±à¼ÍƼö: |
±¾ÎÄÀ´×ÔÓÚcsdn£¬±¾ÎÄ´Óinformation
gainºÍ¾ö²ßÊ÷Á½¸ö·½Ãæ½éÉÜÁË»úÆ÷ѧϰµÄËã·¨£¬Ï£Íû¶ÔÄúµÄѧϰÓаïÖú¡£
|
|
ǰÑÔ
¾ö²ßÊ÷ÕâÖÖËã·¨ÓÐןܶàÁ¼ºÃµÄÌØÐÔ£¬±ÈÈç˵ѵÁ·Ê±¼ä¸´ÔӶȽϵͣ¬Ô¤²âµÄ¹ý³Ì±È½Ï¿ìËÙ£¬Ä£ÐÍÈÝÒ×չʾ£¨ÈÝÒ×½«µÃµ½µÄ¾ö²ßÊ÷×ö³ÉͼƬչʾ³öÀ´£©µÈ¡£µ«ÊÇͬʱ£¬µ¥¾ö²ßÊ÷ÓÖÓÐһЩ²»ºÃµÄµØ·½£¬±ÈÈç˵ÈÝÒ×over-fitting£¬ËäÈ»ÓÐһЩ·½·¨£¬Èç¼ôÖ¦¿ÉÒÔ¼õÉÙÕâÖÖÇé¿ö£¬µ«ÊÇ»¹ÊDz»¹»µÄ¡£
Ä£ÐÍ×éºÏ£¨±ÈÈç˵ÓÐBoosting£¬BaggingµÈ£©Óë¾ö²ßÊ÷Ïà¹ØµÄËã·¨±È½Ï¶à£¬ÕâЩËã·¨×îÖյĽá¹ûÊÇÉú³ÉN(¿ÉÄÜ»áÓм¸°Ù¿ÃÒÔÉÏ£©¿ÃÊ÷£¬ÕâÑù¿ÉÒÔ´ó´óµÄ¼õÉÙµ¥¾ö²ßÊ÷´øÀ´µÄ벡£¬ÓеãÀàËÆÓÚÈý¸ö³ôƤ½³µÈÓÚÒ»¸öÖî¸ðÁÁµÄ×ö·¨£¬ËäÈ»Õ⼸°Ù¿Ã¾ö²ßÊ÷ÖеÄÿһ¿Ã¶¼ºÜ¼òµ¥£¨Ïà¶ÔÓÚC4.5ÕâÖÖµ¥¾ö²ßÊ÷À´Ëµ£©£¬µ«ÊÇËûÃÇ×éºÏÆðÀ´È·ÊǺÜÇ¿´ó¡£
ÔÚ×î½ü¼¸ÄêµÄpaperÉÏ£¬ÈçiccvÕâÖÖÖØÁ¿¼¶µÄ»áÒ飬iccv 09ÄêµÄÀïÃæÓв»ÉÙµÄÎÄÕ¶¼ÊÇÓëBoostingÓëËæ»úÉÁÖÏà¹ØµÄ¡£Ä£ÐÍ×éºÏ+¾ö²ßÊ÷Ïà¹ØµÄËã·¨ÓÐÁ½ÖֱȽϻù±¾µÄÐÎʽ
- Ëæ»úÉÁÖÓëGBDT(Gradient Boost Decision Tree)£¬ÆäËûµÄ±È½ÏеÄÄ£ÐÍ×éºÏ+¾ö²ßÊ÷µÄËã·¨¶¼ÊÇÀ´×ÔÕâÁ½ÖÖËã·¨µÄÑÓÉì¡£ÔÚ¿´±¾ÎÄ֮ǰ£¬½¨ÒéÏÈ¿´¿´»úÆ÷ѧϰÓëÊýѧ(3)ÓëÆäÖÐÒýÓõÄÂÛÎÄ£¬±¾ÎÄÖеÄGBDTÖ÷Òª»ùÓÚ´Ë£¬¶øËæ»úÉÁÖÏà¶Ô±È½Ï¶ÀÁ¢¡£
»ù´¡ÄÚÈÝ
ÓÐÁ½¸ö¸ÅÄî±È½ÏÖØÒª£ºÊ×ÏÈÊÇinformation gain£¬Æä´ÎÊǾö²ßÊ÷¡£ÍƼöAndrew MooreµÄDecision
Trees Tutorial£¬ÓëInformation Gain Tutorial£¬ÒÔ¼°MooreµÄData
Mining TutorialϵÁС£¾ö²ßÊ÷¿É·ÖΪ·ÖÀàÊ÷Óë»Ø¹éÊ÷£¬Ò»¸öÓÃÓÚ·ÖÀ࣬һ¸öÓÃÓڻع顣¶ÔÓÚ¾ö²ßÊ÷µÄ·ÖÀ๦ÄÜ£¬¼òµ¥µÄ½²ÊÇͨ¹ýÿһ¸öÌØÕ÷£¨ÊôÐÔ£©£¬¶ÔÑù±¾½øÐдÖÂԵķÖÀ࣬¿ÉÄÜÖ»ÊÇ·Ö³É2Àà¡£µ«ÊÇÔËÓõÄÌØÕ÷¶àÁË£¬·ÖÀàµÄ½á¹û¾ÍϸÁË£¬ËùÒÔ×îÖÕ»áÓнÏÕýÈ·µÄ·ÖÀàЧ¹û¡£
¾ö²ßÊ÷ʵ¼ÊÉÏÊǽ«¿Õ¼äÓó¬Æ½Ãæ½øÐл®·ÖµÄÒ»ÖÖ·½·¨£¬Ã¿´Î·Ö¸îµÄʱºò£¬¶¼½«µ±Ç°µÄ¿Õ¼äÒ»·ÖΪ¶þ£¬ÀýÈçͼ1ËùʾµÄ¾ö²ßÊ÷£¬ÆäÊôÐÔµÄÖµ¶¼ÊÇÁ¬ÐøµÄʵÊý£ºÊ×ÏÈÏȸù¾ÝÌØÕ÷x£¬½«ÌØÕ÷xµÄֵСÓÚ3ºÍ´óÓÚµÈÓÚ3µÄ·ÖΪ2À࣬ÔÙ¸ù¾ÝÌØÕ÷y¶ÔÑù±¾ÔÙ´Îϸ·Ö£¬Èç´ËÑ»·£¬ÕâÑùʹµÃÿһ¸öÒ¶×ӽڵ㶼ÊÇÔÚ¿Õ¼äÖеÄÒ»¸ö²»ÏཻµÄÇøÓò¡£·Ö¸îºóµÄ¿Õ¼äÈçͼ2Ëùʾ¡£ÔÚ½øÐоö²ßµÄʱºò¶ÔÓÚÐÂÀ´µÄÑù±¾£¬´Ó¸ù½áµã¿ªÊ¼Åжϣ¬¸ù¾ÝÊäÈëÑù±¾Ã¿Ò»Î¬featureµÄÖµ£¬Ò»²½Ò»²½ÍùÏ£¬×îºóʹµÃÑù±¾ÂäÈëN¸öÇøÓòÖеÄÒ»¸ö£¨¼ÙÉèÓÐN¸öÒ¶×ӽڵ㣩¡£


GBDT(Gradient Boost Decision Tree)
GBDTÊÇÒ»¸öÓ¦Óúܹ㷺µÄËã·¨£¬¿ÉÒÔÓÃÀ´×ö·ÖÀà¡¢»Ø¹é¡£ÔںܶàµÄÊý¾ÝÉ϶¼Óв»´íµÄЧ¹û¡£GBDTÕâ¸öËã·¨»¹ÓÐһЩÆäËûµÄÃû×Ö£¬±ÈÈç˵MART(Multiple
Additive Regression Tree)£¬GBRT(Gradient Boost Regression
Tree)£¬Tree NetµÈ£¬ÆäʵËüÃǶ¼ÊÇÒ»¸ö¶«Î÷£¨²Î¿¼×Ôwikipedia ¨C Gradient
Boosting)£¬·¢Ã÷ÕßÊÇFriedman
Gradient BoostÆäʵÊÇÒ»¸ö¿ò¼Ü£¬ÀïÃæ¿ÉÒÔÌ×ÈëºÜ¶à²»Í¬µÄËã·¨£¬¿ÉÒԲο¼Ò»Ï»úÆ÷ѧϰÓëÊýѧ
(3)ÖеĽ²½â¡£BoostÊÇ"ÌáÉý"µÄÒâ˼£¬Ò»°ãBoostingËã·¨¶¼ÊÇÒ»¸öµü´úµÄ¹ý³Ì£¬Ã¿Ò»´ÎеÄѵÁ·¶¼ÊÇΪÁ˸ĽøÉÏÒ»´ÎµÄ½á¹û¡£
ÔʼµÄBoostËã·¨ÊÇÔÚËã·¨¿ªÊ¼µÄʱºò£¬ÎªÃ¿Ò»¸öÑù±¾¸³ÉÏÒ»¸öÈ¨ÖØÖµ£¬³õʼµÄʱºò£¬´ó¼Ò¶¼ÊÇÒ»ÑùÖØÒªµÄ¡£ÔÚÿһ²½ÑµÁ·Öеõ½µÄÄ£ÐÍ£¬»áʹµÃÊý¾ÝµãµÄ¹À¼ÆÓжÔÓÐ´í£¬ÎÒÃǾÍÔÚÿһ²½½áÊøºó£¬Ôö¼Ó·Ö´íµÄµãµÄÈ¨ÖØ£¬¼õÉٷֶԵĵãµÄÈ¨ÖØ£¬ÕâÑùʹµÃijЩµãÈç¹ûÀÏÊDZ»·Ö´í£¬ÄÇô¾Í»á±»¡°ÑÏÖØ¹Ø×¢¡±£¬Ò²¾Í±»¸³ÉÏÒ»¸öºÜ¸ßµÄÈ¨ÖØ¡£È»ºóµÈ½øÐÐÁËN´Îµü´ú£¨ÓÉÓû§Ö¸¶¨£©£¬½«»áµÃµ½N¸ö¼òµ¥µÄ·ÖÀàÆ÷£¨basic
learner£©£¬È»ºóÎÒÃǽ«ËüÃÇ×éºÏÆðÀ´£¨±ÈÈç˵¿ÉÒÔ¶ÔËüÃǽøÐмÓȨ¡¢»òÕßÈÃËüÃǽøÐÐͶƱµÈ£©£¬µÃµ½Ò»¸ö×îÖÕµÄÄ£ÐÍ¡£
¶øGradient BoostÓ봫ͳµÄBoostµÄÇø±ðÊÇ£¬Ã¿Ò»´ÎµÄ¼ÆËãÊÇΪÁ˼õÉÙÉÏÒ»´ÎµÄ²Ð²î(residual)£¬¶øÎªÁËÏû³ý²Ð²î£¬ÎÒÃÇ¿ÉÒÔÔڲвî¼õÉÙµÄÌݶÈ(Gradient)·½ÏòÉϽ¨Á¢Ò»¸öеÄÄ£ÐÍ¡£ËùÒÔ˵£¬ÔÚGradient
BoostÖУ¬Ã¿¸öеÄÄ£Ð͵ļòÀúÊÇΪÁËʹµÃ֮ǰģÐ͵IJвîÍùÌݶȷ½Ïò¼õÉÙ£¬Ó봫ͳBoost¶ÔÕýÈ·¡¢´íÎóµÄÑù±¾½øÐмÓȨÓÐןܴóµÄÇø±ð¡£
ÔÚ·ÖÀàÎÊÌâÖУ¬ÓÐÒ»¸öºÜÖØÒªµÄÄÚÈݽÐ×öMulti-Class Logistic£¬Ò²¾ÍÊǶà·ÖÀàµÄLogisticÎÊÌ⣬ËüÊÊÓÃÓÚÄÇЩÀà±ðÊý>2µÄÎÊÌ⣬²¢ÇÒÔÚ·ÖÀà½á¹ûÖУ¬Ñù±¾x²»ÊÇÒ»¶¨Ö»ÊôÓÚijһ¸öÀà¿ÉÒԵõ½Ñù±¾x·Ö±ðÊôÓÚ¶à¸öÀàµÄ¸ÅÂÊ£¨Ò²¿ÉÒÔ˵Ñù±¾xµÄ¹À¼Æy·ûºÏijһ¸ö¼¸ºÎ·Ö²¼£©£¬Õâʵ¼ÊÉÏÊÇÊôÓÚGeneralized
Linear ModelÖÐÌÖÂÛµÄÄÚÈÝ£¬ÕâÀï¾ÍÏȲ»Ì¸ÁË£¬ÒÔºóÓлú»áÔÙÓÃÒ»¸öרÃŵÄÕ½ÚÈ¥×ö°É¡£ÕâÀï¾ÍÓÃÒ»¸ö½áÂÛ£ºÈç¹ûÒ»¸ö·ÖÀàÎÊÌâ·ûºÏ¼¸ºÎ·Ö²¼£¬ÄÇô¾Í¿ÉÒÔÓÃLogistic±ä»»À´½øÐÐÖ®ºóµÄÔËËã¡£
¼ÙÉè¶ÔÓÚÒ»¸öÑù±¾x£¬Ëü¿ÉÄÜÊôÓÚK¸ö·ÖÀ࣬Æä¹À¼ÆÖµ·Ö±ðΪF1(x)¡FK(x)£¬Logistic±ä»»ÈçÏ£¬logistic±ä»»ÊÇÒ»¸öƽ»¬ÇÒ½«Êý¾Ý¹æ·¶»¯£¨Ê¹µÃÏòÁ¿µÄ³¤¶ÈΪ1£©µÄ¹ý³Ì£¬½á¹ûΪÊôÓÚÀà±ðkµÄ¸ÅÂÊpk(x)£¬

¶ÔÓÚLogistic±ä»»ºóµÄ½á¹û£¬Ëðʧº¯ÊýΪ£º

ÆäÖУ¬ykΪÊäÈëµÄÑù±¾Êý¾ÝµÄ¹À¼ÆÖµ£¬µ±Ò»¸öÑù±¾xÊôÓÚÀà±ðkʱ£¬yk = 1£¬·ñÔòyk
= 0¡£
½«Logistic±ä»»µÄʽ×Ó´øÈëËðʧº¯Êý£¬²¢ÇÒ¶ÔÆäÇóµ¼£¬¿ÉÒԵõ½Ëðʧº¯ÊýµÄÌݶȣº

ÉÏÃæËµµÄ±È½Ï³éÏó£¬ÏÂÃæ¾Ù¸öÀý×Ó£º
¼ÙÉèÊäÈëÊý¾Ýx¿ÉÄÜÊôÓÚ5¸ö·ÖÀࣨ·Ö±ðΪ1,2,3,4,5£©£¬ÑµÁ·Êý¾ÝÖУ¬xÊôÓÚÀà±ð3£¬Ôòy =
(0, 0, 1, 0, 0)£¬¼ÙÉèÄ£Ð͹À¼ÆµÃµ½µÄF(x) = (0, 0.3, 0.6, 0, 0)£¬Ôò¾¹ýLogistic±ä»»ºóµÄÊý¾Ýp(x)
= (0.16,0.21,0.29,0.16,0.16)£¬y - pµÃµ½ÌݶÈg£º(-0.16, -0.21,
0.71, -0.16, -0.16)¡£¹Û²ìÕâÀï¿ÉÒԵõ½Ò»¸ö±È½ÏÓÐÒâ˼µÄ½áÂÛ£º
¼ÙÉègkΪÑù±¾µ±Ä³Ò»Î¬£¨Ä³Ò»¸ö·ÖÀࣩÉϵÄÌݶÈ:
gk>0ʱ£¬Ô½´ó±íʾÆäÔÚÕâһάÉϵĸÅÂÊp(x)Ô½Ó¦¸ÃÌá¸ß£¬±ÈÈç˵ÉÏÃæµÄµÚÈýάµÄ¸ÅÂÊΪ0.29£¬¾ÍÓ¦¸ÃÌá¸ß£¬ÊôÓÚÓ¦¸ÃÍù¡°ÕýÈ·µÄ·½Ïò¡±Ç°½ø
ԽС±íʾÕâ¸ö¹À¼ÆÔ½¡°×¼È·¡±
gk<0ʱ£¬Ô½Ð¡£¬¸ºµÃÔ½¶à±íʾÔÚÕâһάÉϵĸÅÂÊÓ¦¸Ã½µµÍ£¬±ÈÈç˵µÚ¶þά0.21¾ÍÓ¦¸ÃµÃµ½½µµÍ¡£ÊôÓÚÓ¦¸Ã³¯×Å¡°´íÎóµÄ·´·½Ïò¡±Ç°½ø
Ô½´ó£¬¸ºµÃÔ½ÉÙ±íʾÕâ¸ö¹À¼ÆÔ½¡°²»´íÎó ¡±
×ܵÄÀ´Ëµ£¬¶ÔÓÚÒ»¸öÑù±¾£¬×îÀíÏëµÄÌݶÈÊÇÔ½½Ó½ü0µÄÌݶȡ£ËùÒÔ£¬ÎÒÃÇÒªÄܹ»Èú¯ÊýµÄ¹À¼ÆÖµÄܹ»Ê¹µÃÌݶÈÍù·´·½ÏòÒÆ¶¯£¨>0µÄά¶ÈÉÏ£¬Íù¸º·½ÏòÒÆ¶¯£¬<0µÄά¶ÈÉÏ£¬ÍùÕý·½ÏòÒÆ¶¯£©×îÖÕʹµÃÌݶȾ¡Á¿=0£©£¬²¢ÇÒ¸ÃËã·¨ÔÚ»áÑÏÖØ¹Ø×¢ÄÇЩÌݶȱȽϴóµÄÑù±¾£¬¸úBoostµÄÒâ˼ÀàËÆ¡£
µÃµ½ÌݶÈÖ®ºó£¬¾ÍÊÇÈçºÎÈÃÌݶȼõÉÙÁË¡£ÕâÀïÊÇÓõÄÒ»¸öµü´ú+¾ö²ßÊ÷µÄ·½·¨£¬µ±³õʼ»¯µÄʱºò£¬Ëæ±ã¸ø³öÒ»¸ö¹À¼Æº¯ÊýF(x)£¨¿ÉÒÔÈÃF(x)ÊÇÒ»¸öËæ»úµÄÖµ£¬Ò²¿ÉÒÔÈÃF(x)=0£©£¬È»ºóÖ®ºóÿµü´úÒ»²½¾Í¸ù¾Ýµ±Ç°Ã¿Ò»¸öÑù±¾µÄÌݶȵÄÇé¿ö£¬½¨Á¢Ò»¿Ã¾ö²ßÊ÷¡£¾ÍÈú¯ÊýÍùÌݶȵķ´·½Ïòǰ½ø£¬×îÖÕʹµÃµü´úN²½ºó£¬ÌݶÈԽС¡£
ÕâÀィÁ¢µÄ¾ö²ßÊ÷ºÍÆÕͨµÄ¾ö²ßÊ÷²»Ì«Ò»Ñù£¬Ê×ÏÈ£¬Õâ¸ö¾ö²ßÊ÷ÊÇÒ»¸öÒ¶×Ó½ÚµãÊýJ¹Ì¶¨µÄ£¬µ±Éú³ÉÁËJ¸ö½Úµãºó£¬¾Í²»ÔÙÉú³ÉеĽڵãÁË¡£
Ëã·¨µÄÁ÷³ÌÈçÏÂ:£¨²Î¿¼×ÔtreeBoostÂÛÎÄ£©

0. ±íʾ¸ø¶¨Ò»¸ö³õʼֵ
1. ±íʾ½¨Á¢M¿Ã¾ö²ßÊ÷£¨µü´úM´Î£©
2. ±íʾ¶Ôº¯Êý¹À¼ÆÖµF(x)½øÐÐLogistic±ä»»
3. ±íʾ¶ÔÓÚK¸ö·ÖÀà½øÐÐÏÂÃæµÄ²Ù×÷£¨ÆäʵÕâ¸öforÑ»·Ò²¿ÉÒÔÀí½âΪÏòÁ¿µÄ²Ù×÷£¬Ã¿Ò»¸öÑù±¾µãxi¶¼¶ÔÓ¦ÁËKÖÖ¿ÉÄܵķÖÀàyi£¬ËùÒÔyi,
F(xi), p(xi)¶¼ÊÇÒ»¸öKάµÄÏòÁ¿£¬ÕâÑù»òÐíÈÝÒ×Àí½âÒ»µã£©
4. ±íʾÇóµÃ²Ð²î¼õÉÙµÄÌݶȷ½Ïò
5. ±íʾ¸ù¾Ýÿһ¸öÑù±¾µãx£¬ÓëÆä²Ð²î¼õÉÙµÄÌݶȷ½Ïò£¬µÃµ½Ò»¿ÃÓÉJ¸öÒ¶×Ó½Úµã×é³ÉµÄ¾ö²ßÊ÷
6. Ϊµ±¾ö²ßÊ÷½¨Á¢Íê³Éºó£¬Í¨¹ýÕâ¸ö¹«Ê½£¬¿ÉÒԵõ½Ã¿Ò»¸öÒ¶×Ó½ÚµãµÄÔöÒæ£¨Õâ¸öÔöÒæÔÚÔ¤²âµÄʱºòÓõģ©
ÿ¸öÔöÒæµÄ×é³ÉÆäʵҲÊÇÒ»¸öKάµÄÏòÁ¿£¬±íʾÈç¹ûÔÚ¾ö²ßÊ÷Ô¤²âµÄ¹ý³ÌÖУ¬Èç¹ûijһ¸öÑù±¾µãµôÈëÁËÕâ¸öÒ¶×ӽڵ㣬ÔòÆä¶ÔÓ¦µÄK¸ö·ÖÀàµÄÖµÊǶàÉÙ¡£±ÈÈç˵£¬GBDTµÃµ½ÁËÈý¿Ã¾ö²ßÊ÷£¬Ò»¸öÑù±¾µãÔÚÔ¤²âµÄʱºò£¬Ò²»áµôÈë3¸öÒ¶×Ó½ÚµãÉÏ£¬ÆäÔöÒæ·Ö±ðΪ£¨¼ÙÉèΪ3·ÖÀàµÄÎÊÌ⣩£º
(0.5, 0.8, 0.1), (0.2, 0.6, 0.3), (0.4, 0.3, 0.3)£¬ÄÇôÕâÑù×îÖյõ½µÄ·ÖÀàΪµÚ¶þ¸ö£¬ÒòΪѡÔñ·ÖÀà2µÄ¾ö²ßÊ÷ÊÇ×î¶àµÄ¡£
7. µÄÒâ˼Ϊ£¬½«µ±Ç°µÃµ½µÄ¾ö²ßÊ÷Óë֮ǰµÄÄÇЩ¾ö²ßÊ÷ºÏ²¢ÆðÀ´£¬×÷ΪеÄÒ»¸öÄ£ÐÍ(¸ú6ÖÐËù¾ÙµÄÀý×Ӳ¶à)
GBDTµÄËã·¨´ó¸Å¾Í½²µ½ÕâÀïÁË£¬Ï£ÍûÄܹ»ÃÖ²¹Ò»ÏÂÉÏһƪÎÄÕÂÖÐûÓÐ˵Çå³þµÄ²¿·Ö£º£©
ʵÏÖ
¿´Ã÷°×ÁËËã·¨£¬¾ÍÐèҪȥʵÏÖһϣ¬»òÕß¿´¿´±ðÈËʵÏֵĴúÂ룬ÕâÀïÍÆ¼öÒ»ÏÂwikipediaÖеÄgradient
boostingÒ³Ãæ£¬ÏÂÃæ¾ÍÓÐһЩ¿ªÔ´Èí¼þÖеÄһЩʵÏÖ£¬±ÈÈç˵ÏÂÃæÕâ¸ö£ºhttp://elf-project.sourceforge.net/¡£ |