit±íʾ£¬0±íʾºÚ£¬255±íʾ°×£¬(0,255)Ö®¼äµÄÊý×Ö±íʾ²»Í¬µÄ»Ò¶È¡£ÔÚPILÖУ¬´Óģʽ¡°RGB¡±×ª»»Îª¡°I¡±Ä£Ê½Êǰ´ÕÕÏÂÃæµÄ¹«Ê½×ª»»µÄ£º

I = R * 299/1000 + G * 587/1000 + B * 114/1000

ģʽ¡°F¡±Îª32λ¸¡µã»ÒɫͼÏñ£¬ËüµÄÿ¸öÏñËØÓÃ32¸öbit±íʾ£¬0±íʾºÚ£¬255±íʾ°×£¬(0,255)Ö®¼äµÄÊý×Ö±íʾ²»Í¬µÄ»Ò¶È¡£ÔÚPILÖУ¬´Óģʽ¡°RGB¡±×ª»»Îª¡°F¡±Ä£Ê½Êǰ´ÕÕÏÂÃæµÄ¹«Ê½×ª»»µÄ£º

F = R * 299/1000+ G * 587/1000 + B * 114/1000

ÎÒÃÇÒÔ»Ò¶ÈͼÏñΪÀý£¬½«Ä¿±êͼÏñת»»³É»Ò¶ÈͼÏñ£¬ÓÉÉÏ¿ÉÖª£¬ÎÒÃÇÒª¸øconvert()·½·¨´«Èë²ÎÊý¡°L¡±,¾ßÌå´úÂëÈçÏ£º

from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.cm as cm

image = Image.open('test.jpg') # ¶ÁÈ¡ÃûΪtestµÄͼƬ
image_gray = image.convert("L") # ½«Í¼Æ¬×ª»»Îª»Ò¶ÈͼÏñ
data = np.array(image_gray)

plt.imshow(data, cmap=cm.gray)
plt.show()

»æÖƳöµÄ»Ò¶ÈͼÏñΪ£º

ÎÒÃÇÒ²¿ÉÒÔÓÃÒ»ÐдúÂë

image = Image.open(¡®test.jpg¡¯).convert(¡°L¡±)

´úÌæÉÏÃæµÄÁ½ÐÐ×¢ÊÍ´úÂë¡£

ÔÚÉÏÊö´úÂëÖÐÎÒÃÇÒýÈëÁËmatplotlib.cmÄ£¿éºÍnumpyÄ£¿é¡£

cmÊÇcolormapµÄËõд£¬Õâ¸öÄ£¿éÌṩÁË´óÁ¿µÄcolormaps£¬ÓÃÓÚ×¢²áеÄcolormaps£¬²¢Í¨¹ýÃû³Æ»ñµÃÒ»¸öcolormap£¬ÒÔ¼°ÓÃÓÚÌí¼ÓÑÕɫӳÉ书ÄܵÄmixinÀà¡£

¶øÔÚ»æÖƻҶÈͼÏñµÄimshow()·½·¨¸øcmap´«ÈëÁËcm.gray²ÎÊý¡£cmap:´ú±íÑÕɫͼÆ×£¨colormap), ĬÈÏ»æÖÆÎªRGB(A)ÑÕÉ«¿Õ¼ä¡£

Ϊʲôµ÷È¡»Ò¶ÈͼÏñ¼ÓÁËÕâôһÐдúÂëÄØ£¿Ô­ÒòÔÚÓÚÈç¹ûÊDzÊɫͼÏñ£¬ÉÏÃæµÄ·½·¨Ã»ÓÐÈκÎÎÊÌ⣬µ«ÊÇÈç¹ûÊǻҶÈͼÏñ£¬ÓÃÉÏÃæµÄÓï¾ä¾Í²»ÄÜÕýÈ·ÏÔʾ£¬Ö÷ÒªÊÇûÓмӵ÷É«°å¡£

³ý´ËÖ®Í⣬ÎÒÃÇ¿ÉÒÔÓÃÒ»ÐдúÂëplt.gray()À´´úÌæÉÏÊö´úÂëÕâÑùд»áʹ´úÂë¿´ÉÏÈ¥¸ü¼Ó¼ò½à¡£

NumPyÊÇÒ»¸ö·Ç³£ÓÐÃûµÄ Python ¿ÆÑ§¼ÆË㹤¾ß°ü,ÆäÖаüº¬ÁË´óÁ¿ÓÐÓõŤ¾ß,±ÈÈçÊý×é¶ÔÏó(ÓÃÀ´±íʾÏòÁ¿¡¢¾ØÕó¡¢Í¼ÏñµÈ)ÒÔ¼°ÏßÐÔ´úÊýº¯Êý¡£ÔÚÏÔʾ»Ò¶ÈͼÏñʱarray()·½·¨½«Í¼Ïñת»»³ÉNumPyµÄÊý×é¶ÔÏó£¬Í¼Æ¬µÃÒÔÏÔʾ£¬·ñÔò»á³öÏÖAttributeErrorµÄ´íÎó¡£

ת»»Í¼ÏñµÄ¸ñʽ£º

ͨ¹ýsave()·½·¨£¬PIL¿ÉÒÔ½«Í¼Ïñ±£´æ³É¶àÖÖ¸ñʽµÄÎļþ£¬µ±´«È벻ͬµÄÀ©Õ¹Ãûʱ£¬Ëü»á¸ù¾ÝÀ©Õ¹Ãû×Ô¶¯×ª»»Í¼ÏñµÄ¸ñʽ¡£

from PIL import Image
image = Image.open("smallpi.jpg")
# ´ò¿ªjpgͼÏñÎļþ
image.save("smallpi.png") # ±£´æÍ¼Ïñ£¬²¢×ª»»³Épng¸ñʽ

ÏÂÃæ³ÌÐò´ÓÎļþÃûÁÐ±í£¨filelist£©ÖжÁÈ¡ËùÓеÄͼÏñÎļþ£¬²¢×ª»»³ÉJPEG¸ñʽ£º

from PIL import Image
import os

for infile in filelist:
outfile = os.path.splitext(infile)[0] + ¡°.jpg¡±
if infile != outfile:
try:
Image.open(infile).save(outfile)
except IOError:
print(¡®cannot convert¡¯, infile)

PILµÄopen()·½·¨ÓÃÓÚ´´½¨PILͼÏñ¶ÔÏó£¬save()·½·¨ÓÃÓÚ±£´æÍ¼Ïñµ½¾ßÓÐÖ¸¶¨ÎļþÃûµÄÎļþ£¬ºó׺±äΪ¡°.jpg¡±£¬ÉÏÊö´úÂëµÄÐÂÎļþÃûºÍÔ­ÎļþÃûÏàͬ¡£PILÊǸö×ã¹»ÖÇÄܵÄÀà¿â£¬¿ÉÒÔ¸ù¾ÝÎļþÀ©Õ¹ÃûÀ´Åж¨Í¼Ïñ¸ñʽPILº¯Êý»á½øÐмòµ¥µÄ¼ì²é£¬Èç¹ûÎļþÃû²»ÊÇJPEG¸ñʽ£¬»á×Ô¶¯½«ÆäתΪJPEG¸ñʽ£¬Èç¹ûת»»Ê§°Ü£¬Ôò»á±¨´í¡£

´´½¨ËõÂÔͼ

ʹÓÃPIL¿ÉÒԺܷ½±ãµØ´´½¨Í¼ÏñµÄËõÂÔͼ£¬thumbnail()·½·¨½ÓÊÜÒ»¸öÒ»Ôª×é²ÎÊý£¬È»ºó½«Í¼Ïñת»»³É·ûºÏÔª×é²ÎÊýÖ¸¶¨´óСµÄËõÂÔͼ¡£ÀýÈ磺

image.thumbnail((128,128))

thumbnailº¯Êý½ÓÊÜÒ»¸öÔª×é×÷Ϊ²ÎÊý£¬·Ö±ð¶ÔÓ¦×ÅËõÂÔͼµÄ¿í¸ß£¬ÔÚËõÂÔʱ£¬º¯Êý»á±£³ÖͼƬµÄ¿í¸ß±ÈÀý¡£Èç¹ûÊäÈëµÄ²ÎÊý¿í¸ßºÍԭͼÏñ¿í¸ß±È²»Í¬£¬Ôò»áÒÀ¾Ý×îС¶ÔÓ¦±ß½øÐÐÔ­±ÈÀýËõ·Å¡£

±ÈÈç:

Ò»ÕÅͼƬΪ300*420´óСµÄͼƬ

µ±²ÎÊýΪ£¨200,200£©Ê±£¬Éú³ÉµÄËõÂÔͼ´óСΪ71*100£¬±£³ÖԭͼµÄ¿í¸ß±È

²Ã¼ôͼÏñÇøÓò

ʹÓÃPILÖеÄcrop()·½·¨¿ÉÒÔ´ÓÒ»·ùͼÏñÖвüôÖ¸¶¨ÇøÓò£¬¸ÃÇøÓòʹÓÃËÄÔª×éÀ´Ö¸¶¨£¬ËÄÔª×éµÄ×ø±êÒÀ´ÎÊÇ£¨×ó£¬ÉÏ£¬ÓÒ£¬Ï£©PILÖÐÖ¸¶¨×ø±êϵµÄ×óÉϽÇ×ø±êΪ£¨0£¬0£©¡£

¾ßÌå´úÂëΪ£º

from PIL import Image
import matplotlib.pyplot as plt
import numpy as np

image = Image.open('test.jpg')
box = (500, 500, 1000, 1000)
region = image.crop(box)
data = np.array(region)
plt.imshow(data)
plt.show()

µÃµ½µÄ½á¹ûΪ£º

µ÷Õû³ß´çºÍÐýת

Òªµ÷ÕûÒ»·ùͼÏñµÄ³ß´ç£¬ÎÒÃÇ¿ÉÒÔµ÷ÓÃresize()·½·¨¡£¸Ã·½·¨µÄ²ÎÊýÊÇÒ»¸öÔª×飬ÓÃÀ´Ö¸¶¨ÐÂͼÏñµÄ´óС£º

out = image.resize((32,32))

½á¹ûΪÏÂͼËùʾ£º

ÒªÐýתһ·ùͼÏñ£¬¿ÉÒÔʹÓÃÄæÊ±Õ뷽ʽ±íʾÐýת½Ç¶È£¬È»ºóµ÷ÓÃrotate()·½·¨£º

out = image.rotate(45)

½á¹ûΪÏÂͼËùʾ£º

   
3374 ´Îä¯ÀÀ       31
Ïà¹ØÎÄÕÂ

»ùÓÚͼ¾í»ýÍøÂçµÄͼÉî¶Èѧϰ
×Ô¶¯¼ÝÊ»ÖеÄ3DÄ¿±ê¼ì²â
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
ÏîĿʵս£ºÈçºÎ¹¹½¨ÖªÊ¶Í¼Æ×
 
Ïà¹ØÎĵµ

5GÈ˹¤ÖÇÄÜÎïÁªÍøµÄµäÐÍÓ¦ÓÃ
Éî¶ÈѧϰÔÚ×Ô¶¯¼ÝÊ»ÖеÄÓ¦ÓÃ
ͼÉñ¾­ÍøÂçÔÚ½»²æÑ§¿ÆÁìÓòµÄÓ¦ÓÃÑо¿
ÎÞÈË»úϵͳԭÀí
Ïà¹Ø¿Î³Ì

È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ&TensorFlow
»úÆ÷ÈËÈí¼þ¿ª·¢¼¼Êõ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
ͼÏñ´¦ÀíËã·¨·½·¨Óëʵ¼ù