Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
matlab»úÆ÷ѧϰ¿â
 
  5310  次浏览      28
 2018-10-18
 
±à¼­ÍƼö:

±¾ÎÄÀ´×ÔÓÚCSDN£¬½éÉÜÁËmatlab×Ô´øµÄ»úÆ÷ѧϰ¿â¡¢Ëæ»úÉ­ÁÖ·ÖÀàÆ÷¡¢ÆÓËØ±´Ò¶Ë¹µÈÏà¹ØÖªÊ¶¡£

×Ô´øµÄ»úÆ÷ѧϰ¿â

meas:²âÊÔÊý¾Ý£¬Ò»Ðдú±íÒ»¸öÑù±¾£¬Áдú±íÑù±¾ÊôÐÔ£¬N*M

species:ÿ¸öÑù±¾¶ÔÓ¦µÄÀà,N*1

kfoldLoos:½»²æÑéÖ¤:È·¶¨Ñù±¾ÑµÁ·ºóµÄÄ£Ð͵ĴíÎóÂÊ

predict:²âÊÔ¼¯¾­·ÖÀàÄ£ÐÍ´¦Àíºó·Öµ½µÄÀà

knn·ÖÀàÆ÷

knn = fitcknn(meas,species,'NumNeighbors',5);
CVMdl = crossval(knn);
kloss = kfoldLoss(CVMdl);
predict(knn,ones(1,size(meas,2)))

pca½µÎ¬£ºÖ÷³É·Ö·ÖÎö

//latent:ÌØÕ÷Öµ£¨´Ó´óµ½Ð¡),scoreÌØÕ÷ÏòÁ¿
[coeff, score, latent, tsquared, explained] = pca(data);
//score¼´Îª´Ó´óµ½Ð¡ÅÅÐòºóµÄÌØÕ÷¾ØÕó£¬È¡Ç°kÁм´ÎªÈ¡Ñù±¾×î¾ß´ú±íÐÔµÄk¸öÊôÐÔ
//explained¼´ÎªÃ¿Ò»ÁжÔÓ¦µÄÓ°ÏìÁ¦£¬ËùÓÐÁÐ¼ÓÆðÀ´Îª100

bpÉñ¾­ÍøÂç

ÃüÁîÐÐÊäÈënntool

svm·ÖÀàÆ÷

svm = fitcsvm(meas,species);
CVMdl = crossval(svm);
kloss = kfoldLoss(CVMdl);

ÆÓËØ±´Ò¶Ë¹

naivebayes = fitcnb(meas, species);
nb = crossval(naivebayes);
kloss = kfoldLoss(nb);

¾ö²ßÊ÷cart·ÖÀàÆ÷

cart = fitctree(meas,species);
CVMdl = crossval(cart);
kloss = kfoldLoss(CVMdl);

Ëæ»úÉ­ÁÖ·ÖÀàÆ÷

b = TreeBagger(nTree,meas,species,'OOBPrediction','on');
rf = oobError(b);
kloss = rf(nTree,1);

¼¯³Éѧϰ·½·¨

ada = fitensemble(meas,species,'AdaBoostM1',100,'Tree',
'Holdout',0.5);
kloss = kfoldLoss(ada,'mode','cumulative');
kloss = kloss(100,1);

matlab»úÆ÷ѧϰ¿â

Óмලѧϰ

Î޼ලѧϰ

¼¯³Éѧϰ

   
5310 ´Îä¯ÀÀ       28
Ïà¹ØÎÄÕÂ

»ùÓÚͼ¾í»ýÍøÂçµÄͼÉî¶Èѧϰ
×Ô¶¯¼ÝÊ»ÖеÄ3DÄ¿±ê¼ì²â
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
ÏîĿʵս£ºÈçºÎ¹¹½¨ÖªÊ¶Í¼Æ×
 
Ïà¹ØÎĵµ

5GÈ˹¤ÖÇÄÜÎïÁªÍøµÄµäÐÍÓ¦ÓÃ
Éî¶ÈѧϰÔÚ×Ô¶¯¼ÝÊ»ÖеÄÓ¦ÓÃ
ͼÉñ¾­ÍøÂçÔÚ½»²æÑ§¿ÆÁìÓòµÄÓ¦ÓÃÑо¿
ÎÞÈË»úϵͳԭÀí
Ïà¹Ø¿Î³Ì

È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ&TensorFlow
»úÆ÷ÈËÈí¼þ¿ª·¢¼¼Êõ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
ͼÏñ´¦ÀíËã·¨·½·¨Óëʵ¼ù