Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
ÓÐȤµÄ»úÆ÷ѧϰ£º×î¼òÃ÷ÈëÃÅÖ¸ÄÏ
 
À´Ô´£ºAdam Geitgey ·¢²¼ÓÚ£º 2017-11-17
  3154  次浏览      27
 

ÔÚÌýµ½ÈËÃÇ̸ÂÛ»úÆ÷ѧϰµÄʱºò£¬ÄãÊDz»ÊǶÔËüµÄº­ÒåÖ»Óм¸¸öÄ£ºýµÄÈÏÊ¶ÄØ£¿ÄãÊDz»ÊÇÒѾ­Ñá¾ëÁËÔÚºÍͬʽ»Ì¸Ê±Ö»ÄÜÒ»Ö±µãÍ·£¿ÈÃÎÒÃǸıäһϰɣ¡

±¾Ö¸ÄϵĶÁÕß¶ÔÏóÊÇËùÓжԻúÆ÷ѧϰÓÐÇóÖªÓûµ«È´²»ÖªµÀÈçºÎ¿ªÍ·µÄÅóÓÑ¡£ÎҲºܶàÈËÒѾ­¶Á¹ýÁË¡°»úÆ÷ѧϰ¡±µÄά»ù°Ù¿Æ´ÊÌõ£¬±¶¸Ð´ìÕÛ£¬ÒÔΪûÈËÄܸø³öÒ»¸ö¸ß²ã´ÎµÄ½âÊÍ¡£±¾ÎľÍÊÇÄãÃÇÏëÒªµÄ¶«Î÷¡£

±¾ÎÄÄ¿±êÔÚÓÚÆ½Ò×½üÈË£¬ÕâÒâζ×ÅÎÄÖÐÓдóÁ¿µÄ¸ÅÀ¨¡£µ«ÊÇË­ÔÚºõÕâÐ©ÄØ£¿Ö»ÒªÄÜÈöÁÕß¶ÔÓÚML¸ü¸ÐÐËȤ£¬ÈÎÎñÒ²¾ÍÍê³ÉÁË¡£

ºÎΪ»úÆ÷ѧϰ£¿

»úÆ÷ѧϰÕâ¸ö¸ÅÄîÈÏΪ£¬¶ÔÓÚ´ý½âÎÊÌ⣬ÄãÎÞÐè±àдÈκÎרÃŵijÌÐò´úÂ룬·ºÐÍËã·¨£¨generic algorithms£©Äܹ»ÔÚÊý¾Ý¼¯ÉÏΪÄãµÃ³öÓÐȤµÄ´ð°¸¡£¶ÔÓÚ·ºÐÍËã·¨£¬²»ÓñàÂ룬¶øÊǽ«Êý¾ÝÊäÈ룬Ëü½«ÔÚÊý¾ÝÖ®ÉϽ¨Á¢ÆðËü×Ô¼ºµÄÂß¼­¡£

¾Ù¸öÀý×Ó£¬ÓÐÒ»ÀàËã·¨³ÆÎª·ÖÀàËã·¨£¬Ëü¿ÉÒÔ½«Êý¾Ý»®·ÖΪ²»Í¬µÄ×é±ð¡£Ò»¸öÓÃÀ´Ê¶±ðÊÖдÊý×ֵķÖÀàËã·¨£¬²»ÓÃÐÞ¸ÄÒ»ÐдúÂ룬¾Í¿ÉÒÔÓÃÀ´½«µç×ÓÓʼþ·ÖΪÀ¬»øÓʼþºÍÆÕͨÓʼþ¡£Ë㷨û±ä£¬µ«ÊÇÊäÈëµÄѵÁ·Êý¾Ý±äÁË£¬Òò´ËËüµÃ³öÁ˲»Í¬µÄ·ÖÀàÂß¼­¡£

»úÆ÷ѧϰËã·¨ÊǸöºÚºÐ£¬¿ÉÒÔÖØÓÃÀ´½â¾öºÜ¶à²»Í¬µÄ·ÖÀàÎÊÌâ¡£

¡°»úÆ÷ѧϰ¡±ÊÇÒ»¸öº­¸ÇÐÔÊõÓ¸²¸ÇÁË´óÁ¿ÀàËÆµÄ·ºÐÍËã·¨¡£

Á½Àà»úÆ÷ѧϰËã·¨

Äã¿ÉÒÔÈÏΪ»úÆ÷ѧϰËã·¨·ÖΪÁ½´óÀࣺ¼à¶½Ê½Ñ§Ï°£¨Supervised Learning£©ºÍ·Ç¼à¶½Ê½Ñ§Ï°£¨Unsupervised Learning£©¡£Á½ÕßÇø±ðºÜ¼òµ¥£¬µ«È´·Ç³£ÖØÒª¡£

¼à¶½Ê½Ñ§Ï°

¼ÙÉèÄãÊÇÒ»Ãû·¿²ú¾­¼Í£¬ÉúÒâÔ½×öÔ½´ó£¬Òò´ËÄã¹ÍÁËÒ»ÅúʵϰÉúÀ´°ïÄã¡£µ«ÊÇÎÊÌâÀ´ÁË¡ª¡ªÄã¿ÉÒÔ¿´Ò»ÑÛ·¿×Ó¾ÍÖªµÀËüµ½µ×Öµ¶àÉÙÇ®£¬ÊµÏ°ÉúûÓо­Ñ飬²»ÖªµÀÈçºÎ¹À¼Û¡£

ΪÁ˰ïÖúÄãµÄʵϰÉú£¨Ò²ÐíÊÇΪÁ˽â·ÅÄã×Ô¼ºÈ¥¶È¸ö¼Ù£©£¬Äã¾ö¶¨Ð´¸öСÈí¼þ£¬¿ÉÒÔ¸ù¾Ý·¿ÎÝ´óС¡¢µØ¶ÎÒÔ¼°ÀàËÆ·¿Îݵijɽ»¼ÛµÈÒòËØÀ´ÆÀ¹ÀÄãËùÔÚµØÇø·¿ÎݵļÛÖµ¡£

Äã°Ñ3¸öÔÂÀ´³ÇÀïÿ±Ê·¿Îݽ»Ò×¶¼Ð´ÁËÏÂÀ´£¬Ã¿Ò»µ¥Äã¶¼¼Ç¼ÁËÒ»³¤´®µÄϸ½Ú¡ª¡ªÎÔÊÒÊýÁ¿¡¢·¿ÎÝ´óС¡¢µØ¶ÎµÈµÈ¡£µ«×îÖØÒªµÄÊÇ£¬ÄãдÏÂÁË×îÖյijɽ»¼Û£º

ÕâÊÇÎÒÃǵġ°ÑµÁ·Êý¾Ý¡±¡£

ÎÒÃÇÒªÀûÓÃÕâЩѵÁ·Êý¾ÝÀ´±àдһ¸ö³ÌÐòÀ´¹ÀËã¸ÃµØÇøÆäËû·¿ÎݵļÛÖµ£º

Õâ¾Í³ÆÎª¼à¶½Ê½Ñ§Ï°¡£ÄãÒѾ­ÖªµÀÿһ¶°·¿ÎݵÄÊÛ¼Û£¬»»¾ä»°Ëµ£¬ÄãÖªµÀÎÊÌâµÄ´ð°¸£¬²¢¿ÉÒÔ·´ÏòÕÒ³ö½âÌâµÄÂß¼­¡£

ΪÁ˱àдÈí¼þ£¬Ä㽫°üº¬Ã¿Ò»Ì×·¿²úµÄѵÁ·Êý¾ÝÊäÈëÄãµÄ»úÆ÷ѧϰËã·¨¡£Ëã·¨³¢ÊÔÕÒ³öÓ¦¸ÃʹÓúÎÖÖÔËËãÀ´µÃ³ö¼Û¸ñÊý×Ö¡£

Õâ¾ÍÏñÊÇËãÊõÁ·Ï°Ì⣬ËãʽÖеÄÔËËã·ûºÅ¶¼±»²ÁÈ¥ÁË£º

ÌìÄÄ£¡Ò»¸öÒõÏÕµÄѧÉú½«ÀÏʦ´ð°¸ÉϵÄËãÊõ·ûºÅÈ«²ÁÈ¥ÁË¡£

¿´ÁËÕâЩÌ⣬ÄãÄÜÃ÷°×ÕâЩ²âÑéÀïÃæÊÇʲôÑùµÄÊýѧÎÊÌâÂð£¿ÄãÖªµÀ£¬ÄãÓ¦¸Ã¶ÔËãʽ×ó±ßµÄÊý×Ö¡°×öЩʲô¡±ÒԵóöËãʽÓұߵĴ𰸡£

ÔڼලʽѧϰÖУ¬ÄãÊÇÈüÆËã»úΪÄãËã³öÊý×Ö¼äµÄ¹ØÏµ¡£¶øÒ»µ©ÄãÖªµÀÁ˽â¾öÕâÀàÌØ¶¨ÎÊÌâËùÐèÒªµÄÊýѧ·½·¨ºó£¬Äã¾Í¿ÉÒÔ½â´ðͬÀàµÄÆäËüÎÊÌâÁË¡£

·Ç¼à¶½Ê½Ñ§Ï°

ÈÃÎÒÃǻص½¿ªÍ·ÄǸö·¿µØ²ú¾­¼ÍµÄÀý×Ó¡£ÒªÊÇÄã²»ÖªµÀÿ¶°·¿×ÓµÄÊÛ¼ÛÔõô°ì£¿¼´Ê¹ÄãËùÖªµÀµÄÖ»ÊÇ·¿ÎݵĴóС¡¢Î»ÖõÈÐÅÏ¢£¬ÄãÒ²¿ÉÒÔ¸ã³öºÜ¿áµÄ»¨Ñù¡£Õâ¾ÍÊÇËùνµÄ·Ç¼à¶½Ê½Ñ§Ï°¡£

¼´Ê¹Äã²»ÊÇÏëÈ¥Ô¤²âδ֪µÄÊý¾Ý£¨Èç¼Û¸ñ£©£¬ÄãÒ²¿ÉÒÔÔËÓûúÆ÷ѧϰÍê³ÉһЩÓÐÒâ˼µÄÊ¡£

Õâ¾ÍÓеãÏñÓÐÈ˸øÄãÒ»ÕÅÖ½£¬ÉÏÃæÁгöÁ˺ܶàÊý×Ö£¬È»ºó¶ÔÄã˵:¡°ÎÒ²»ÖªµÀÕâЩÊý×ÖÓÐʲôÒâÒ壬ҲÐíÄãÄÜ´ÓÖÐÕÒ³ö¹æÂÉ»òÊÇÄܽ«ËüÃÇ·ÖÀ࣬»òÊÇÆäËüʲô-×£ÄãºÃÔË£¡¡±

Äã¸ÃÔõô´¦ÀíÕâЩÊý¾ÝÄØ£¿Ê×ÏÈ£¬Äã¿ÉÒÔÓøöËã·¨×Ô¶¯µØ´ÓÊý¾ÝÖл®·Ö³ö²»Í¬µÄϸ·ÖÊг¡¡£Ò²ÐíÄã»á·¢ÏÖ´óѧ¸½½üµÄÂò·¿Õßϲ»¶»§ÐÍСµ«ÎÔÊÒ¶àµÄ·¿×Ó£¬¶ø½¼ÇøµÄÂò·¿Õ߯«ºÃÈýÎÔÊҵĴó»§ÐÍ¡£ÕâЩÐÅÏ¢¿ÉÒÔÖ±½Ó°ïÖúÄãµÄÓªÏú¡£

Ä㻹¿ÉÒÔ×÷¼þºÜ¿áµÄÊ£¬×Ô¶¯ÕÒ³ö·¿¼ÛµÄÀëȺÊý¾Ý£¬¼´ÓëÆäËüÊý¾ÝåÄÒìµÄÖµ¡£ÕâЩº×Á¢¼¦ÈºµÄ·¿²úÒ²ÐíÊǸßÂ¥´óÏ㬶øÄã¿ÉÒÔ½«×îÓÅÐãµÄÍÆÏúÔ±¼¯ÖÐÔÚÕâЩµØÇø£¬ÒòΪËûÃǵÄÓ¶½ð¸ü¸ß¡£

±¾ÎÄÓàϲ¿·ÖÎÒÃÇÖ÷ÒªÌÖÂۼලʽѧϰ£¬µ«Õâ²¢²»ÊÇÒòΪ·Ç¼à¶½Ê½Ñ§Ï°Óô¦²»´ó»òÊÇË÷È»ÎÞζ¡£Êµ¼ÊÉÏ£¬Ëæ×ÅËã·¨¸ÄÁ¼£¬²»Óý«Êý¾ÝºÍÕýÈ·´ð°¸ÁªÏµÔÚÒ»Æð£¬Òò´Ë·Ç¼à¶½Ê½Ñ§Ï°Õý±äµÃÔ½À´Ô½ÖØÒª¡£

ÀÏѧ¾¿Çë¿´:»¹ÓкܶàÆäËüÖÖÀàµÄ»úÆ÷ѧϰËã·¨¡£µ«³õѧʱÕâÑùÀí½â²»´íÁË¡£

Ì«¿áÁË£¬µ«ÊÇÆÀ¹À·¿¼ÛÕæÄܱ»¿´×÷¡°Ñ§Ï°¡±Âð£¿

×÷ΪÈËÀàµÄÒ»Ô±£¬ÄãµÄ´óÄÔ¿ÉÒÔÓ¦¸¶¾ø´ó¶àÊýÇé¿ö£¬²¢ÇÒûÓÐÈκÎÃ÷È·Ö¸ÁîÒ²Äܹ»Ñ§Ï°ÈçºÎ´¦ÀíÕâЩÇé¿ö¡£Èç¹ûÄã×ö·¿²ú¾­¼Íʱ¼äºÜ³¤£¬Äã¶ÔÓÚ·¿²úµÄºÏÊʶ¨¼Û¡¢ËüµÄ×î¼ÑÓªÏú·½Ê½ÒÔ¼°ÄÄЩ¿Í»§»á¸ÐÐËȤµÈµÈ¶¼»áÓÐÒ»ÖÖ±¾ÄܰãµÄ¡°¸Ð¾õ¡±¡£Ç¿È˹¤ÖÇÄÜ£¨Strong AI£©Ñо¿µÄÄ¿±ê¾ÍÊÇÒªÄܹ»ÓüÆËã»ú¸´ÖÆÕâÖÖÄÜÁ¦¡£

µ«ÊÇĿǰµÄ»úÆ÷ѧϰËã·¨»¹Ã»ÓÐÄÇôºÃ¡ª¡ªËüÃÇÖ»ÄÜרעÓڷdz£Ìض¨µÄ¡¢ÓÐÏÞµÄÎÊÌâ¡£Ò²ÐíÔÚÕâÖÖÇé¿öÏ£¬¡°Ñ§Ï°¡±¸üÌùÇе͍ÒåÊÇ¡°ÔÚÉÙÁ¿·¶ÀýÊý¾ÝµÄ»ù´¡ÉÏÕÒ³öÒ»¸öµÈʽÀ´½â¾öÌØ¶¨µÄÎÊÌ⡱¡£

²»ÐÒµÄÊÇ£¬¡°»úÆ÷ÔÚÉÙÁ¿·¶ÀýÊý¾ÝµÄ»ù´¡ÉÏÕÒ³öÒ»¸öµÈʽÀ´½â¾öÌØ¶¨µÄÎÊÌ⡱Õâ¸öÃû×ÖÌ«ÀÃÁË¡£ËùÒÔ×îºóÎÒÃÇÓá°»úÆ÷ѧϰ¡±È¡¶ø´úÖ®¡£

µ±È»£¬ÒªÊÇÄãÊÇÔÚ50ÄêÖ®ºóÀ´¶ÁÕâÆªÎÄÕ£¬ÄÇʱÎÒÃÇÒѾ­µÃ³öÁËÇ¿È˹¤ÖÇÄÜËã·¨£¬¶ø±¾ÎÄ¿´ÆðÀ´¾ÍÏñ¸öÀϹŶ­¡£Î´À´µÄÈËÀ࣬Ä㻹ÊDZð¶ÁÁË£¬½ÐÄãµÄ»úÆ÷ÆÍÈ˸øÄã×ö·ÝÈýÃ÷Öΰɡ£

ÈÃÎÒÃÇд´úÂë°É!

Ç°ÃæÀý×ÓÖÐÆÀ¹À·¿¼ÛµÄ³ÌÐò£¬Äã´òËãÔõÃ´Ð´ÄØ£¿ÍùÏ¿´Ö®Ç°£¬ÏÈ˼¿¼Ò»Ï°ɡ£

Èç¹ûÄã¶Ô»úÆ÷ѧϰһÎÞËùÖª£¬ºÜÓпÉÄÜÄã»á³¢ÊÔд³öһЩ»ù±¾¹æÔòÀ´ÆÀ¹À·¿¼Û£¬ÈçÏ£º

def estimate_house_sales_price(num_of_bedrooms, sqft, neighborhood):
price = 0

# In my area, the average house costs $200 per sqft
price_per_sqft = 200

if neighborhood == "hipsterton":
# but some areas cost a bit more
price_per_sqft = 400

elif neighborhood == "skid row":
# and some areas cost less
price_per_sqft = 100

# start with a base price estimate based on how big the place is
price = price_per_sqft * sqft

# now adjust our estimate based on the number of bedrooms
if num_of_bedrooms == 0:
# Studio apartments are cheap
price = price?¡ª?20000
else:
# places with more bedrooms are usually
# more valuable
price = price + (num_of_bedrooms * 1000)

return price

¼ÙÈçÄãÏñÕâÑùϹ漸¸öСʱ£¬Ò²Ðí»áÈ¡µÃÒ»µã³ÉЧ£¬µ«ÊÇÄãµÄ³ÌÐòÓÀ²»»áÍêÃÀ£¬¶øÇÒµ±¼Û¸ñ±ä»¯Ê±ºÜÄÑά»¤¡£

Èç¹ûÄÜÈüÆËã»úÕÒ³öʵÏÖÉÏÊöº¯Êý¹¦Äܵİ취£¬ÕâÑùÆñ²»¸üºÃ£¿Ö»Òª·µ»ØµÄ·¿¼ÛÊý×ÖÕýÈ·£¬Ë­»áÔÚºõº¯Êý¾ßÌå¸ÉÁËÐ©Ê²Ã´ÄØ£¿

def estimate_house_sales_price(num_of_bedrooms, sqft, neighborhood):
price = <computer, plz do some math for me>

return price

¿¼ÂÇÕâ¸öÎÊÌâµÄÒ»ÖֽǶÈÊǽ«·¿¼Û¿´×öÒ»ÍëÃÀζµÄÌÀ£¬¶øÌÀÖгɷ־ÍÊÇÎÔÊÒÊý¡¢Ãæ»ýºÍµØ¶Î¡£Èç¹ûÄãÄÜËã³öÿÖֳɷֶÔ×îÖյļ۸ñÓжà´óÓ°Ï죬ҲÐí¾ÍÄܵõ½¸÷ÖֳɷֻìºÏÆðÀ´ÐγÉ×îÖÕ¼Û¸ñµÄ¾ßÌå±ÈÀý¡£

ÕâÑù¿ÉÒÔ½«Äã×î³õµÄ³ÌÐò£¨È«ÊÇ·è¿ñµÄif elseÓï¾ä£©¼ò»¯³ÉÀàËÆÈçϵÄÑù×Ó£º

def estimate_house_sales_price(num_of_bedrooms, sqft, neighborhood):
price = 0

# a little pinch of this
price += num_of_bedrooms * .841231951398213

# and a big pinch of that
price += sqft * 1231.1231231

# maybe a handful of this
price += neighborhood * 2.3242341421

# and finally, just a little extra salt for good measure
price += 201.23432095

return price

Çë×¢ÒâÄÇЩÓôÖÌå±ê×¢µÄÉñÆæÊý×Ö¡ª¡ª.841231951398213, 1231.1231231,2.3242341421, ºÍ201.23432095¡£ËüÃdzÆÎªÈ¨ÖØ¡£Èç¹ûÎÒÃÇÄÜÕÒ³ö¶Ôÿ¶°·¿×Ó¶¼ÊÊÓõÄÍêÃÀÈ¨ÖØ£¬ÎÒÃǵĺ¯Êý¾ÍÄÜÔ¤²âËùÓеķ¿¼Û£¡

ÕÒ³ö×î¼ÑÈ¨ÖØµÄÒ»ÖÖ±¿°ì·¨ÈçÏÂËùʾ£º

²½Öè1£º

Ê×ÏÈ£¬½«Ã¿¸öÈ¨ÖØ¶¼ÉèΪ1.0£º

def estimate_house_sales_price(num_of_bedrooms, sqft, neighborhood):
price = 0

# a little pinch of this
price += num_of_bedrooms * 1.0

# and a big pinch of that
price += sqft * 1.0

# maybe a handful of this
price += neighborhood * 1.0

# and finally, just a little extra salt for good measure
price += 1.0

return price

²½Öè2£º

½«Ã¿¶°·¿²ú´øÈëÄãµÄº¯ÊýÔËË㣬¼ìÑé¹ÀËãÖµÓëÕýÈ·¼Û¸ñµÄÆ«Àë³Ì¶È£º

ÔËÓÃÄãµÄ³ÌÐòÔ¤²â·¿Îݼ۸ñ¡£

ÀýÈ磺ÉϱíÖеÚÒ»Ì×·¿²úʵ¼Ê³É½»¼ÛΪ25ÍòÃÀÔª£¬ÄãµÄº¯Êý¹À¼ÛΪ17.8Íò£¬ÕâÒ»Ì×·¿²úÄã¾Í²îÁË7.2Íò¡£

ÔÙ½«ÄãµÄÊý¾Ý¼¯ÖеÄÿÌ×·¿²ú¹À¼ÛÆ«Àëֵƽ·½ºóÇóºÍ¡£¼ÙÉèÊý¾Ý¼¯ÖÐÓÐ500Ì×·¿²ú½»Ò×£¬¹À¼ÛÆ«Àëֵƽ·½ÇóºÍ×ܼÆÎª86,123,373ÃÀÔª¡£Õâ¾Í·´Ó³ÁËÄãµÄº¯ÊýÏÖÔڵġ°ÕýÈ·¡±³Ì¶È¡£

ÏÖÔÚ£¬½«×ܼÆÖµ³ýÒÔ500£¬µÃµ½Ã¿Ì×·¿²úµÄ¹À¼ÛÆ«ÀëÆ½¾ùÖµ¡£½«Õâ¸öƽ¾ùÎó²îÖµ³ÆÎªÄ㺯ÊýµÄ´ú¼Û¡£

Èç¹ûÄãÄܵ÷ÕûÈ¨ÖØÊ¹µÃÕâ¸ö´ú¼Û±äΪ0£¬ÄãµÄº¯Êý¾ÍÍêÃÀÁË¡£ËüÒâζ×Å£¬¸ù¾ÝÊäÈëµÄÊý¾Ý£¬ÄãµÄ³ÌÐò¶Ôÿһ±Ê·¿²ú½»Ò׵ĹÀ¼Û¶¼ÊÇ·ÖºÁ²»²î¡£¶øÕâ¾ÍÊÇÎÒÃǵÄÄ¿±ê¡ª¡ª³¢ÊÔ²»Í¬µÄÈ¨ÖØÖµÒÔʹ´ú¼Û¾¡¿ÉÄܵĵ͡£

²½Öè3£º

²»¶ÏÖØ¸´²½Öè2£¬³¢ÊÔËùÓпÉÄܵÄÈ¨ÖØÖµ×éºÏ¡£ÄÄÒ»¸ö×éºÏʹµÃ´ú¼Û×î½Ó½üÓÚ0£¬Ëü¾ÍÊÇÄãҪʹÓõģ¬ÄãÖ»ÒªÕÒµ½ÁËÕâÑùµÄ×éºÏ£¬ÎÊÌâ¾ÍµÃµ½Á˽â¾ö!

˼ÏëÈŶ¯Ê±¼ä

ÕâÌ«¼òµ¥ÁË£¬¶Ô°É£¿ÏëÒ»Ïë¸Õ²ÅÄã×öÁËЩʲô¡£ÄãÈ¡µÃÁËһЩÊý¾Ý£¬½«ËüÃÇÊäÈëÖÁÈý¸öͨÓõļòµ¥²½ÖèÖУ¬×îºóÄãµÃµ½ÁËÒ»¸ö¿ÉÒÔ¶ÔÄãËùÔÚÇøÓòµÄ·¿ÎݽøÐйÀ¼ÛµÄº¯Êý¡£·¿¼ÛÍø£¬Òªµ±ÐÄ¿©£¡

µ«ÊÇÏÂÃæµÄÊÂʵ¿ÉÄÜ»áÈÅÂÒÄãµÄ˼Ï룺

1.¹ýÈ¥40ÄêÀ´£¬ºÜ¶àÁìÓò£¨ÈçÓïÑÔѧ/·­Òëѧ£©µÄÑо¿±íÃ÷£¬ÕâÖÖͨÓõġ°½Á¶¯Êý¾ÝÌÀ¡±£¨ÎÒ±àÔìµÄ´Ê£©Ê½µÄѧϰËã·¨ÒѾ­Ê¤¹ýÁËÐèÒªÀûÓÃÕæÈËÃ÷È·¹æÔòµÄ·½·¨¡£»úÆ÷ѧϰµÄ¡°±¿¡±°ì·¨×îÖÕ´ò°ÜÁËÈËÀàר¼Ò¡£

2.Äã×îºóд³öµÄº¯ÊýÕæÊDZ¿£¬ËüÉõÖÁ²»ÖªµÀʲôÊÇ¡°Ãæ»ý¡±ºÍ¡°ÎÔÊÒÊý¡±¡£ËüÖªµÀµÄÖ»ÊǽÁ¶¯£¬¸Ä±äÊý×ÖÀ´µÃµ½ÕýÈ·µÄ´ð°¸¡£

3.ºÜ¿ÉÄÜÄã¶¼²»ÖªµÀΪºÎÒ»×éÌØÊâµÄÈ¨ÖØÖµÄÜÆðЧ¡£ËùÒÔÄãÖ»ÊÇд³öÁËÒ»¸öÄãʵ¼ÊÉϲ¢²»Àí½âÈ´ÄÜÖ¤Ã÷µÄº¯Êý¡£

4.ÊÔÏëһϣ¬ÄãµÄ³ÌÐòÀïûÓÐÀàËÆ¡°Ãæ»ý¡±ºÍ¡°ÎÔÊÒÊý¡±ÕâÑùµÄ²ÎÊý£¬¶øÊǽÓÊÜÁËÒ»×éÊý×Ö¡£¼ÙÉèÿ¸öÊý×Ö´ú±íÁËÄã³µ¶¥°²×°µÄÉãÏñÍ·²¶×½µÄ»­ÃæÖеÄÒ»¸öÏñËØ£¬ÔÙ½«Ô¤²âµÄÊä³ö²»³ÆÎª¡°¼Û¸ñ¡±¶øÊǽÐ×ö¡°·½ÏòÅÌת¶¯¶ÈÊý¡±£¬ÕâÑùÄã¾ÍµÃµ½ÁËÒ»¸ö³ÌÐò¿ÉÒÔ×Ô¶¯²Ù×ÝÄãµÄÆû³µÁË£¡

Ì«·è¿ñÁË£¬¶Ô°É£¿

²½Öè3Öеġ°³¢ÊÔÿ¸öÊý×Ö¡±Ôõô»ØÊ£¿

ºÃ°É£¬µ±È»Äã²»¿ÉÄܳ¢ÊÔËùÓпÉÄܵÄÈ¨ÖØÖµÀ´ÕÒµ½Ð§¹û×îºÃµÄ×éºÏ¡£ÄÇ¿ÉÕæÒª»¨ºÜ³¤Ê±¼ä£¬ÒòΪҪ³¢ÊÔµÄÊý×Ö¿ÉÄÜÎÞÇîÎÞ¾¡¡£

Ϊ±ÜÃâÕâÖÖÇé¿ö£¬Êýѧ¼ÒÃÇÕÒµ½Á˺ܶà´ÏÃ÷µÄ°ì·¨À´¿ìËÙÕÒµ½ÓÅÐãµÄÈ¨ÖØÖµ£¬¶ø²»ÐèÒª³¢ÊÔ¹ý¶à¡£ÏÂÃæÊÇÆäÖÐÒ»ÖÖ£º

Ê×ÏÈ£¬Ð´³öÒ»¸ö¼òµ¥µÄµÈʽ±íʾǰÊö²½Öè2£º

ÕâÊÇÄãµÄ´ú¼Ûº¯Êý¡£

½Ó×Å£¬ÈÃÎÒÃǽ«Õâͬһ¸öµÈʽÓûúÆ÷ѧϰµÄÊýѧÊõÓÏÖÔÚÄã¿ÉÒÔºöÂÔËüÃÇ£©½øÐÐÖØÐ´£º

¦È±íʾµ±Ç°µÄÈ¨ÖØÖµ¡£ J(¦È) ÒâΪ¡°µ±Ç°È¨ÖØÖµ¶ÔÓ¦µÄ´ú¼Û¡±¡£

Õâ¸öµÈʽ±íʾÎÒÃǵĹÀ¼Û³ÌÐòÔÚµ±Ç°È¨ÖØÖµÏÂÆ«Àë³Ì¶ÈµÄ´óС¡£

Èç¹û½«ËùÓи³¸øÎÔÊÒÊýºÍÃæ»ýµÄ¿ÉÄÜÈ¨ÖØÖµÒÔͼÐÎÐÎʽÏÔʾ£¬ÎÒÃÇ»áµÃµ½ÀàËÆÏÂͼµÄͼ±í£º

´ú¼Ûº¯ÊýµÄͼÐÎÏñÒ»Ö§Íë¡£×ÝÖá±íʾ´ú¼Û¡£

ͼÖÐÀ¶É«µÄ×îµÍµã¾ÍÊÇ´ú¼Û×îµÍµÄµØ·½¡ª¡ª¼´ÎÒÃǵijÌÐòÆ«Àë×îС¡£×î¸ßµãÒâζ×ÅÆ«Àë×î´ó¡£ËùÒÔ£¬Èç¹ûÎÒÃÇÄÜÕÒµ½Ò»×éÈ¨ÖØÖµ´øÁìÎÒÃǵ½´ïͼÖеÄ×îµÍµã£¬ÎÒÃǾÍÕÒµ½Á˴𰸣¡

Òò´Ë£¬ÎÒÃÇÖ»ÐèÒªµ÷ÕûÈ¨ÖØÖµÊ¹ÎÒÃÇÔÚͼÉÏÄÜÏò×Å×îµÍµã¡°×ßÏÂÆÂ·¡±¡£Èç¹û¶ÔÓÚÈ¨ÖØµÄϸСµ÷½ÚÄÜһֱʹÎÒÃDZ£³ÖÏò×îµÍµãÒÆ¶¯£¬ÄÇô×îÖÕÎÒÃDz»Óó¢ÊÔÌ«¶àÈ¨ÖØÖµ¾ÍÄܵ½´ïÄÇÀï¡£

Èç¹ûÄ㻹¼ÇµÃÒ»µã΢»ý·ÖµÄ»°£¬ÄãÒ²Ðí¼ÇµÃÈç¹ûÄã¶ÔÒ»¸öº¯ÊýÇóµ¼£¬½á¹û»á¸æËßÄ㺯ÊýÔÚÈÎÒ»µãµÄбÂÊ¡£»»¾ä»°Ëµ£¬¶ÔÓÚͼÉϸø¶¨Ò»µã£¬Ëü¸æËßÎÒÃÇÄÇÌõ·ÊÇÏÂÆÂ·¡£ÎÒÃÇ¿ÉÒÔÀûÓÃÕâÒ»µã³¯µ×²¿½ø·¢¡£

ËùÒÔ£¬Èç¹ûÎÒÃǶԴú¼Ûº¯Êý¹ØÓÚÿһ¸öÈ¨ÖØÇ󯫵¼£¬ÄÇôÎÒÃǾͿÉÒÔ´Óÿһ¸öÈ¨ÖØÖмõÈ¥¸ÃÖµ¡£ÕâÑù¿ÉÒÔÈÃÎÒÃǸü¼Ó½Ó½üɽµ×¡£Ò»Ö±ÕâÑù×ö£¬×îÖÕÎÒÃǽ«µ½´ïµ×²¿£¬µÃµ½È¨ÖصÄ×îÓÅÖµ¡££¨¶Á²»¶®£¿²»Óõ£ÐÄ£¬½Ó×ÅÍù϶Á£©¡£

ÕâÖÖÕÒ³ö×î¼ÑÈ¨ÖØµÄ°ì·¨±»³ÆÎªÅúÁ¿ÌݶÈϽµ£¬ÉÏÃæÊǶÔËüµÄ¸ß¶È¸ÅÀ¨¡£Èç¹ûÏë¸ã¶®Ï¸½Ú£¬²»Òªº¦Å£¬¼ÌÐøÉîÈëÏÂÈ¥°É¡£

µ±ÄãʹÓûúÆ÷ѧϰËã·¨¿âÀ´½â¾öʵ¼ÊÎÊÌ⣬ËùÓÐÕâЩ¶¼ÒѾ­ÎªÄã×¼±¸ºÃÁË¡£µ«Ã÷°×һЩ¾ßÌåϸ½Ú×ÜÊÇÓÐÓõġ£

»¹ÓÐʲôÄãËæ±ã¾ÍÂÔ¹ýÁË£¿

ÉÏÃæÎÒÃèÊöµÄÈý²½Ëã·¨±»³ÆÎª¶àÔªÏßÐԻع顣Äã¹ÀËãµÈʽÊÇÔÚÇóÒ»ÌõÄܹ»ÄâºÏËùÓз¿¼ÛÊý¾ÝµãµÄÖ±Ïß¡£È»ºó£¬ÄãÔÙ¸ù¾Ý·¿¼ÛÔÚÄãµÄÖ±ÏßÉÏ¿ÉÄܳöÏÖµÄλÖÃÓÃÕâ¸öµÈʽÀ´¹ÀËã´Óδ¼û¹ýµÄ·¿Îݵļ۸ñ¡£Õâ¸öÏë·¨ÍþÁ¦Ç¿´ó£¬¿ÉÒÔÓÃËüÀ´½â¾ö¡°Êµ¼Ê¡±ÎÊÌâ¡£

µ«ÊÇ£¬ÎÒΪÄãչʾµÄÕâÖÖ·½·¨¿ÉÄÜÔÚ¼òµ¥µÄÇé¿öÏÂÓÐЧ£¬Ëü²»»áÔÚËùÓÐÇé¿ö϶¼ÓÐÓá£Ô­ÒòÖ®Ò»ÊÇÒòΪ·¿¼Û²»»áÒ»Ö±ÄÇô¼òµ¥µØ¸úËæÒ»ÌõÁ¬ÐøÖ±Ïß¡£

µ«ÊÇ£¬ÐÒÔ˵ÄÊÇ£¬Óкܶà°ì·¨À´´¦ÀíÕâÖÖÇé¿ö¡£¶ÔÓÚ·ÇÏßÐÔÊý¾Ý£¬ºÜ¶àÆäËûÀàÐ͵ĻúÆ÷ѧϰËã·¨¿ÉÒÔ´¦Àí£¨ÈçÉñ¾­ÍøÂç»òÓкËÏòÁ¿»ú£©¡£»¹Óкܶ෽·¨ÔËÓÃÏßÐԻعé¸üÁé»î£¬Ïëµ½ÁËÓøü¸´ÔÓµÄÏßÌõÀ´ÄâºÏ¡£ÔÚËùÓеÄÇé¿öÖУ¬Ñ°ÕÒ×îÓÅÈ¨ÖØÖµÕâÒ»»ù±¾Ë¼Â·ÒÀÈ»ÊÊÓá£

»¹ÓУ¬ÎÒºöÂÔÁ˹ýÄâºÏµÄ¸ÅÄî¡£ºÜÈÝÒ×ÅöÉÏÕâÑùÒ»×éÈ¨ÖØÖµ£¬ËüÃǶÔÓÚÄãԭʼÊý¾Ý¼¯Öеķ¿¼Û¶¼ÄÜÍêÃÀÔ¤²â£¬µ«¶ÔÓÚԭʼÊý¾Ý¼¯Ö®ÍâµÄÈκÎз¿Îݶ¼Ô¤²â²»×¼¡£ÕâÖÖÇé¿öµÄ½â¾öÖ®µÀÒ²Óв»ÉÙ£¨ÈçÕýÔò»¯ÒÔ¼°Ê¹Óý»²æÑéÖ¤Êý¾Ý¼¯£©¡£Ñ§»áÈçºÎ´¦ÀíÕâÒ»ÎÊÌâ¶ÔÓÚ˳ÀûÓ¦ÓûúÆ÷ѧϰÖÁ¹ØÖØÒª¡£

»»ÑÔÖ®£¬»ù±¾¸ÅÄî·Ç³£¼òµ¥£¬ÒªÏëÔËÓûúÆ÷ѧϰµÃµ½ÓÐÓõĽá¹û»¹ÐèҪһЩ¼¼Çɺ;­Ñé¡£µ«ÊÇ£¬ÕâÊÇÿ¸ö¿ª·¢Õß¶¼ÄÜѧ»áµÄ¼¼ÇÉ¡£

»úÆ÷ѧϰ·¨Á¦ÎÞ±ßÂð£¿

Ò»µ©Ä㿪ʼÃ÷°×»úÆ÷ѧϰ¼¼ÊõºÜÈÝÒ×Ó¦ÓÃÓÚ½â¾öÃ²ËÆºÜÀ§ÄѵÄÎÊÌ⣨ÈçÊÖдʶ±ð£©£¬ÄãÐÄÖлáÓÐÒ»Öָоõ£¬Ö»ÒªÓÐ×ã¹»µÄÊý¾Ý£¬Äã¾ÍÄܹ»ÓûúÆ÷ѧϰ½â¾öÈκÎÎÊÌâ¡£Ö»ÐèÒª½«Êý¾ÝÊäÈë½øÈ¥£¬¾ÍÄÜ¿´µ½¼ÆËã»ú±äÏ··¨Ò»ÑùÕÒ³öÄâºÏÊý¾ÝµÄµÈʽ¡£

µ«ÊǺÜÖØÒªµÄÒ»µãÄãÒª¼Çס£¬»úÆ÷ѧϰֻÄܶÔÓÃÄãÕ¼ÓеÄÊý¾Ýʵ¼Ê¿É½âµÄÎÊÌâ²ÅÊÊÓá£

ÀýÈ磬Èç¹ûÄ㽨Á¢ÁËÒ»¸öÄ£ÐÍÀ´¸ù¾ÝÿÌ×·¿ÎÝÄÚÅèÔÔÊýÁ¿À´Ô¤²â·¿¼Û£¬Ëü¾ÍÓÀÔ¶²»»á³É¹¦¡£·¿ÎÝÄÚÅèÔÔÊýÁ¿ºÍ·¿¼ÛÖ®¼äûÓÐÈκεĹØÏµ¡£ËùÒÔ£¬ÎÞÂÛËüÔõôȥ³¢ÊÔ£¬¼ÆËã»úÒ²ÍÆµ¼²»³öÁ½ÕßÖ®¼äµÄ¹ØÏµ¡£

ÄãÖ»ÄܶÔʵ¼Ê´æÔڵĹØÏµ½¨Ä£¡£

ÔõÑùÉîÈëѧϰ»úÆ÷ѧϰ

ÎÒÈÏΪ£¬µ±Ç°»úÆ÷ѧϰµÄ×î´óÎÊÌâÊÇËüÖ÷Òª»îÔ¾ÓÚѧÊõ½çºÍÉÌÒµÑо¿×éÖ¯ÖС£¶ÔÓÚȦÍâÏëÒªÓиö´óÌåÁË½â¶ø²»ÊÇÏë³ÉΪר¼ÒµÄÈËÃÇ£¬¼òµ¥Ò×¶®µÄѧϰ×ÊÁϲ»¶à¡£µ«ÊÇÕâÒ»Çé¿öÿһÌì¶¼ÔÚ¸ÄÉÆ¡£

Îâ¶÷´ï½ÌÊÚ£¨Andrew Ng£©ÔÚCourseraÉϵĻúÆ÷ѧϰÃâ·Ñ¿Î³Ì·Ç³£²»´í¡£ÎÒÇ¿ÁÒ½¨ÒéÓÉ´ËÈëÃÅ¡£ÈκÎÓµÓмÆËã»ú¿ÆÑ§Ñ§Î»¡¢»¹ÄܼÇסһµãµãÊýѧµÄÈËÓ¦¸Ã¶¼ÄÜÀí½â¡£

ÁíÍ⣬Ä㻹¿ÉÒÔÏÂÔØ°²×°SciKit-Learn£¬ÓÃËüÀ´ÊÔÑé³ÉǧÉÏÍòµÄ»úÆ÷ѧϰËã·¨¡£ËüÊÇÒ»¸öpython¿ò¼Ü£¬¶ÔÓÚËùÓеıê×¼Ëã·¨¶¼ÓС°ºÚºÐ¡±°æ±¾¡£

   
3154 ´Îä¯ÀÀ       27
Ïà¹ØÎÄÕÂ

»ùÓÚͼ¾í»ýÍøÂçµÄͼÉî¶Èѧϰ
×Ô¶¯¼ÝÊ»ÖеÄ3DÄ¿±ê¼ì²â
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
ÏîĿʵս£ºÈçºÎ¹¹½¨ÖªÊ¶Í¼Æ×
 
Ïà¹ØÎĵµ

5GÈ˹¤ÖÇÄÜÎïÁªÍøµÄµäÐÍÓ¦ÓÃ
Éî¶ÈѧϰÔÚ×Ô¶¯¼ÝÊ»ÖеÄÓ¦ÓÃ
ͼÉñ¾­ÍøÂçÔÚ½»²æÑ§¿ÆÁìÓòµÄÓ¦ÓÃÑо¿
ÎÞÈË»úϵͳԭÀí
Ïà¹Ø¿Î³Ì

È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ&TensorFlow
»úÆ÷ÈËÈí¼þ¿ª·¢¼¼Êõ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
ͼÏñ´¦ÀíËã·¨·½·¨Óëʵ¼ù