±à¼ÍƼö: |
±¾ÎÄÀ´×ÔÓÚsegmentfault.com£¬´ÓÌØÕ÷¹¤³ÌÊÇʲô£¿ÎªÊ²Ã´Òª×öÌØÕ÷¹¤³Ì£¿Ó¦¸ÃÈçºÎ×öÌØÕ÷¹¤³Ì£¿ÕâÈý¸ö·½ÃæÏêϸÐðÊö¡£
|
|
¹ØÓÚÌØÕ÷¹¤³Ì£¨Feature Engineering£©£¬ÒѾÊǺܹÅÀϺܳ£¼ûµÄ»°ÌâÁË£¬·»¼ä³£Ëµ£º¡°Êý¾ÝºÍÌØÕ÷¾ö¶¨ÁË»úÆ÷ѧϰµÄÉÏÏÞ£¬¶øÄ£ÐͺÍËã·¨Ö»ÊDZƽüÕâ¸öÉÏÏÞ¶øÒÑ¡±¡£Óɴ˿ɼû£¬ÌØÕ÷¹¤³ÌÔÚ»úÆ÷ѧϰÖÐÕ¼ÓÐÏàµ±ÖØÒªµÄµØÎ»¡£ÔÚʵ¼ÊÓ¦Óõ±ÖУ¬¿ÉÒÔËµÌØÕ÷¹¤³ÌÊÇ»úÆ÷ѧϰ³É¹¦µÄ¹Ø¼ü¡£×ݹÛKaggle¡¢KDDµÈ¹úÄÚÍâ´ó´óССµÄ±ÈÈü£¬Ã¿¸ö¾ºÈüµÄ¹Ú¾üÆäʵ²¢Ã»ÓÐÓõ½ºÜ¸ßÉîµÄËã·¨£¬´ó¶àÊý¶¼ÊÇÔÚÌØÕ÷¹¤³ÌÕâ¸ö»·½Ú×ö³öÁ˳öÉ«µÄ¹¤×÷£¬È»ºóʹÓÃһЩ³£¼ûµÄËã·¨£¬±ÈÈçLR£¬¾ÍÄܵõ½³öÉ«µÄÐÔÄÜ¡£Òź¶µÄÊÇ£¬ÔںܶàµÄÊé¼®Öв¢Ã»ÓÐÖ±½ÓÌáµ½Feature
Engineering£¬¸ü¶àµÄÊÇFeature selection¡£ÕâÒ²²¢²»£¬ºÜ¶àMLÊé¼®¶¼ÊÇÒÔ½²½âË㷨ΪÖ÷£¬ËûÃǵÄÄ¿µÄÊÇ´ÓÀíÂÛµ½Êµ¼ùÀ´Àí½âËã·¨£¬ËùÒÔÓõ½µÄÊý¾ÝҪôÊÇʹÓôúÂëÉú³ÉµÄ£¬ÒªÃ´ÊÇÒѾ´¦ÀíºÃµÄÊý¾Ý£¬²¢Ã»ÓÐÌáµ½ÌØÕ÷¹¤³Ì¡£ÔÚÕâÆªÎÄÕ£¬ÎÒ´òËã×ÔÎÒ×ܽáÏÂÌØÕ÷¹¤³Ì£¬ÈÃ×Ô¼º¶ÔÌØÕ÷¹¤³ÌÓиöÈ«ÃæµÄÈÏʶ¡£ÔÚÕâÎÒҪ˵Ã÷һϣ¬ÎÒ²¢²»ÊÇ˵ÄÇЩÊéдµÄ²»ºÃ£¬Æäʵ¶¼ºÜÓв»´í£¬Ö÷ÒªÊÇÒòΪËüÃǵÄÄ¿µÄÊÇÀí½âËã·¨£¬ËùÒÔÖ±½Ó¸ø³öÊý¾ÝÏà¶Ô¶øÑÔ¶ÔÓÚѧϰºÍÀí½âË㷨Ч¹û¸ü¼Ñ¡£
ÕâÆªÎÄÕÂÖ÷Òª´ÓÒÔÏÂÈý¸öÎÊÌâ³ö·¢À´Àí½âÌØÕ÷¹¤³Ì£º
ÌØÕ÷¹¤³ÌÊÇʲô£¿
ΪʲôҪ×öÌØÕ÷¹¤³Ì£¿
Ó¦¸ÃÈçºÎ×öÌØÕ÷¹¤³Ì£¿ ¶ÔÓÚµÚÒ»¸öÎÊÌ⣬ÎÒ»áͨ¹ýÌØÕ÷¹¤³ÌµÄÄ¿µÄÀ´½âÊÍʲôÊÇÌØÕ÷¹¤³Ì¡£¶ÔÓÚµÚ¶þ¸öÎÊÌ⣬Ö÷Òª´ÓÌØÕ÷¹¤³ÌµÄÖØÒªÐÔÀ´²ûÊö¡£¶ÔÓÚµÚÈý¸öÎÊÌ⣬ÎÒ»á´ÓÌØÕ÷¹¤³ÌµÄ×ÓÎÊÌâÒÔ¼°¼òµ¥µÄ´¦Àí·½·¨À´½øÒ»²½ËµÃ÷¡£ÏÂÃæÀ´¿´¿´ÏêϸÄÚÈÝ£¡
1¡¢ÌØÕ÷¹¤³ÌÊÇʲô
Ê×ÏÈÀ´½âÊÍÏÂʲôÊÇÌØÕ÷¹¤³Ì£¿ µ±ÄãÏëÒªÄãµÄÔ¤²âÄ£ÐÍÐÔÄÜ´ïµ½×î¼Ñʱ£¬ÄãÒª×öµÄ²»½öÊÇҪѡȡ×îºÃµÄËã·¨£¬»¹Òª¾¡¿ÉÄܵĴÓÔʼÊý¾ÝÖлñÈ¡¸ü¶àµÄÐÅÏ¢¡£ÄÇôÎÊÌâÀ´ÁË£¬ÄãÓ¦¸ÃÈçºÎΪÄãµÄÔ¤²âÄ£Ð͵õ½¸üºÃµÄÊý¾ÝÄØ£¿ Ïë±Øµ½ÁËÕâÀïÄãÒ²Ó¦¸Ã²Âµ½ÁË£¬Êǵģ¬Õâ¾ÍÊÇÌØÕ÷¹¤³ÌÒª×öµÄÊ£¬ËüµÄÄ¿µÄ¾ÍÊÇ»ñÈ¡¸üºÃµÄѵÁ·Êý¾Ý¡£¹ØÓÚÌØÕ÷¹¤³ÌµÄ¶¨Ò壬WikipediaÉÏÊÇÕâÑù˵µÄ£º
Feature engineering is the process of using domain
knowledge of the data to create features that make
machine learning algorithms work. ¡±
ÎÒµÄÀí½â£º
ÌØÕ÷¹¤³ÌÊÇÀûÓÃÊý¾ÝÁìÓòµÄÏà¹ØÖªÊ¶À´´´½¨Äܹ»Ê¹»úÆ÷ѧϰËã·¨´ïµ½×î¼ÑÐÔÄܵÄÌØÕ÷µÄ¹ý³Ì¡£ ¼ò¶øÑÔÖ®£¬ÌØÕ÷¹¤³Ì¾ÍÊÇÒ»¸ö°ÑÔʼÊý¾Ýת±ä³ÉÌØÕ÷µÄ¹ý³Ì£¬ÕâÐ©ÌØÕ÷¿ÉÒԺܺõÄÃèÊöÕâЩÊý¾Ý£¬²¢ÇÒÀûÓÃËüÃǽ¨Á¢µÄÄ£ÐÍÔÚδ֪Êý¾ÝÉϵıíÏÖÐÔÄÜ¿ÉÒÔ´ïµ½×îÓÅ£¨»òÕß½Ó½ü×î¼ÑÐÔÄÜ£©¡£´ÓÊýѧµÄ½Ç¶ÈÀ´¿´£¬ÌØÕ÷¹¤³Ì¾ÍÊÇÈ˹¤µØÈ¥Éè¼ÆÊäÈë±äÁ¿X¡£ ÌØÕ÷¹¤³Ì¸üÊÇÒ»ÃÅÒÕÊõ£¬¸ú±à³ÌÒ»Ñù¡£µ¼ÖÂÐí¶à»úÆ÷ѧϰÏîÄ¿³É¹¦ºÍʧ°ÜµÄÖ÷ÒªÒòËØ¾ÍÊÇʹÓÃÁ˲»Í¬µÄÌØÕ÷¡£ËµÁËÕâô¶à£¬Ïë±ØÄãÒ²´ó¸ÅÖªµÀÁËΪʲôҪ×öÌØÕ÷¹¤³Ì£¬ÏÂÃæÀ´ËµËµÌØÕ÷¹¤³ÌµÄÖØÒªÐÔ¡£
2¡¢ÌØÕ÷¹¤³ÌµÄÖØÒªÐÔ Ê×ÏÈ£¬ÎÒÃÇ´ó¼Ò¶¼ÖªµÀ£¬Êý¾ÝÌØÕ÷»áÖ±½ÓÓ°ÏìÎÒÃÇÄ£Ð͵ÄÔ¤²âÐÔÄÜ¡£Äã¿ÉÒÔÕâô˵£º¡°Ñ¡ÔñµÄÌØÕ÷Ô½ºÃ£¬×îÖյõ½µÄÐÔÄÜÒ²¾ÍÔ½ºÃ¡±¡£Õâ¾ä»°ËµµÃû´í£¬µ«Ò²»á¸øÎÒÃÇÔì³ÉÎó½â¡£ÊÂʵÉÏ£¬ÄãµÃµ½µÄʵÑé½á¹ûÈ¡¾öÓÚÄãÑ¡ÔñµÄÄ£ÐÍ¡¢»ñÈ¡µÄÊý¾ÝÒÔ¼°Ê¹ÓõÄÌØÕ÷£¬ÉõÖÁÄãÎÊÌâµÄÐÎʽºÍÄãÓÃÀ´ÆÀ¹À¾«¶ÈµÄ¿Í¹Û·½·¨Ò²°çÑÝÁËÒ»²¿·Ö¡£´ËÍ⣬ÄãµÄʵÑé½á¹û»¹Êܵ½Ðí¶àÏ໥ÒÀÀµµÄÊôÐÔµÄÓ°Ï죬ÄãÐèÒªµÄÊÇÄܹ»ºÜºÃµØÃèÊöÄãÊý¾ÝÄÚ²¿½á¹¹µÄºÃÌØÕ÷¡£
£¨1£©ÌØÕ÷Ô½ºÃ£¬Áé»îÐÔԽǿ Ö»ÒªÌØÕ÷Ñ¡µÃºÃ£¬¼´Ê¹ÊÇÒ»°ãµÄÄ£ÐÍ£¨»òËã·¨£©Ò²ÄÜ»ñµÃºÜºÃµÄÐÔÄÜ£¬ÒòΪ´ó¶àÊýÄ£ÐÍ£¨»òËã·¨£©ÔںõÄÊý¾ÝÌØÕ÷ϱíÏÖµÄÐÔÄܶ¼»¹²»´í¡£ºÃÌØÕ÷µÄÁé»îÐÔÔÚÓÚËüÔÊÐíÄãÑ¡Ôñ²»¸´ÔÓµÄÄ£ÐÍ£¬Í¬Ê±ÔËÐÐËÙ¶ÈÒ²¸ü¿ì£¬Ò²¸üÈÝÒ×Àí½âºÍά»¤¡£
£¨2£©ÌØÕ÷Ô½ºÃ£¬¹¹½¨µÄÄ£ÐÍÔ½¼òµ¥ ÓÐÁ˺õÄÌØÕ÷£¬¼´±ãÄãµÄ²ÎÊý²»ÊÇ×îÓŵģ¬ÄãµÄÄ£ÐÍÐÔÄÜÒ²ÄÜÈÔÈ»»á±íÏֵĺÜnice£¬ËùÒÔÄã¾Í²»ÐèÒª»¨Ì«¶àµÄʱ¼äȥѰÕÒ×îÓвÎÊý£¬Õâ´ó´óµÄ½µµÍÁËÄ£Ð͵ĸ´ÔÓ¶È£¬Ê¹Ä£ÐÍÇ÷ÓÚ¼òµ¥¡£
£¨3£©ÌØÕ÷Ô½ºÃ£¬Ä£Ð͵ÄÐÔÄÜÔ½³öÉ« ÏÔÈ»£¬ÕâÒ»µãÊǺÁÎÞÕùÒéµÄ£¬ÎÒÃǽøÐÐÌØÕ÷¹¤³ÌµÄ×îÖÕÄ¿µÄ¾ÍÊÇÌáÉýÄ£Ð͵ÄÐÔÄÜ¡£ ÏÂÃæ´ÓÌØÕ÷µÄ×ÓÎÊÌâÀ´·ÖÎöÏÂÌØÕ÷¹¤³Ì¡£
3¡¢ÌØÕ÷¹¤³Ì×ÓÎÊÌâ
´ó¼Òͨ³£»á°ÑÌØÕ÷¹¤³Ì¿´×öÊÇÒ»¸öÎÊÌâ¡£ÊÂʵÉÏ£¬ÔÚÌØÕ÷¹¤³ÌÏÂÃæ£¬»¹ÓÐÐí¶àµÄ×ÓÎÊÌ⣬Ö÷Òª°üÀ¨£ºFeature
Selection£¨ÌØÕ÷Ñ¡Ôñ£©¡¢Feature Extraction£¨ÌØÕ÷ÌáÈ¡£©ºÍFeature construction£¨ÌØÕ÷¹¹Ô죩.ÏÂÃæ´ÓÕâÈý¸ö×ÓÎÊÌâÀ´Ïêϸ½éÉÜ¡£
3.1 ÌØÕ÷Ñ¡ÔñFeature Selection
Ê×ÏÈ£¬´ÓÌØÕ÷¿ªÊ¼ËµÆð£¬¼ÙÉèÄãÏÖÔÚÓÐÒ»¸ö±ê×¼µÄExcel±í¸ñÊý¾Ý£¬ËüµÄÿһÐбíʾµÄÊÇÒ»¸ö¹Û²âÑù±¾Êý¾Ý£¬±í¸ñÊý¾ÝÖеÄÿһÁоÍÊÇÒ»¸öÌØÕ÷¡£ÔÚÕâÐ©ÌØÕ÷ÖУ¬ÓеÄÌØÕ÷Я´øµÄÐÅÏ¢Á¿·á¸»£¬Óе썻òÐíºÜÉÙ£©ÔòÊôÓÚÎÞ¹ØÊý¾Ý£¨irrelevant
data£©£¬ÎÒÃÇ¿ÉÒÔͨ¹ýÌØÕ÷ÏîºÍÀà±ðÏîÖ®¼äµÄÏà¹ØÐÔ£¨ÌØÕ÷ÖØÒªÐÔ£©À´ºâÁ¿¡£±ÈÈ磬ÔÚʵ¼ÊÓ¦ÓÃÖУ¬³£Óõķ½·¨¾ÍÊÇʹÓÃһЩÆÀ¼ÛÖ¸±êµ¥¶ÀµØ¼ÆËã³öµ¥¸öÌØÕ÷¸úÀà±ð±äÁ¿Ö®¼äµÄ¹ØÏµ¡£ÈçPearsonÏà¹ØÏµÊý£¬Gini-index£¨»ùÄáÖ¸Êý£©£¬IG£¨ÐÅÏ¢ÔöÒæ£©µÈ£¬ÏÂÃæ¾ÙPearsonÖ¸ÊýΪÀý£¬ËüµÄ¼ÆË㷽ʽÈçÏ£º ÆäÖУ¬xÊôÓÚX£¬X±íÒ»¸öÌØÕ÷µÄ¶à¸ö¹Û²âÖµ£¬y±íʾÕâ¸öÌØÕ÷¹Û²âÖµ¶ÔÓ¦µÄÀà±ðÁÐ±í¡£ PearsonÏà¹ØÏµÊýµÄȡֵÔÚ0µ½1Ö®¼ä£¬Èç¹ûÄãʹÓÃÕâ¸öÆÀ¼ÛÖ¸±êÀ´¼ÆËãËùÓÐÌØÕ÷ºÍÀà±ð±êºÅµÄÏà¹ØÐÔ£¬ÄÇôµÃµ½ÕâЩÏà¹ØÐÔÖ®ºó£¬Äã¿ÉÒÔ½«ËüÃǴӸߵ½µÍ½øÐÐÅÅÃû£¬È»ºóÑ¡ÔñÒ»¸ö×Ó¼¯×÷ÎªÌØÕ÷×Ó¼¯£¨±ÈÈçtop
10%£©£¬½Ó×ÅÓÃÕâÐ©ÌØÕ÷½øÐÐѵÁ·£¬¿´¿´ÐÔÄÜÈçºÎ¡£´ËÍ⣬Ä㻹¿ÉÒÔ»³ö²»Í¬×Ó¼¯µÄÒ»¸ö¾«¶Èͼ£¬¸ù¾Ý»æÖƵÄͼÐÎÀ´ÕÒ³öÐÔÄÜ×îºÃµÄÒ»×éÌØÕ÷¡£ Õâ¾ÍÊÇÌØÕ÷¹¤³ÌµÄ×ÓÎÊÌâÖ®Ò»¡ª¡ªÌØÕ÷Ñ¡Ôñ£¬ËüµÄÄ¿µÄÊÇ´ÓÌØÕ÷¼¯ºÏÖÐÌôѡһ×é×î¾ßͳ¼ÆÒâÒåµÄÌØÕ÷×Ó¼¯£¬´Ó¶ø´ïµ½½µÎ¬µÄЧ¹û¡£ ×öÌØÕ÷Ñ¡ÔñµÄÔÒòÊÇÒòΪÕâÐ©ÌØÕ÷¶ÔÓÚÄ¿±êÀà±ðµÄ×÷Óò¢²»ÊÇÏàµÈµÄ£¬Ò»Ð©Î޹صÄÊý¾ÝÐèҪɾµô¡£×öÌØÕ÷Ñ¡ÔñµÄ·½·¨ÓжàÖÖ£¬ÉÏÃæÌáµ½µÄÕâÖÖÌØÕ÷×Ó¼¯Ñ¡ÔñµÄ·½·¨ÊôÓÚfilter£¨Ë¢Ñ¡Æ÷£©·½·¨£¬ËüÖ÷Òª²àÖØÓÚµ¥¸öÌØÕ÷¸úÄ¿±ê±äÁ¿µÄÏà¹ØÐÔ¡£ÓŵãÊǼÆËãʱ¼äÉϽϸßЧ,¶ÔÓÚ¹ýÄâºÏÎÊÌâÒ²¾ßÓнϸߵij°ôÐÔ¡£È±µã¾ÍÊÇÇãÏòÓÚÑ¡ÔñÈßÓàµÄÌØÕ÷,ÒòΪËûÃDz»¿¼ÂÇÌØÕ÷Ö®¼äµÄÏà¹ØÐÔ,ÓпÉÄÜijһ¸öÌØÕ÷µÄ·ÖÀàÄÜÁ¦ºÜ²î£¬µ«ÊÇËüºÍijЩÆäËüÌØÕ÷×éºÏÆðÀ´»áµÃµ½²»´íµÄЧ¹û¡£ÁíÍâ×öÌØÕ÷×Ó¼¯Ñ¡È¡µÄ·½·¨»¹ÓÐwrapper£¨·â×°Æ÷£©ºÍEmbeded(¼¯³É·½·¨)¡£wrapper·½·¨ÊµÖÊÉÏÊÇÒ»¸ö·ÖÀàÆ÷£¬·â×°Æ÷ÓÃѡȡµÄÌØÕ÷×Ó¼¯¶ÔÑù±¾¼¯½øÐзÖÀ࣬·ÖÀàµÄ¾«¶È×÷ΪºâÁ¿ÌØÕ÷×Ó¼¯ºÃ»µµÄ±ê×¼,¾¹ý±È½ÏÑ¡³ö×îºÃµÄÌØÕ÷×Ó¼¯¡£³£ÓõÄÓÐÖ𲽻ع飨Stepwise
regression£©¡¢ÏòǰѡÔñ£¨Forward selection£©ºÍÏòºóÑ¡Ôñ£¨Backward
selection£©¡£ËüµÄÓŵãÊÇ¿¼ÂÇÁËÌØÕ÷ÓëÌØÕ÷Ö®¼äµÄ¹ØÁªÐÔ£¬È±µãÊÇ£ºµ±¹Û²âÊý¾Ý½ÏÉÙʱÈÝÒ×¹ýÄâºÏ£¬¶øµ±ÌØÕ÷ÊýÁ¿½Ï¶àʱ,¼ÆËãʱ¼äÓÖ»áÔö³¤¡£¶ÔÓÚEmbeded¼¯³É·½·¨£¬ËüÊÇѧϰÆ÷×ÔÉí×ÔÖ÷Ñ¡ÔñÌØÕ÷£¬ÈçʹÓÃRegularization×öÌØÕ÷Ñ¡Ôñ£¬»òÕßʹÓþö²ßÊ÷˼Ï룬ϸ½ÚÕâÀï¾Í²»×ö½éÉÜÁË¡£ÕâÀﻹÌáһϣ¬ÔÚ×öʵÑéµÄʱºò£¬ÎÒÃÇÓÐʱºò»áÓÃRandom
ForestºÍGradient boosting×öÌØÕ÷Ñ¡Ôñ£¬±¾ÖÊÉ϶¼ÊÇ»ùÓÚ¾ö²ßÊ÷À´×öµÄÌØÕ÷Ñ¡Ôñ£¬Ö»ÊÇϸ½ÚÉÏÓÐÐ©Çø±ð¡£
×ÛÉÏËùÊö£¬ÌØÕ÷Ñ¡Ôñ¹ý³ÌÒ»°ã°üÀ¨²úÉú¹ý³Ì£¬ÆÀ¼Ûº¯Êý£¬Í£Ö¹×¼Ôò£¬ÑéÖ¤¹ý³Ì£¬Õâ4¸ö²¿·Ö¡£ÈçÏÂͼËùʾ£º

(1)²úÉú¹ý³Ì( Generation Procedure )£º²úÉú¹ý³ÌÊÇËÑË÷ÌØÕ÷×Ó¼¯µÄ¹ý³Ì£¬¸ºÔðΪÆÀ¼Ûº¯ÊýÌá¹©ÌØÕ÷×Ó¼¯¡£
(2)ÆÀ¼Ûº¯Êý( Evaluation Function )£ºÆÀ¼Ûº¯ÊýÊÇÆÀ¼ÛÒ»¸öÌØÕ÷×Ó¼¯ºÃ»µ³Ì¶ÈµÄÒ»¸ö×¼Ôò¡£ÆÀ¼Ûº¯Êý½«ÔÚ2.3С½ÚÕ¹¿ª½éÉÜ¡£
(3)Í£Ö¹×¼Ôò( Stopping Criterion )£ºÍ£Ö¹×¼ÔòÊÇÓëÆÀ¼Ûº¯ÊýÏà¹ØµÄ£¬Ò»°ãÊÇÒ»¸öãÐÖµ£¬µ±ÆÀ¼Ûº¯ÊýÖµ´ïµ½Õâ¸öãÐÖµºó¾Í¿ÉÍ£Ö¹ËÑË÷¡£
(4)ÑéÖ¤¹ý³Ì( Validation Procedure )£ºÔÚÑéÖ¤Êý¾Ý¼¯ÉÏÑé֤ѡ³öÀ´µÄÌØÕ÷×Ó¼¯µÄÓÐЧÐÔ¡£
3.2 ÌØÕ÷ÌáÈ¡ ÌØÕ÷ÌáÈ¡µÄ×ÓÎÊÌâÖ®¶þ¡ª¡ªÌØÕ÷ÌáÈ¡¡£ ÔÔòÉÏÀ´½²£¬ÌØÕ÷ÌáȡӦ¸ÃÔÚÌØÕ÷Ñ¡Ôñ֮ǰ¡£ÌØÕ÷ÌáÈ¡µÄ¶ÔÏóÊÇÔʼÊý¾Ý£¨raw data£©£¬ËüµÄÄ¿µÄÊÇ×Ô¶¯µØ¹¹½¨ÐµÄÌØÕ÷£¬½«ÔÊ¼ÌØÕ÷ת»»ÎªÒ»×é¾ßÓÐÃ÷ÏÔÎïÀíÒâÒ壨Gabor¡¢¼¸ºÎÌØÕ÷[½Çµã¡¢²»±äÁ¿]¡¢ÎÆÀí[LBP
HOG]£©»òÕßͳ¼ÆÒâÒå»òºËµÄÌØÕ÷¡£±ÈÈçͨ¹ý±ä»»ÌØÕ÷ȡֵÀ´¼õÉÙÔʼÊý¾ÝÖÐij¸öÌØÕ÷µÄȡֵ¸öÊýµÈ¡£¶ÔÓÚ±í¸ñÊý¾Ý£¬Äã¿ÉÒÔÔÚÄãÉè¼ÆµÄÌØÕ÷¾ØÕóÉÏʹÓÃÖ÷Òª³É·Ö·ÖÎö£¨Principal
Component Analysis£¬PCA)À´½øÐÐÌØÕ÷ÌáÈ¡´Ó¶ø´´½¨ÐµÄÌØÕ÷¡£¶ÔÓÚͼÏñÊý¾Ý£¬¿ÉÄÜ»¹°üÀ¨ÁËÏß»ò±ßÔµ¼ì²â¡£
³£Óõķ½·¨ÓУº
PCA (Principal component analysis£¬Ö÷³É·Ö·ÖÎö)
ICA (Independent component analysis£¬¶ÀÁ¢³É·Ö·ÖÎö)
LDA £¨Linear Discriminant Analysis£¬ÏßÐÔÅбð·ÖÎö£© ¶ÔÓÚͼÏñʶ±ðÖУ¬»¹ÓÐSIFT·½·¨¡£
3.3 ÌØÕ÷¹¹½¨ Feature Construction
ÌØÕ÷ÌáÈ¡µÄ×ÓÎÊÌâÖ®¶þ¡ª¡ªÌØÕ÷¹¹½¨¡£ ÔÚÉÏÃæµÄÌØÕ÷Ñ¡Ôñ²¿·Ö£¬ÎÒÃÇÌáµ½Á˶ÔÌØÕ÷ÖØÒªÐÔ½øÐÐÅÅÃû¡£ÄÇô£¬ÕâÐ©ÌØÕ÷ÊÇÈçºÎµÃµ½µÄÄØ£¿ÔÚʵ¼ÊÓ¦ÓÃÖУ¬ÏÔÈ»ÊDz»¿ÉÄÜÆ¾¿Õ¶øÀ´µÄ£¬ÐèÒªÎÒÃÇÊÖ¹¤È¥¹¹½¨ÌØÕ÷¡£¹ØÓÚÌØÕ÷¹¹½¨µÄ¶¨Ò壬¿ÉÒÔÕâô˵£ºÌØÕ÷¹¹½¨Ö¸µÄÊÇ´ÓÔʼÊý¾ÝÖÐÈ˹¤µÄ¹¹½¨ÐµÄÌØÕ÷¡£ÎÒÃÇÐèÒªÈ˹¤µÄ´´½¨ËüÃÇ¡£ÕâÐèÒªÎÒÃÇ»¨´óÁ¿µÄʱ¼äÈ¥Ñо¿ÕæÊµµÄÊý¾ÝÑù±¾£¬Ë¼¿¼ÎÊÌâµÄDZÔÚÐÎʽºÍÊý¾Ý½á¹¹£¬Í¬Ê±Äܹ»¸üºÃµØÓ¦Óõ½Ô¤²âÄ£ÐÍÖС£ ÌØÕ÷¹¹½¨ÐèÒªºÜÇ¿µÄ¶´²ìÁ¦ºÍ·ÖÎöÄÜÁ¦£¬ÒªÇóÎÒÃÇÄܹ»´ÓÔʼÊý¾ÝÖÐÕÒ³öһЩ¾ßÓÐÎïÀíÒâÒåµÄÌØÕ÷¡£¼ÙÉèÔʼÊý¾ÝÊDZí¸ñÊý¾Ý£¬Ò»°ãÄã¿ÉÒÔʹÓûìºÏÊôÐÔ»òÕß×éºÏÊôÐÔÀ´´´½¨ÐµÄÌØÕ÷£¬»òÊÇ·Ö½â»òÇзÖÔÓеÄÌØÕ÷À´´´½¨ÐµÄÌØÕ÷¡£
4¡¢ÌØÕ÷¹¤³Ì´¦Àí¹ý³Ì ÄÇôÎÊÌâÀ´ÁË£¬ÌØÕ÷¹¤³Ì¾ßÌåÊÇÔÚÄĸö²½Öè×öÄØ£¿ ¾ßÌåµÄ»úÆ÷ѧϰ¹ý³ÌÊÇÕâÑùµÄÒ»¸ö¹ý³Ì£º
1.£¨Task before here£©
2.Ñ¡ÔñÊý¾Ý(Select Data): ÕûºÏÊý¾Ý£¬½«Êý¾Ý¹æ·¶»¯³ÉÒ»¸öÊý¾Ý¼¯£¬ÊÕ¼¯ÆðÀ´.
3.Êý¾ÝÔ¤´¦Àí£¨Preprocess Data£©: Êý¾Ý¸ñʽ»¯£¬Êý¾ÝÇåÀí£¬²ÉÑùµÈ¡£
4.Êý¾Ýת»»£¨Transform Data£©:?Õâ¸ö½×¶Î×öÌØÕ÷¹¤³Ì¡£
5.Êý¾Ý½¨Ä££¨Model Data£©: ½¨Á¢Ä£ÐÍ£¬ÆÀ¹ÀÄ£ÐͲ¢Öð²½ÓÅ»¯¡£
(Tasks after here¡) ÎÒÃÇ·¢ÏÖ£¬ÌØÕ÷¹¤³ÌºÍÊý¾Ýת»»ÆäʵÊǵȼ۵ġ£ÊÂʵÉÏ£¬ÌØÕ÷¹¤³ÌÊÇÒ»¸öµü´ú¹ý³Ì£¬ÎÒÃÇÐèÒª²»¶ÏµÄÉè¼ÆÌØÕ÷¡¢Ñ¡ÔñÌØÕ÷¡¢½¨Á¢Ä£ÐÍ¡¢ÆÀ¹ÀÄ£ÐÍ£¬È»ºó²ÅÄܵõ½×îÖÕµÄmodel¡£ÏÂÃæÊÇÌØÕ÷¹¤³ÌµÄÒ»¸öµü´ú¹ý³Ì£º
1.Í·ÄÔ·ç±©Ê½ÌØÕ÷£ºÒâ˼¾ÍÊǽøÄã¿ÉÄܵĴÓÔʼÊý¾ÝÖÐÌáÈ¡ÌØÕ÷£¬ÔÝʱ²»¿¼ÂÇÆäÖØÒªÐÔ£¬¶ÔÓ¦ÓÚÌØÕ÷¹¹½¨£»
2.Éè¼ÆÌØÕ÷£º¸ù¾ÝÄãµÄÎÊÌ⣬Äã¿ÉÒÔʹÓÃ×Ô¶¯µØÌØÕ÷ÌáÈ¡£¬»òÕßÊÇÊÖ¹¤¹¹ÔìÌØÕ÷£¬»òÕßÁ½Õß»ìºÏʹÓã»
3.Ñ¡ÔñÌØÕ÷£ºÊ¹Óò»Í¬µÄÌØÕ÷ÖØÒªÐÔÆÀ·ÖºÍÌØÕ÷Ñ¡Ôñ·½·¨½øÐÐÌØÕ÷Ñ¡Ôñ£»
4.ÆÀ¹ÀÄ£ÐÍ£ºÊ¹ÓÃÄãÑ¡ÔñµÄÌØÕ÷½øÐн¨Ä££¬Í¬Ê±Ê¹ÓÃδ֪µÄÊý¾ÝÀ´ÆÀ¹ÀÄãµÄÄ£Ð;«¶È¡£ By the way, ÔÚ×öfeature selectionµÄʱºò£¬»áÉæ¼°µ½ÌØÕ÷ѧϰ£¨Feature
Learning£©£¬ÕâÀï˵ÏÂÌØÕ÷ѧϰµÄ¸ÅÄһ°ã¶øÑÔ£¬ÌØÕ÷ѧϰ£¨Feature Learning£©ÊÇָѧϰÊäÈëÌØÕ÷ºÍÒ»¸öѵÁ·ÊµÀýÕæÊÇÀà±ðÖ®¼äµÄ¹ØÏµ¡£ ÏÂÃæ¾Ù¸öÀý×ÓÀ´¼òµ¥Á˽âÏÂÌØÕ÷¹¤³ÌµÄ´¦Àí¡£ Ê×ÏÈÊÇÀ´ËµÏÂÌØÕ÷ÌáÈ¡£¬¼ÙÉèÄãµÄÊý¾ÝÀïÏÖÔÚÓÐÒ»¸öÑÕÉ«Àà±ðµÄÊôÐÔ£¬±ÈÈçÊÇ¡°item_Color¡±,ËüµÄȡֵÓÐÈý¸ö£¬·Ö±ðÊÇ£ºred£¬blue£¬unknown¡£´ÓÌØÕ÷ÌáÈ¡µÄ½Ç¶ÈÀ´¿´£¬Äã¿ÉÒÔ½«Æäת»¯³ÉÒ»¸ö¶þÖµÌØÕ÷¡°has_color¡±£¬È¡ÖµÎª1»ò0¡£ÆäÖÐ1±íʾÓÐÑÕÉ«£¬0±íʾûÑÕÉ«¡£Ä㻹¿ÉÒÔ½«Æäת»»³ÉÈý¸ö¶þÖµÊôÐÔ£ºIs_Red,
Is_Blue and Is_Unknown¡£ÕâÑù¹¹½¨ÌØÕ÷Ö®ºó£¬Äã¾Í¿ÉÒÔʹÓüòµ¥µÄÏßÐÔÄ£ÐͽøÐÐѵÁ·ÁË¡£ ÁíÍâÔÙ¾ÙÒ»¸öÀý×Ó£¬¼ÙÉèÄãÓÐÒ»¸öÈÕÆÚʱ¼ä (i.e. 2014-09-20T20:45:40Z)£¬Õâ¸ö¸ÃÈçºÎת»»ÄØ£¿ ¶ÔÓÚÕâÖÖʱ¼äµÄÊý¾Ý£¬ÎÒÃÇ¿ÉÒÔ¸ù¾ÝÐèÇóÌáÈ¡³ö¶àÖÖÊôÐÔ¡£±ÈÈ磬Èç¹ûÄãÏëÖªµÀijһÌìµÄʱ¼ä¶Î¸úÆäËüÊôÐԵĹØÏµ£¬Äã¿ÉÒÔ´´½¨Ò»¸öÊý×ÖÌØÕ÷¡°Hour_Of_Day¡±À´°ïÄ㽨Á¢Ò»¸ö»Ø¹éÄ£ÐÍ£¬»òÕßÄã¿ÉÒÔ½¨Á¢Ò»¸öÐòÊýÌØÕ÷£¬¡°Part_Of_Day¡±,ȡֵ¡°Morning,Midday,Afternoon,Night¡±À´¹ØÁªÄãµÄÊý¾Ý¡£ ´ËÍ⣬Ä㻹¿ÉÒÔ°´ÐÇÆÚ»ò¼¾¶ÈÀ´¹¹½¨ÊôÐÔ£¬µÈµÈµÈµÈ¡¡ ¹ØÓÚÌØÕ÷¹¹½¨£¬Ö÷ÒªÊǾ¡¿ÉÄܵĴÓÔʼÊý¾ÝÖй¹½¨ÌØÕ÷£¬¶øÌØÕ÷Ñ¡Ôñ£¬¾¹ýÉÏÃæµÄ·ÖÎö£¬Ïë±Ø´ó¼ÒÒ²ÖªµÀÁË£¬Æäʵ¾ÍÊÇ´ïµ½Ò»¸ö½µÎ¬µÄЧ¹û¡£ Ö»Òª·ÖÎöÄÜÁ¦ºÍʵ¼ùÄÜÁ¦¹»Ç¿£¬ÄÇÃ´ÌØÕ÷¹¹½¨ºÍÌØÕ÷ÌáÈ¡¶ÔÄã¶øÑԾͻáÏÔµÃÏà¶Ô±È½Ï¼òµ¥¡£
»úÆ÷ѧϰÖУ¬ÌØÕ÷Ñ¡ÔñÊÇÌØÕ÷¹¤³ÌÖеÄÖØÒªÎÊÌ⣨ÁíÒ»¸öÖØÒªµÄÎÊÌâÊÇÌØÕ÷ÌáÈ¡£©£¬·»¼ä³£Ëµ£ºÊý¾ÝºÍÌØÕ÷¾ö¶¨ÁË»úÆ÷ѧϰµÄÉÏÏÞ£¬¶øÄ£ÐͺÍËã·¨Ö»ÊDZƽüÕâ¸öÉÏÏÞ¶øÒÑ¡£Óɴ˿ɼû£¬ÌØÕ÷¹¤³ÌÓÈÆäÊÇÌØÕ÷Ñ¡ÔñÔÚ»úÆ÷ѧϰÖÐÕ¼ÓÐÏàµ±ÖØÒªµÄµØÎ»¡£
ÌØÕ÷Ñ¡ÔñÊÇÌØÕ÷¹¤³ÌÖеÄÖØÒªÎÊÌ⣨ÁíÒ»¸öÖØÒªµÄÎÊÌâÊÇÌØÕ÷ÌáÈ¡£©£¬·»¼ä³£Ëµ£ºÊý¾ÝºÍÌØÕ÷¾ö¶¨ÁË»úÆ÷ѧϰµÄÉÏÏÞ£¬¶øÄ£ÐͺÍËã·¨Ö»ÊDZƽüÕâ¸öÉÏÏÞ¶øÒÑ¡£Óɴ˿ɼû£¬ÌØÕ÷¹¤³ÌÓÈÆäÊÇÌØÕ÷Ñ¡ÔñÔÚ»úÆ÷ѧϰÖÐÕ¼ÓÐÏàµ±ÖØÒªµÄµØÎ»¡£

ͨ³£¶øÑÔ£¬ÌØÕ÷Ñ¡ÔñÊÇָѡÔñ»ñµÃÏàӦģÐͺÍËã·¨×îºÃÐÔÄܵÄÌØÕ÷¼¯£¬¹¤³ÌÉϳ£Óõķ½·¨ÓÐÒÔÏ£º 1. ¼ÆËãÿһ¸öÌØÕ÷ÓëÏìÓ¦±äÁ¿µÄÏà¹ØÐÔ£º¹¤³ÌÉϳ£ÓõÄÊÖ¶ÎÓмÆËãÆ¤¶ûѷϵÊýºÍ»¥ÐÅϢϵÊý£¬Æ¤¶ûѷϵÊýÖ»ÄܺâÁ¿ÏßÐÔÏà¹ØÐÔ¶ø»¥ÐÅϢϵÊýÄܹ»ºÜºÃµØ¶ÈÁ¿¸÷ÖÖÏà¹ØÐÔ£¬µ«ÊǼÆËãÏà¶Ô¸´ÔÓһЩ£¬ºÃÔںܶàtoolkitÀï±ß¶¼°üº¬ÁËÕâ¸ö¹¤¾ß£¨ÈçsklearnµÄMINE£©£¬µÃµ½Ïà¹ØÐÔÖ®ºó¾Í¿ÉÒÔÅÅÐòÑ¡ÔñÌØÕ÷ÁË£» 2. ¹¹½¨µ¥¸öÌØÕ÷µÄÄ£ÐÍ£¬Í¨¹ýÄ£Ð͵Ä׼ȷÐÔÎªÌØÕ÷ÅÅÐò£¬½è´ËÀ´Ñ¡ÔñÌØÕ÷£¬ÁíÍ⣬¼ÇµÃJMLR'03ÉÏÓÐһƪÂÛÎĽéÉÜÁËÒ»ÖÖ»ùÓÚ¾ö²ßÊ÷µÄÌØÕ÷Ñ¡Ôñ·½·¨£¬±¾ÖÊÉÏÊǵȼ۵ġ£µ±Ñ¡Ôñµ½ÁËÄ¿±êÌØÕ÷Ö®ºó£¬ÔÙÓÃÀ´ÑµÁ·×îÖÕµÄÄ£ÐÍ£» 3. ͨ¹ýL1ÕýÔòÏîÀ´Ñ¡ÔñÌØÕ÷£ºL1ÕýÔò·½·¨¾ßÓÐÏ¡Êè½âµÄÌØÐÔ£¬Òò´ËÌìÈ»¾ß±¸ÌØÕ÷Ñ¡ÔñµÄÌØÐÔ£¬µ«ÊÇҪעÒ⣬L1ûÓÐÑ¡µ½µÄÌØÕ÷²»´ú±í²»ÖØÒª£¬ÔÒòÊÇÁ½¸ö¾ßÓиßÏà¹ØÐÔµÄÌØÕ÷¿ÉÄÜÖ»±£ÁôÁËÒ»¸ö£¬Èç¹ûҪȷ¶¨ÄĸöÌØÕ÷ÖØÒªÓ¦ÔÙͨ¹ýL2ÕýÔò·½·¨½»²æ¼ìÑ飻 4. ѵÁ·Äܹ»¶ÔÌØÕ÷´ò·ÖµÄԤѡģÐÍ£ºRandomForestºÍLogistic RegressionµÈ¶¼ÄܶÔÄ£Ð͵ÄÌØÕ÷´ò·Ö£¬Í¨¹ý´ò·Ö»ñµÃÏà¹ØÐÔºóÔÙѵÁ·×îÖÕÄ£ÐÍ£» 5. ͨ¹ýÌØÕ÷×éºÏºóÔÙÀ´Ñ¡ÔñÌØÕ÷£ºÈç¶ÔÓû§idºÍÓû§ÌØÕ÷×î×éºÏÀ´»ñµÃ½Ï´óµÄÌØÕ÷¼¯ÔÙÀ´Ñ¡ÔñÌØÕ÷£¬ÕâÖÖ×ö·¨ÔÚÍÆ¼öϵͳºÍ¹ã¸æÏµÍ³ÖбȽϳ£¼û£¬ÕâÒ²ÊÇËùνÒÚ¼¶ÉõÖÁÊ®ÒÚ¼¶ÌØÕ÷µÄÖ÷ÒªÀ´Ô´£¬ÔÒòÊÇÓû§Êý¾Ý±È½ÏÏ¡Ê裬×éºÏÌØÕ÷Äܹ»Í¬Ê±¼æ¹ËÈ«¾ÖÄ£Ðͺ͸öÐÔ»¯Ä£ÐÍ£¬Õâ¸öÎÊÌâÓлú»á¿ÉÒÔÕ¹¿ª½²¡£ 6. ͨ¹ýÉî¶ÈѧϰÀ´½øÐÐÌØÕ÷Ñ¡Ôñ£ºÄ¿Ç°ÕâÖÖÊÖ¶ÎÕýÔÚËæ×ÅÉî¶ÈѧϰµÄÁ÷Ðжø³ÉΪһÖÖÊֶΣ¬ÓÈÆäÊÇÔÚ¼ÆËã»úÊÓ¾õÁìÓò£¬ÔÒòÊÇÉî¶Èѧϰ¾ßÓÐ×Ô¶¯Ñ§Ï°ÌØÕ÷µÄÄÜÁ¦£¬ÕâÒ²ÊÇÉî¶ÈѧϰÓÖ½Ðunsupervised
feature learningµÄÔÒò¡£´ÓÉî¶ÈѧϰģÐÍÖÐÑ¡ÔñijһÉñ¾²ãµÄÌØÕ÷ºó¾Í¿ÉÒÔÓÃÀ´½øÐÐ×îÖÕÄ¿±êÄ£Ð͵ÄѵÁ·ÁË¡£
ÕûÌåÉÏÀ´Ëµ£¬ÌØÕ÷Ñ¡ÔñÊÇÒ»¸ö¼ÈÓÐѧÊõ¼ÛÖµÓÖÓй¤³Ì¼ÛÖµµÄÎÊÌ⣬ĿǰÔÚÑо¿ÁìÓòÒ²±È½ÏÈÈ£¬ÖµµÃËùÓÐ×ö»úÆ÷ѧϰµÄÅóÓÑÖØÊÓ¡£
Ç¿ÁÒÍÆ¼öһƪ²©ÎÄ£¬ËµÈçºÎ½øÐÐÌØÕ÷Ñ¡ÔñµÄ£º
¶ÔÓÚÒ»¸öѵÁ·¼¯£¬Ã¿¸ö¼Ç¼°üº¬Á½²¿·Ö£¬1ÊÇÌØÕ÷¿Õ¼äµÄȡֵ£¬2ÊǸüǼµÄ·ÖÀà±êÇ©¡£ Ò»°ãÇé¿öÏ£¬»úÆ÷ѧϰÖÐËùʹÓÃÌØÕ÷µÄÑ¡ÔñÓÐÁ½ÖÖ·½Ê½£¬Ò»ÊÇÔÚÔÓÐÌØÕ÷»ù´¡ÉÏ´´ÔìÐÂÌØÕ÷£¬±ÈÈç¾ö²ßÊ÷ÖÐÐÅÏ¢ÔöÒæ¡¢»ùÄáϵÊý£¬»òÕßLDA(latent
dirichlet allocation)Ä£ÐÍÖеĸ÷¸öÖ÷Ì⣬¶þÊÇ´ÓÔÓÐÌØÕ÷ÖÐɸѡ³öÎ޹ػòÕßÈßÓàÌØÕ÷£¬½«ÆäÈ¥³ýºó±£ÁôÒ»¸öÌØÕ÷×Ó¼¯¡£
±¾ÎÄÏêϸ˵ϵڶþÖÖ·½·¨¡£ Ò»°ãÀ´Ëµ£¬½øÐÐÌØÕ÷¼¯Ñ¡ÔñÓÐÈýÌõ;¾¶,filter,wrapper£¬ Ëùνfilter¾ÍÊǺâÁ¿Ã¿¸öÌØÕ÷µÄÖØÒªÐÔ£¬È»ºó¶ÔÆä½øÐÐÅÅÐò£¬É¸Ñ¡µÄʱºò»òÕßÑ¡ÔñǰN¸ö£¬»òÕßǰ%X¡£
³£ÓÃÓÚºâÁ¿ÌØÕ÷ÖØÒª³Ì¶ÈµÄ·½·¨£¬PCA/FA/LDA(linear discriminal analysis)ÒÔ¼°¿¨·½¼ì²â/ÐÅÏ¢ÔöÒæ/Ïà¹ØÏµÊý¡£¶øwrapperÊǽ«×Ó¼¯µÄÑ¡Ôñ¿´×÷ÊÇÒ»¸öËÑË÷ѰÓÅÎÊÌ⣬Éú³É²»Í¬µÄ×éºÏ£¬¶Ô×éºÏ½øÐÐÆÀ¼Û£¬ÔÙÓëÆäËûµÄ×éºÏ½øÐбȽϡ£ÕâÑù¾Í½«×Ó¼¯µÄÑ¡Ôñ¿´×÷ÊÇÒ»¸öÊÇÒ»¸öÓÅ»¯ÎÊÌ⣬ÕâÀïÓкܶàµÄÓÅ»¯Ëã·¨¿ÉÒÔ½â¾ö£¬±ÈÈçGA/PSO/DE/ABC[1]. ÏÂÃæ¾ÙÒ»¸öÀý×ÓÀ´ËµÒ»ÏÂÌØÕ÷Ñ¡Ôñ Êý¾Ý¼¯ÖеÄÿ¸öÌØÕ÷¶ÔÓÚÊý¾Ý¼¯µÄ·ÖÀ๱Ïײ¢²»Ò»Ö£¬ÒÔ¾µäirisÊý¾Ý¼¯ÎªÀý£¬Õâ¸öÊý¾Ý¼¯°üÀ¨ËĸöÌØÕ÷£ºsepal
length,sepal width,petal length,petal width,ÓÐÈý¸ö·ÖÀ࣬setoka
iris,versicolor irisºÍvirginica iris¡£
ÕâËĸöÌØÕ÷¶Ô·ÖÀàµÄ¹±Ï×ÈçÏÂͼËùʾ£º

¿É¼û£¬petal width and petal width±Èsepal lengthºÍwidthÔÚ·ÖÀàÉϵÄÓô¦Òª´óµÃ¶à(ÒòΪºóÕßÔÚѵÁ·¼¯ÉϵÄÖØµþ²¿·ÖÌ«¶àÁË£¬µ¼Ö²»ºÃÓÃÓÚ·ÖÀà)¡£ ÏÂÃæÎÒÃÇ×ö¼¸¸ö²âÊÔ£¬Ê¹ÓÃËĸöÌØÕ÷¼¯
µÚÒ»¸ö£ºËùÓÐÌØÕ÷
Accuracy: 94.44%
(+/- 3.51%), all attributes |
µÚ¶þ¸ö£ºÁ½¸öÌØÕ÷£¬petal width and petal width£¬ËäȻ׼ȷÂʺ͵ÚÒ»¸öÃ»Çø±ð£¬µ«·½²î±ä´ó£¬Ò²¾ÍÊÇ˵·ÖÀàÐÔÄܲ»Îȶ¨
Accuracy: 94.44%
(+/- 6.09%), Petal dimensions (column 3 &
4) ʹÓÃPCA·½·¨£¬´ÓÐÂÌØÕ÷ÖÐÕÒ³öÈ¨ÖØTOP2µÄ£¬
Accuracy: 85.56% (+/- 9.69%), PCA dim. red. (n=2)
ʹÓÃLDA£¨²»ÊÇÖ÷ÌâÄ£Ð͵ÄLDA£©·½·¨£¬´ÓÐÂÌØÕ÷ÖÐÕÒ³öÈ¨ÖØTOP2µÄ£¬
Accuracy: 96.67% (+/- 4.44%), LDA dim. red. (n=2)
|
ÄÇôÎÒÃÇÈ̲»×¡ÎÊÒ»¸öÎÊÌ⣬ÊDz»ÊÇÑ¡ÔñÈ«²¿ÌØÕ÷¼¯£¬Ä£ÐÍ׼ȷÂÊ×î¸ß£¬Èç¹û²»ÊÇÕâÑù£¬Âù¾¿¾¹Ñ¡ÔñʲôÑùµÄÌØÕ÷¼¯Ê±×¼È·ÂÊ×î¸ß£¿ ÕâÀïÓÐÒ»¸öͼ£¬ºáÖáÊÇËùÑ¡ÔñµÄÌØÕ÷ÊýÄ¿£¬×ÝÖáÊǽ»²æÑéÖ¤Ëù»ñµÃµÄ׼ȷÂÊ£¬´ÓÖпÉÒÔ¿´µ½£¬²¢·ÇÑ¡ÔñÁËÈ«²¿ÌØÕ÷£¬×¼È·ÂÊ×î¸ß£¬µ±ÉÙÊý¼¸¸öÌØÕ÷¾Í¿ÉÒԵõ½×î¸ß׼ȷÂÊʱºò£¬Ñ¡ÔñµÄÌØÕ÷Ô½¶à£¬·´µ¹»ÉßÌí×ãÁË¡£

PSÁ½¿éСÄÚÈÝ£º
(1) ÈçºÎ½øÐн»²æÑéÖ¤ ½«Êý¾Ý¼¯·ÖΪѵÁ·¼¯ºÍÑéÖ¤¼¯£¬¸÷°üº¬60%ºÍ40%µÄÊý¾Ý¡£ ×¢Ò⣺ÔÚѵÁ·¼¯É϶ÔÄ£ÐͲÎÊý½øÐÐѵÁ·ºó£¬ÓÃÑéÖ¤¼¯À´¹À¼Æ×¼È·ÂÊʱֻÄÜʹÓÃÒ»´Î£¬Èç¹ûÿ´ÎѵÁ·Ä£ÐͲÎÊýºó¶¼Ê¹ÓÃÕâ¸öÑéÖ¤¼¯À´¹À¼Æ×¼È·ÂÊ£¬ºÜÈÝÒ×µ¼Ö¹ýÄâºÏ¡£
Èç¹ûÎÒÃÇʹÓÃ4-fold½»²æÑéÖ¤µÄ»°£¬Æä¹ý³ÌÈçÏ£¬×îÖÕ´íÎóÂÊÈ¡4´ÎµÄƽ¾ùÖµ£¬ÒÔ±íÏÖÎÒÃÇÄ£Ð͵ķº»¯ÄÜÁ¦¡£

(2) ¾ö²ßÊ÷µÄÌØÕ÷Ñ¡Ôñ»ã×Ü£º ÔÚ¾ö²ßÊ÷²¿·Ö£¬ÈýÀྵä¾ö²ßÊ÷Ä£Ð͵ÄÖ÷񻂿±ðÔÚÓÚÆäÓÃÓÚ·ÖÀàµÄÊôÐÔ²»Í¬£¬Ò²¼´ÌØÕ÷Ñ¡Ôñ²»Í¬ ID3£ºÐÅÏ¢ÔöÒæ C4.5£ºÐÅÏ¢ÔöÒæÂÊ£¬ ¸½¼ÓÒ»¾ä£¬C4.5Ö®ËùÒÔÓÃÐÅÏ¢ÔöÒæÂÊ£¬Ò²¼´gr(D,A)=g(D,A)/H(A)£¬ÊÇÒòΪID3ÖУ¬ËùÒÔÈç¹ûÊÇȡֵ¸ü¶àµÄÊôÐÔ£¬
¸üÈÝÒ×ʹµÃÊý¾Ý¸ü¡°?´¿ ¡±£¬ÆäÐÅÏ¢ÔöÒæ¸ü´ó£¬¾ö²ßÊ÷»áÊ×ÏÈÌôÑ¡Õâ¸öÊôÐÔ×÷ΪÊ÷µÄ¶¥µã¡£½á¹ûѵÁ·³öÀ´µÄÐÎ×´ÊÇÒ»¿ÃÅÓ´óÇÒÉî¶ÈºÜdzµÄÊ÷£¬ÕâÑùµÄ»®·ÖÊǼ«Îª²»ºÏÀíµÄ¡£¶øH(A)£¬Ò²¼´Êý¾ÝDÔÚÊôÐÔAÉϵÄìØÖµ£¬Ëæ×ÅA¿ÉȡֵÀàÐ͵ÄÔö¼Ó¶ø±ä´ó£¬ËùÒÔ¿ÉÒÔÓÃH(A)£¬×÷Ϊ³Í·£Òò×Ó£¬´Ó¶ø¼õÉÙȡֵ¸ü¶àÊôÐÔµÄÄ¿±êº¯ÊýÖµ£¬½ø¶ø±ÜÃâÉú³ÉÊ÷µÄÉî¶ÈºÜdz¡£
CART?£º»ùÄáϵÊý
|