±à¼ÍƼö: |
±¾ÎÄÓÚinfoq,½éÉÜÁË´«Í³µÄhashËã·¨£¬¾í»ýÉñ¾ÍøÂç¼ÆËãͼƬÏàËÆ¶È£¬»ùÓÚ¾Ö²¿²»±äÌØÕ÷µÄÏàËÆ¶ÈÆ¥ÅäËã·¨£¬
Ç÷ÊÆÕ¹ÍûµÈ¡£
|
|
¸ÅÊö
µçÉ̳¡¾°ÖУ¬Âô¼ÒΪ»ñÈ¡Á÷Á¿£¬³£³£³öÏÖÖØ¸´ÆÌ»õÏÖÏ󣬵±Óû§·¢²¼ÉÏ´«Í¼Ïñ»òÊÓÆµÊ±£¬ÔÚ¿Í»§¶Ë½øÐÐͼÏñÌØÕ÷ÌáÈ¡ºÍÖ¸ÎÆÉú³É£¬ÔÙ½«ÆäÉÏ´«ÖÁÔÆ¶ËÖ¸ÎÆ¿â¶Ô±Èºó£¬ÕÒ³öÏàËÆÍ¼Æ¬£¬¶Å¾øÖظ´ÆÌ»õÔì³ÉµÄ¼ÆËã¼°´æ´¢×ÊÔ´ÀË·Ñ¡£

¸Ã·½·¨»ùÓÚͼÏñÏàËÆ¶È¼ÆË㣬¿É¹ã·ºÓ¦ÓÃÓÚ°²È«¡¢°æÈ¨±£»¤¡¢µçÉ̵ÈÁìÓò¡£
ÕªÒª
¶ËÉϵÄͼÏñÏàËÆ¶È¼ÆËãÓ봫ͳͼÏñÏàËÆ¶È¼ÆËãÏà±È£¬¶Ô¼ÆË㸴ÔӶȼ°¼ìË÷ЧÂÊÓиü¸ßµÄÒªÇó¡£±¾ÎÄͨ¹ýÉè¼ÆÊµÑ飬¶Ô±ÈÈýÀàͼÏñÏàËÆ¶È¼ÆËã·½·¨£º¸ÐÖª¹þÏ£Ëã·¨¡¢»ùÓÚ¾Ö²¿²»±äÐÔµÄͼÏñÏàËÆ¶ÈÆ¥ÅäËã·¨ÒÔ¼°»ùÓÚ¾í»ýÉñ¾ÍøÂçµÄͼÏñÏàËÆ¶ÈËã·¨£¬È¨ºâÆäÔÚ¼ÆË㸴ÔӶȼ°¼ìË÷ЧÂÊ·½ÃæµÄÓÅÁÓ£¬×îÖÕѡȡ
Hessian Affine½øÐÐÌØÕ÷ÌáÈ¡£¬SIFTÌØÕ÷ÃèÊöÉú³ÉÖ¸ÎÆ£¬×÷Ϊ¶ËÉϵÄͼÏñÏàËÆ¶È¼ÆËãÄ£ÐÍ¡£
¹Ø¼ü´Ê£ºÍ¼ÏñÏàËÆ¶È¼ÆËã¡¢ÌØÕ÷ÌáÈ¡¡¢¼ÆË㸴ÔÓ¶È¡¢¼ìË÷ЧÂÊ
ÒýÑÔ
ͼÏñÏàËÆ¶È¼ÆËãÔÚµ±Ç°µÄÔÆ¼ÆËã´¦Àí·½Ê½£¬»á½«¿Í»§¶ËÊý¾ÝÉÏ´«ÖÁÔÆ¶Ë£¬½øÐÐͼÏñ¡¢ÊÓÆµ¼ìË÷ÏàËÆ¶È¼ÆËãµÈһϵÁи´ÔÓÂß¼´¦Àíºó½«½á¹û·´À¡¸øÖÕ¶Ë£¬ËäÈ»ÔÚ¼ÆËãÄÜÁ¦ÉÏÔÆ¶ËÓÅÊÆÃ÷ÏÔ£¬µ«¸Ã·½Ê½Í¬Ê±´æÔÚÑÏÖØµÄ´æ´¢¡¢¼ÆËã×ÊÔ´¼°Á÷Á¿µÄÀË·ÑÇÒÎÞ·¨Âú×ãʵʱÐÔÒªÇó¡£
Ëæ×ÅÊÖ»ú¼ÆËãÄÜÁ¦µÄÌáÉý£¬Ò»ÖÖÏÔ¶øÒ×¼ûµÄ·½Ê½Êǽ«²¿·ÖÊý¾ÝÔÚ¿Í»§¶Ë½øÐд¦Àíºó£¬ÔÙ½«ÓмÛÖµµÄÊý¾ÝÉÏ´«Ôƶ˴洢¼°½øÒ»²½´¦Àí¡£¶ÔÓÚµçÉ̳¡¾°ÖеÄÖØ¸´ÆÌ»õÏÖÏ󣬿ÉÔÚÓû§·¢²¼ÉÏ´«Í¼Ïñ¡¢ÊÓÆµÊ±£¬ÔÚ¿Í»§¶Ë½øÐÐͼÏñÏàËÆ¶È¼ÆË㣬×öµ½ÊµÊ±·´À¡£¬¶ÔÓÚÖØ¸´Í¼Ïñ¼°ÊÓÆµ²»½øÐÐÔÆ¶Ë´æ´¢£¬±ÜÃâÁË´æ´¢¼°¼ÆËã×ÊÔ´µÄÀË·Ñ¡£
ͼÏñ¼ìË÷Ëã·¨µÄ»ù±¾²½Öè°üÀ¨ÌØÕ÷ÌáÈ¡¡¢Ö¸ÎÆÉú³ÉºÍÏàËÆ¶ÈÆ¥Åä¡£Òµ½ç³£ÓõÄͼÏñÏàËÆ¶È¼ÆËã·½·¨´óÖ·ÖΪÈýÀ࣬´«Í³µÄ¸ÐÖª¹þÏ£Ëã·¨¡¢»ùÓÚ¾Ö²¿²»±äÐÔµÄͼÏñÏàËÆ¶ÈÆ¥ÅäËã·¨ÒÔ¼°ÀûÓÃÉî¶ÈѧϰËã·¨½øÐеÄͼÏñÏàËÆ¶È¼ÆËã·½·¨¡£
1£®´«Í³µÄhashËã·¨
×Ô2011Äê°Ù¶È½èÖúTinEye·¢²¼°Ù¶Èʶͼºó²»¾Ã£¬google·¢²¼ÁËÀàËÆµÄÒÔͼËÑͼͼƬËÑË÷·þÎñ£¬¡°¸ÐÖª¹þÏ£Ëã·¨¡±ÔÚͼÏñËÑË÷¹ý³ÌÖз¢»ÓÁËÖØÒª×÷ÓᣴóÖÂÁ÷³ÌÈçÏ£º

1.1¸ÐÖª¹þÏ£Ëã·¨ÀíÂÛ¼ò½é£º
1.¾ùÖµhash: ͨ¹ý¶ÔÔʼͼÏñ½øÐÐѹËõ£¨8*8£©ºÍ»Ò¶È´¦Àíºó¼ÆËãѹËõºóµÄͼÏñÏñËØ¾ùÖµ£¬ÓÃ8*8ͼÏñµÄ64¸öÏñËØÓë¾ùÖµ¶Ô±È£¬´óÓÚ¾ùֵΪ1£¬Ð¡ÓÚ¾ùֵΪ0£¬µÃµ½µÄ64λ¶þ½øÖƱàÂ뼴ΪÔͼÏñµÄahashÖµ¡£Ëã·¨Ëٶȿ죬µ«¾«È·¶È½ÏµÍ¡£
2.²îÒìhash£ºÓë¾ùÖµhashÏà±È£¬²îÒìhashͬÑùÒª½øÐÐͼÏñѹËõºÍ»Ò¶È´¦Àí£¬È»ºóÓÃÿÐеÄǰһ¸öÏñËØÓëºóÒ»¸öÏñËØ¶Ô±È£¬´óÓÚΪ1£¬Ð¡ÓÚΪ0£¬À´Éú³ÉÖ¸ÎÆÐÅÏ¢¡£Ëã·¨¾«È·¶È½Ï¸ß£¬ËٶȽϿ졣
3.¸ÐÖªhash£ºÍ¨¹ý¶ÔÔʼͼÏñ½øÐÐѹËõ£¨32*32£©ºÍ»Ò¶È´¦Àíºó¼ÆËãѹËõ£¬¶ÔÆä½øÐÐÀëÉ¢ÓàÏұ任ºó£¬ÓÃ32*32ͼÏñµÄǰ8*8ÏñËØ¼ÆËã¾ùÖµ£¬8*8ÏñËØÖµ´óÓÚ¾ùֵΪ1£¬Ð¡ÓÚ¾ùֵΪ0£¬µÃµ½64Î»Ö¸ÎÆÐÅϢΪÔʼͼÏñµÄphashÖµ¡£Ëã·¨¾«×¼¶È½Ï¸ß£¬ËٶȽϲ
¸ù¾ÝÒÔÉÏÈýÖÖËã·¨¿É¼ÆËã³öÁ½ÕÅͼÏñÏìÓ¦µÄhashÖµ£¬ÀûÓÃÁ½ÕÅͼÏñhashÖµµÃººÃ÷¾àÀ룬¿ÉÅбð³öÆäÏàËÆ³Ì¶È£¬ÆäÖкºÃ÷¾àÀëÔ½´ó£¬ÏàËÆ¶ÈÔ½µÍ£¬ººÃ÷¾àÀëԽС£¬ÏàËÆ¶ÈÔ½¸ß¡£
1.2¸÷¸öËã·¨Ö®¼äµÄ¿¹¸ÉÈÅÄÜÁ¦¶Ô±È
´ÓÊÓÆµÄÚÈÝÖÐѡȡÁ½×é²âÊÔ¼¯£¬Í¨¹ýÉè¼Æ¿¹¸ÉÈÅÄÜÁ¦ÊµÑ飬¶ÔÈýÖÖ¾µä¸ÐÖª¹þÏ£Ëã·¨½øÐжԱȡ£
²âÊÔ¼¯1£º

½á¹û¶Ô±È

²âÊÔ¼¯2

½á¹û¶Ô±È

ͨ¹ýʵÑé½á¹û·¢ÏÖHashÔÚͼÏñÏàËÆ¶È¼ÆËãÉÏ£¬×¼È·¶È½ÏµÍ£¬ÎÞ·¨Âú×ãʵ¼ÊÒµÎñÐèÇó¡£
2£®ÀûÓþí»ýÉñ¾ÍøÂç¼ÆËãͼƬÏàËÆ¶È
2.1 ¶Ëµ½¶ËµÄ·½Ê½
ÀûÓþí»ýÉñ¾ÍøÂç¼ÆËãÏàËÆ¶Èʱ£¬Ò»ÖÖ·½·¨ÊÇÖ±½Ó²ÉÓö˵½¶ËµÄ·½Ê½£¬ÀûÓþí»ý²ãÌáÈ¡Á½ÕÅͼƬµÄÌØÕ÷£¬ÔÙÓÃÈ«Á¬½Ó²ãÊä³öÁ½ÕÅͼƬµÄ¡°Æ¥Åä¶È¡±¡£¿É²Î¿¼2015ÄêCVPRÎÄÕ£º
¡¶ Learning to Compare Image Patches via Convolutional
Neural Networks ¡·£¬Ïà¹ØÖÐÎĽâÊͿɲο¼ £ºhttp: //blog. csdn.net
/hjimce /article /details /50098483
¸Ã·½·¨¶ÔÓÚÉÙÁ¿Í¼ÏñÏàËÆ¶È¼ÆËãÓÅÊÆÃ÷ÏÔ£¬µ«²»ÊÊÓÃÓÚ´Ó´óÁ¿Í¼ÏñÖнøÐÐÏàËÆ¶ÈÆ¥ÅäµÄ³¡¾°£¬ÈçÊÓÆµ¼ìË÷¡£Í¨³££¬ÊÓÆµ¼ìË÷´óÖ²½ÖèÈçÏ£º

¼ÙÉèÊÓÆµ¿âÖеĴæÁ¿ÊÓÆµÓÐ1Íò¸ö£¬Ã¿¸öÊÓÆµ³éÈ¡10ÕÅͼƬ£¬ÔòÖ¡¿âÓÐ10ÍòÕÅͼƬ£¬Ò»´ÎÊÓÆµ²éѯÐèÒªµÄ±È¶Ô´ÎÊýΪ£º10
x 100000 = 100Íò´Î¡£
Òò´Ë£¬¾¡¹Ü¸Ã·½·¨¶ÔÓÚͼÏñÏàËÆ¶È¼ÆËãÓнϸߵÄ׼ȷÐÔ£¬µ«ÔÚ½øÐÐÊÓÆµ¼ìË÷ʱ¼ÆËãÁ¿¹ý´ó¡£
2.2 ÌáÈ¡Öмä²úÎ﷽ʽ
ÓÉÓÚ¾í»ý²Ù×÷µÄ±¾Öʼ´ÎªÌØÕ÷ÌáÈ¡£¬¾í»ý²ãÊä³öµÄ¾ØÕóÌìÈ»´ú±í¸÷ÖÖÌØÕ÷£¬Í¨¹ý¶ÔÁ½ÕÅͼƬµÄÌØÕ÷¾ØÕó½øÐÐÏà¼õ£¬¼ÆËã²îֵƽ·½ºÍ£¨»òÕ߯äËû·½Ê½£©µÃµ½µÄÊýÖµ×÷ΪÁ½ÕÅͼƬµÄÏàËÆ¶ÈÅжÏÒÀ¾Ý£¬¼´ÎªÀûÓþí»ýÉñ¾ÍøÂç½øÐÐͼÏñÏàËÆ¶È¼ÆËãµÄµÚ¶þÖÖ·½Ê½¡£
ÀûÓÃԤѵÁ·ºÃµÄVGG16Ä£ÐÍÀ´×ö²âÊÔ£¬ÍøÂç½á¹¹ÈçÏ£¨²»´øÈ«Á¬½Ó²ã£©£º

ÒÔblock5_pool Êä³öµÄ½á¹û×÷ΪĿ±ê²úÎҲ¿ÉÒÔÓÃÆäËü²ã£©£¬¿ÉÒÔ¿´µ½ÕâÒ»²ãÊä³öµÄÊÇÐÎ״Ϊ(7,7,512)
µÄ¾ØÕó,ÎÒÃÇÏÈÓÃÒ»×éͼƬ£¨À´Ô´ÍøÂ磩×ö²âÊÔ£¬À´ÑéÖ¤Êä³öµÄ½á¹ûÊÇ·ñ´óÖ·ûºÏÔ¤ÆÚ£º

ÒÔÉÏÁùÕŲâÊÔͼƬ·Ö±ðΪ£ºÔͼ¡¢¼ÓÉÙÁ¿ÎÄ×Ö¡¢ÐÞ¸ÄÉÙÁ¿µ×²¿¡¢µ×²¿²Ã¼ô¡¢Ð޸ĵײ¿Ò»°ë¡¢ÍêÈ«²»Í¬µÄÁíÒ»ÕÅͼƬ¡£
¶ÔÿÕÅͼƬÓþí»ýÄ£ÐͼÆËãµÃµ½ 7x7x512 ÐÎ×´µÄÊý×éºó£¬·Ö±ð¼ÆËãµÚÒ»ÕÅͼƬÓëºóÃæÎåÕÅͼƬµÄÌØÕ÷Êý×é²îÖµµÄƽ·½ºÍ£¬²¢½«½á¹û¹éÒ»»¯´¦ÀíÒÔ·½±ã¹Û²ì£¬½á¹ûÈçÏ£º
Diff 1 - 2: 2
Diff 1 - 3: 128
Diff 1 - 4: 182
Diff 1 - 5: 226
Diff 1 - 6: 377
´Ó¹Û²â½á¹ûÖпÉÒÔ¿´³ö£¬µÚÒ»ÕÅͼƬÓëÆäºóµÄͼƬ²îÒìÔ½À´Ô½´óµÄ¡£²¢ÇÒ2ºÍ377 ÕâÁ½¸öÖµ´ú±í·Ç³£ÏàËÆºÍÍêÈ«²»Í¬µÄͼƬ£¬¾ßÓÐÒ»¶¨±æÊ¶¶È¡£
½øÒ»²½Éè¼ÆÊµÑ飬ÓÃÊÓÆµ²âÊԲüô¡¢¼Ó×ÖÄ»¡¢ÁÁ¶Èµ÷Õû¡¢Ðýת¡¢ÒÔ¼°ÍêÈ«²»Ò»ÑùµÄÁíÒ»¸öÊÓÆµµÈ¿¹¸ÉÈÅÄÜÁ¦¡£

Õë¶ÔÊÓÆµµÄdiff¼ÆË㷽ʽΪ£ºÃ¿¸öÊÓÆµÃ¿¸ô1Ãë³éһ֡ͼƬ£¬Ñ»·±È¶ÔÁ½¸öÊÓÆµÃ¿¸ö¶ÔӦλÖõÄͼƬ֡£¬¼ÆËã²îÒìÖµ£¬×îºó³ýÒÔÖ¡ÊýµÃµ½Æ½¾ù²îÒì¡£¶ÔÓÚÁ½¸öÖ¡Êý²»Ò»ÖµÄÇé¿ö£¬ÒÔ½ÏÉÙ֡Ϊ׼£¬¶à³öÀ´µÄÖ¡²»´¦Àí¡£Í¼Æ¬¼äµÄ²îÒìÖµ¼ÆË㷽ʽͬÉÏ£¬½á¹ûÈçÏ£º
Diff 0 - 1: 6
Diff 0 - 2: 4
Diff 0 - 3: 2
Diff 0 - 4: 22
Diff 0 - 5: 26
´ÓʵÑé½á¹û¿ÉÒÔ¿´³ö£¬¶ÔÓڲüô¡¢×ÖÄ»¡¢ÁÁ¶Èµ÷ÕûµÄÇé¿ö£¬²îÒìÖµ¶¼ÔÚͬһ¸öÊýÁ¿¼¶ÉÏ£¬Ã÷ÏÔСÓÚ²»Í¬ÊÓÆµµÄÇé¿ö£¬µ«ÊǶÔÓÚÐýתµÄÇé¿ö£¬¸Ã·½·¨ÎÞЧ¡£
3£®»ùÓÚ¾Ö²¿²»±äÌØÕ÷µÄÏàËÆ¶ÈÆ¥ÅäËã·¨
³ýÁË»ùÓÚ¹þÏ£ºÍ»ùÓÚ¾í»ýÉñ¾ÍøÂçµÄÏàËÆ¶ÈÆ¥ÅäËã·¨Í⣬¾Ö²¿ÌØÕ÷¼ì²âËã·¨ÔÚÏàËÆ¶È¼ÆË㡢ͼÏñ¼ìË÷¡¢ÎïÌåʶ±ðµÈÁìÓò¾ßÓÐÖØÒªÒâÒå¡£Ïà¶ÔÓÚÏñËØ¼¶µÄÈ«¾ÖÌØÕ÷£¬¾Ö²¿ÌØÕ÷ÔÚÃèÊöͼÏñÌØÕ÷ʱ¸ü¼ÓÁé»î£¬ÆäÖÐSIFT£¨Scale-invariant
feature transform£©ÊDZȽϳ£Óõ쬾ßÓнϺõij߶Ȳ»±äÐÔ£¬¼´Ê¹¸Ä±äÐýת½Ç¶È»òÕßÅÄÉã½Ç¶È£¬ÈÔÈ»Äܹ»µÃµ½½ÏºÃµÄ¼ì²âЧ¹û¡£
3.1¿¹¸ÉÈÅÄÜÁ¦²âÊÔ
ÓÃOpenCV+Python£¬¶Ô²âÊÔͼƬÌáÈ¡SIFTÌØÕ÷£º

½øÒ»²½²âÊÔͬÑùµÄ²Ã¼ô¡¢ÐýתµÈÇé¿öµÄÌØÕ÷µãÆ¥ÅäÇé¿ö£º
²Ã¼ô£º

×ÖÄ»+¸Ä±ä´óС£º

ÁÁ¶Èµ÷Õû£º

Ðýת90¶È£º

²»Í¬ÊÓÆµ£º

´Ó²âÊÔ½á¹ûÉÏ¿´£¬SIFT×öÌØÕ÷¼ì²â¾ßÓÐÁ¼ºÃµÄ¿¹¸ÉÈÅÄÜÁ¦¡£
3.2 ¼ìË÷ЧÂʲâÊÔ
³õ²½È·¶¨²ÉÓþֲ¿²»±äÌØÕ÷À´×öÌØÕ÷ÌáÈ¡ºó£¬ÐèÒª×ö½øÒ»²½µÄ²âÊÔ£º´î½¨²âÊÔ¼¯£¬¹¹½¨ÌØÕ÷ÌáÈ¡¡¢¼ìË÷ϵͳ£¬ÒÔ²âÊÔ׼ȷÂÊ¡¢ÕÙ»ØÂʵÈÖ¸±ê¡£Í¨¹ý²Î¿¼2017
ÄêAraujo ºÍ Bernd GirodµÄÂÛÎÄ£º¡¶Large-Scale Video Retrieval
Using Image Queries¡·£¬»ùÓÚÆä¹¤³Ì½øÐвâÊÔ¡£
Êý¾Ý¼¯×¼±¸£º
1.ͼƬ¿â£ºÈ¡ÏßÉÏ1000¸öÊÓÆµ£¬¶Ôÿ¸öÊÓÆµÃ¿¸ô1Ãë³éÒ»ÕÅÊÓÆµÖ¡Í¼Æ¬£¬×÷Ϊ×ÜͼƬ¿â¡£
2.´ý²éѯͼƬ£º¶¨Òå7ÖÖͼƬ±ä»»·½Ê½£ºÐýת¡¢ÀÉì¡¢µ÷ÕûÁÁ¶È¡¢²Ã¼ô¡¢¼Ó×ÖÄ»¡¢ÎÞ´¦Àí£¬Ã¿Öֱ任Éú³É100¸öÑù±¾¡£Ã¿¸öÑù±¾µÄÉú³É·½Ê½Îª£º´Ó1000¸öÊÓÆµÀïËæ»úѡȡһ¸öÊÓÆµ£¬²¢´ÓËùÓÐͼƬ֡ÀïËæ»úȡһ֡¡£ÕâÑù×ܹ²µÃµ½700¸ö´ý²éѯͼƬ¡£
¾Ö²¿ÌØÕ÷ÌáÈ¡°üº¬Á½²¿·ÖÄÚÈÝ£ºÌØÕ÷µã¼ì²âºÍÌØÕ÷µãÃèÊö¡£
3.2.1 SIFTÌØÕ÷ÌáÈ¡+SIFTÃèÊö×Ó
¶ÔËùÓÐµÄ¿â´æÍ¼Æ¬ÒÔ¼°´ý²éѯͼƬÓÃSIFTÌáÈ¡ÌØÕ÷£¬²¢ÀûÓÃÌØÕ÷´Ó¼ìË÷¿âÀï¼ìË÷700¸ö²âÊÔÑù±¾£¬¼ÆËãÕÙ»ØÂʺÍ׼ȷÂÊÈçÏ£º

½á¹ûÏÔʾ׼ȷÂʽϵͣ¬Í¨¹ý¹Û²ì´íÎó½á¹û·¢ÏÖ£¬²¿·ÖͼƬÌáÈ¡µ½µÄÌØÕ÷ÊýÄ¿½ÏÉÙ£¬ÉõÖÁÖ»ÓиöλÊý£¬¶øÕý³£Í¼Æ¬ÄÜ´ïµ½¼¸°Ùµ½ÉÏǧ¸öÌØÕ÷µã£¬ÌØÕ÷µãȱʧ»áµ¼Ö¼ìË÷ʱÒׯ¥Åäµ½´íÎóµÄÑù±¾¡£Í¨¹ýÉèÖá°×îµÍÑù±¾Êý¡±ÏÞÖÆ£¬µ±Ñù±¾Êý´óÓÚãÐֵʱ£¬ÈÏΪÆä²éѯ½á¹û¡°¿ÉÐÅ¡±¡£
¾²âÊÔ£¬½«¡°×îµÍÑù±¾Êý¡±ãÐÖµ¶¨Îª30£¬²¢¼ÓÈë¡°ÅųýÂÊ¡±Ö¸±ê£¬±íʾδ´ïµ½×îµÍÑù±¾Êý£¬¸Ã²éѯ¼Ç¼²»¿ÉÐÅ¡£½«ÌØÕ÷ÊýÌ«ÉÙµÄÑù±¾Åųýºó£¬ÔٴβâÊÔ½á¹ûÈçÏ£º

½á¹ûÏÔʾÔÚÔö¼ÓÁË¡°×îµÍÑù±¾Êý¡±ºÍ¡°ÅųýÂÊ¡±Ö¸±êºó£¬×¼È·ÂÊ´ó·ù¶ÈÌáÉý£¬µ«ÈÔÓÐ20% ×óÓÒµÄÅųýÂÊ£¬¼´ÓÐÎå·ÖÖ®Ò»µÄ²éѯÊÇûÓзµ»Ø¿ÉÐŽá¹ûµÄ¡£
3.2.2 Hessian AffineÌØÕ÷ÌáÈ¡+SIFTÃèÊö×Ó
Ϊ½øÒ»²½ÌáÉý׼ȷÂÊ£¬²Î¿¼[4]¹¤³ÌÃèÊö£¬½«SIFTÌØÕ÷µã¼ì²â»»³ÉHessian-AffineÌØÕ÷¼ì²â»áÓиüºÃµÄЧ¹û£¬¼´ÏÈÓÃHessian-Affine¼ì²âÌØÕ÷µã£¬ºóÓÃSIFTÃèÊö×ÓÃèÊöÌØÕ÷¡£»»ÓÃHessian-Affineºó£¬²âÊÔ½á¹ûÈçÏ£»

½á¹ûÏÔʾ£¬ÕÙ»ØÂʺÍ׼ȷÂʾùÓÐËùÌáÉý£¬ÇÒÅųýÂʽµÖÁ4%¡£
4. ½áÂÛ
ͨ¹ýÉè¼ÆÊµÑé²âÊÔ½á¹û·¢ÏÖ£¬»ùÓÚ¾Ö²¿²»±äÌØÕ÷×öÏàËÆ¶È¼ÆËã¾ßÓÐÁ¼ºÃµÄ¿¹¸ÉÈÅÄÜÁ¦£¬×¼È·¶ÈÓÅÓÚ´«Í³¸ÐÖª¹þÏ£Ëã·¨£¬¶ÔÐýת²»±äÐÔµÄÖ§³ÖÓÅÓÚ¾í»ýÉñ¾ÍøÂç¡£×îÖÕȨºâ¼ÆË㸴ÔӶȺͼìË÷ЧÂÊ£¬ÔÚ¶ËÉÏѡȡHessian-Affine×öÌØÕ÷µã¼ì²â£¬SIFT×öÃèÊö×ӵķ½Ê½½øÐÐͼÏñÏàËÆ¶È¼ÆËã¡£
5. Ç÷ÊÆÕ¹Íû
¾¡¹Ü»ùÓÚ¾Ö²¿ÌØÕ÷²»±äÐÔµÄͼÏñÏàËÆ¶È¼ÆËãÔÚ¿¹¸ÉÈÅÄÜÁ¦¼°¼ÆË㸴ÔÓ¶ÈÉÏÕ¼ÓÅ£¬µ«½öÄܱí´ïͼÏñdz²ãÌØÐÔ£¬¶ø¾í»ýÉñ¾ÍøÂç¾ßÓжà²ã´ÎÓïÒå±í´ïÄÜÁ¦£¬²»Í¬²ãËùÌáÈ¡µÄͼÏñÌØÕ÷¾ßÓв»Í¬º¬Ò壬µÍ²ã´Î±í´ï½ÇµãÌØÕ÷£¬Öмä²ã¾ÛºÏ½ÇµãÌØÕ÷±í´ïÎïÌ岿¼þ£¬¸ß²ã½øÒ»²½±í´ïÕû¸öÎïÌ壬ѡÔñ²»Í¬¾í»ý²ã»áÌáÈ¡³ö²»Í¬²ã´ÎµÄÌØÕ÷¡£ÔÚ¼ÆË㸴ÔӶȼ°¼ìË÷ЧÂʸßÒªÇóµÄ¿Í»§¶Ë½«¾Ö²¿ÌØÕ÷ÌáÈ¡Óë¾í»ýÉñ¾ÍøÂçÏà½áºÏ»¥ÏàÃÖ²¹²»×㣬ͻ³öÓÅÊÆ£¬¿ÉÄÜ»á´øÀ´¸üºÃµÄЧ¹û£¬Î´À´½«½øÒ»²½Ì½Ë÷¡£
|