ʲôÊdzÌÐò£¨Program£©
¼ÆËã»ú³ÌÐò£¬ÊÇָΪÁ˵õ½Ä³ÖÖ½á¹û¶ø¿ÉÒÔÓɼÆËã»ú£¨µÈ¾ßÓÐÐÅÏ¢´¦ÀíÄÜÁ¦µÄ×°Öã©Ö´ÐеĴúÂ뻯ָÁîÐòÁУ¨»òÕß¿ÉÒÔ±»×Ô¶¯×ª»»³É´úÂ뻯ָÁîÐòÁеķûºÅ»¯Ö¸ÁîÐòÁлòÕß·ûºÅ»¯Óï¾äÐòÁУ©¡£
ͨË×½²£¬¼ÆËã»ú¸øÈ˸ɻµ«Ëü²»ÊÇÈË£¬ÉõÖÁ²»Èç¹·¶®È˵ÄÐèÒª£¨¡¶Ð¡ÑòФ¶÷¡·ÀïµÄ¹·ÊǶàô´ÏÃ÷¿É°®ÓÖÖÒ³ÏÓÚÖ÷ÈË£©¡£ÄÇÔõôÈÃËü¸É»îÄØ£¬ÄǾÍÐèÒª³ÌÐòÔ±ÓÃijÖÖ±à³ÌÓïÑÔÀ´Ð´³ÌÐò£¬±à³ÌÓïÑÔ¾ÍÊǼÆËã»úÄÜÀí½âµÄÓïÑÔ£¬¼ÆËã»ú¿ÉÒÔÖ´ÐÐÕâЩ³ÌÐò£¨Ö¸Á£¬×îÖÕÍê³ÉÈÎÎñ¡£
ϱߵÄC++³ÌÐòÊÇÍê³ÉnµÄ½×³Ë£º
int n = std::atoi(argv[1]);
//ÇónµÄ½×³Ë
double result = 1.0;
for (int i = 2; i <= n; i++) {
result *= i;
}
std::cout << n << "µÄ½×³ËÊÇ£º"
<< result << std::endl; |
ʲôÊÇËã·¨£¨Algorithm£©
Ëã·¨Êǽâ¾öÌØ¶¨ÎÊÌâÇó½â²½ÖèµÄÃèÊö£¬ÔÚ¼ÆËã»úÖбíÏÖΪָÁîµÄÓÐÏÞÐòÁУ¬²¢ÇÒÿÌõÖ¸Áî±íʾһ¸ö»òÕß¶à¸ö²Ù×÷¡£
¾Ù¸ö¼òµ¥µÄÀý×Ó£¬²¢ÇÒ´ó¼ÒÉú»îÖж¼ÄÜÓõÃÉϵġ£ÏÖÔÚ×ö¸öСÓÎÏ·£¬AÔÚÖ½ÉÏËæ»úдÁËÒ»¸ö1µ½100¼äµÄÕûÊý£¬BÈ¥²Â£¬²Â¶ÔµÄ»°ÓÎÏ·½áÊø£¬²Â´íµÄ»°A»á¸æËßB²ÂµÄСÁË»¹ÊÇ´óÁË¡£ÄÇôB»áÔõô×öÄØ£¬µÚÒ»´Î¿Ï¶¨È¥²Â50£¬Ã¿´Î¶¼²ÂÖмäÊý¡£ÎªÊ²Ã´ÄØ£¿ÒòΪÕâÑù×Çé¿öÏ£¨log2100£©ÁùÆß´Î¾ÍÄܲµ½¡£
Õâ¾ÍÊǶþ·Ö²éÕÒ£¬Éú»îÖпÉÄܾͻáÓõõ½£¬¶øÔÚÈí¼þ¿ª·¢ÖÐÒ²¾³£»áÓõõ½¡£
ÔÙÀ´¿´Ò»¸öÉÔ΢¸´ÔÓÒ»µãµãµÄËã·¨£¬¡¾¿ìËÙÅÅÐò¡¿£¬ÃæÊÔÖп¼µÄƵÂʷdz£¸ß·Ç³£¸ß£¬ÉõÖÁ¿ÉÒÔ˵ÊDZؿ¼¡£

ʲôÊÇ»úÆ÷ѧϰËã·¨£¨Machine Learning£©
»úÆ÷ѧϰµÄ¶¨Òå
¡¶»úÆ÷ѧϰ¡·ÊéÖе͍Ò壺
¹ØÓÚijÀàÈÎÎñ T ºÍÐÔÄܶÈÁ¿P£¬Èç¹ûÒ»¸ö¼ÆËã»ú³ÌÐòÄÜÔÚTÉÏÒÔPºâÁ¿µÄÐÔÄÜËæ×žÑéE¶ø×ÔÎÒÍêÉÆ£¬ÄÇôÎÒÃdzÆÕâ¸ö¼ÆËã»ú³ÌÐòÔÚ´Ó¾ÑéEÖÐѧϰ¡£
±ÈÈçAlphaGo£º
ÈÎÎñ T £ºÏÂÆå
ÐÔÄܱê×¼ P £º»÷°Ü¶ÔÊֵİٷֱÈ
ѵÁ·¾Ñ飺ºÍ×Ô¼º¶ÔÞÄ»òÕß±ÈÈü¾Ñé¡£
ÔÙ±ÈÈç×Ô¶¯¼ÝÊ»£º
ÈÎÎñT : ͨ¹ýÊÓÆµ´«¸ÐÆ÷ÔÚ¸ßËÙ¹«Â·ÉÏÐÐÊ»
ÐÔÄܱê×¼P£ºÆ½¾ùÎÞ²î´íÐÐÊ»Àï³Ì
ѵÁ·¾ÑéE£º×¢ÊÓÈËÀà¼ÝÊ»Ê±Â¼ÖÆµÄһϵÁÐͼÏñºÍ¼ÝʻָÁî¡£
°Ù¶È°Ù¿ÆµÄ¶¨Ò壺
»úÆ÷ѧϰ(Machine Learning, ML)ÊÇÒ»ÃŶàÁìÓò½»²æÑ§¿Æ£¬Éæ¼°¸ÅÂÊÂÛ¡¢Í³¼ÆÑ§¡¢±Æ½üÂÛ¡¢Í¹·ÖÎö¡¢Ëã·¨¸´ÔÓ¶ÈÀíÂ۵ȶàÃÅѧ¿Æ¡£×¨ÃÅÑо¿¼ÆËã»úÔõÑùÄ£Äâ»òʵÏÖÈËÀàµÄѧϰÐÐΪ£¬ÒÔ»ñȡеÄ֪ʶ»ò¼¼ÄÜ£¬ÖØÐÂ×éÖ¯ÒÑÓеÄ֪ʶ½á¹¹Ê¹Ö®²»¶Ï¸ÄÉÆ×ÔÉíµÄÐÔÄÜ¡£
ËüÊÇÈ˹¤ÖÇÄܵĺËÐÄ£¬ÊÇʹ¼ÆËã»ú¾ßÓÐÖÇÄܵĸù±¾Í¾¾¶£¬ÆäÓ¦Óñ鼰È˹¤ÖÇÄܵĸ÷¸öÁìÓò£¬ËüÖ÷ҪʹÓùéÄÉ¡¢×ۺ϶ø²»ÊÇÑÝÒï¡£
»úÆ÷ѧϰµÄÖ÷ÒªÈÎÎñ
¼à¶½Ñ§Ï°£º
£¨1£©·ÖÀࣺ½«ÊµÀýÊý¾Ý»®·Öµ½ºÏÊʵķÖÀàÖС£
KNN(k-½üÁÚËã·¨)¡¢¾ö²ßÊ÷¡¢ÆÓËØ±´Ò¶Ë¹¡¢Logistic»Ø¹é¡¢SVM(Ö§³ÖÏòÁ¿»ý)¡£

£¨2£©»Ø¹é£ºÔ¤²âÊýÖµÐÍÊý¾Ý¡£

Î޼ලѧϰ£º
£¨1£©¾ÛÀࣺ½«Êý¾Ý¼¯ºÏ·Ö³ÉÓÉÀàËÆµÄ¶ÔÏó×é³ÉµÄ¶à¸öÀàµÄ¹ý³Ì¡£
K-MEANS(K¾ùÖµ¾ÛÀà) 
Éñ¾ÍøÂ磨Neural Network£©ÓëÉî¶Èѧϰ£¨Deep Learning£©
ÉúÎïѧÆôʾ
È˹¤Éñ¾ÍøÂçANNµÄÑо¿Ò»¶¨³Ì¶ÈÉÏÊܵ½ÁËÉúÎïѧµÄÆô·¢£¬ÉúÎïµÄѧϰϵͳÓÉÏ໥Á¬½ÓµÄÉñ¾Ôª£¨neuron£©×é³ÉµÄÒì³£¸´ÔÓµÄÍø¸ñ¡£¶øÈ˹¤Éñ¾ÍøÂçÓÉһϵÁмòµ¥µÄµ¥ÔªÏ໥Ãܼ¯Á¬½Ó¹¹³ÉµÄ£¬ÆäÖÐÿһ¸öµ¥ÔªÓÐÒ»¶¨ÊýÁ¿µÄʵֵÊäÈ룬²¢²úÉúµ¥Ò»µÄʵÊýÖµÊä³ö¡£
¾Ý¹À¼ÆÈËÀàµÄ´óÄÔÊÇÓÉ´óÔ¼1011´Î·½¸öÉñ¾ÔªÏ໥Á¬½Ó×é³ÉµÄÃܼ¯ÍøÂ磬ƽ¾ùÿ¸öÉñ¾ÔªÓëÆäËû104¸öÉñ¾ÔªÏàÁ¬¡£Éñ¾ÔªµÄ»îÐÔͨ³£±»Í¨ÏòÆäËûÉñ¾ÔªµÄÁ¬½Ó¼¤»î»òÒÖÖÆ¡£
ÉúÎïµÄÉñ¾Ôª£º

È˹¤Éñ¾Ôª£¨¸ÐÖª»ú£©£º 
¶à²ã¸ÐÖª»ú£º 
Éñ¾ÍøÂç±íʾ
1993ÄêµÄALVINNϵͳÊÇANNѧϰµÄÒ»¸öµäÐÍʵÀý£¬Õâ¸öϵͳʹÓÃÒ»¸öѧϰµ½µÄANNÒÔÕý³£µÄËÙ¶ÈÔÚ¸ßËÙ¹«Â·ÉϼÝÊ»Æû³µ¡£ANNµÄÊäÈëÊÇÒ»¸ö30*32ÏñËØµÄÍø¸ñ£¬ÏñËØµÄÁÁ¶ÈÀ´×ÔÒ»¸ö°²×°ÔÚ³µÁ¾ÉϵÄǰÏòÉãÏñ»ú¡£ANNµÄÊä³öÊdzµÁ¾ÐÐÊ»µÄ·½Ïò¡£

dz²ãѧϰ
20ÊÀ¼Í80Äê´úÄ©ÆÚ£¬ÓÃÓÚÈ˹¤Éñ¾ÍøÂçµÄ·´Ïò´«²¥Ëã·¨£¨Ò²½ÐBack PropagationËã·¨»òÕßBPËã·¨£©µÄ·¢Ã÷£¬¸ø»úÆ÷ѧϰ´øÀ´ÁËÏ£Íû£¬ÏÆÆðÁË»ùÓÚͳ¼ÆÄ£Ð͵ĻúÆ÷ѧϰÈȳ±¡£Õâ¸öÈȳ±Ò»Ö±³ÖÐøµ½½ñÌì¡£ÈËÃÇ·¢ÏÖ£¬ÀûÓÃBPËã·¨¿ÉÒÔÈÃÒ»¸öÈ˹¤Éñ¾ÍøÂçÄ£ÐÍ´Ó´óÁ¿ÑµÁ·Ñù±¾ÖÐѧϰͳ¼Æ¹æÂÉ£¬´Ó¶ø¶Ôδ֪ʼþ×öÔ¤²â¡£ÕâÖÖ»ùÓÚͳ¼ÆµÄ»úÆ÷ѧϰ·½·¨±ÈÆð¹ýÈ¥»ùÓÚÈ˹¤¹æÔòµÄϵͳ£¬ÔÚºÜ¶à·½ÃæÏÔ³öÓÅÔ½ÐÔ¡£Õâ¸öʱºòµÄÈ˹¤Éñ¾ÍøÂ磬ËäÒ²±»³Æ×÷¶à²ã¸ÐÖª»ú£¨Multi-layer
Perceptron£©£¬µ«Êµ¼ÊÊÇÖÖÖ»º¬ÓÐÒ»²ãÒþ²ã½ÚµãµÄdz²ãÄ£ÐÍ¡£
20ÊÀ¼Í90Äê´ú£¬¸÷ÖÖ¸÷ÑùµÄdz²ã»úÆ÷ѧϰģÐÍÏà¼Ì±»Ìá³ö£¬ÀýÈçÖ§³ÅÏòÁ¿»ú£¨SVM£¬Support Vector
Machines£©¡¢ Boosting¡¢×î´óìØ·½·¨£¨ÈçLR£¬Logistic Regression£©µÈ¡£ÕâЩģÐ͵Ľṹ»ù±¾ÉÏ¿ÉÒÔ¿´³É´øÓÐÒ»²ãÒþ²ã½Úµã£¨ÈçSVM¡¢Boosting£©£¬»òûÓÐÒþ²ã½Úµã£¨ÈçLR£©¡£ÕâЩģÐÍÎÞÂÛÊÇÔÚÀíÂÛ·ÖÎö»¹ÊÇÓ¦ÓÃÖж¼»ñµÃÁ˾޴óµÄ³É¹¦¡£Ïà±È֮ϣ¬ÓÉÓÚÀíÂÛ·ÖÎöµÄÄѶȴó£¬ÑµÁ··½·¨ÓÖÐèÒªºÜ¶à¾ÑéºÍ¼¼ÇÉ£¬Õâ¸öʱÆÚdz²ãÈ˹¤Éñ¾ÍøÂç·´¶øÏà¶Ô³Á¼Å¡£ 
Éî²ãѧϰ
Éî¶ÈѧϰµÄʵÖÊ£¬ÊÇͨ¹ý¹¹½¨¾ßÓкܶàÒþ²ãµÄ»úÆ÷ѧϰģÐͺͺ£Á¿µÄѵÁ·Êý¾Ý£¬À´Ñ§Ï°¸üÓÐÓõÄÌØÕ÷£¬´Ó¶ø×îÖÕÌáÉý·ÖÀà»òÔ¤²âµÄ׼ȷÐÔ¡£Òò´Ë£¬¡°Éî¶ÈÄ£ÐÍ¡±ÊÇÊֶΣ¬¡°ÌØÕ÷ѧϰ¡±ÊÇÄ¿µÄ¡£Çø±ðÓÚ´«Í³µÄdz²ãѧϰ£¬Éî¶ÈѧϰµÄ²»Í¬ÔÚÓÚ£º1£©Ç¿µ÷ÁËÄ£ÐͽṹµÄÉî¶È£¬Í¨³£ÓÐ5²ã¡¢6²ã£¬ÉõÖÁ10¶à²ãµÄÒþ²ã½Úµã£»2£©Ã÷È·Í»³öÁËÌØÕ÷ѧϰµÄÖØÒªÐÔ£¬Ò²¾ÍÊÇ˵£¬Í¨¹ýÖð²ãÌØÕ÷±ä»»£¬½«Ñù±¾ÔÚÔ¿Õ¼äµÄÌØÕ÷±íʾ±ä»»µ½Ò»¸öÐÂÌØÕ÷¿Õ¼ä£¬´Ó¶øÊ¹·ÖÀà»òÔ¤²â¸ü¼ÓÈÝÒס£ÓëÈ˹¤¹æÔò¹¹ÔìÌØÕ÷µÄ·½·¨Ïà±È£¬ÀûÓôóÊý¾ÝÀ´Ñ§Ï°ÌØÕ÷£¬¸üÄܹ»¿Ì»Êý¾ÝµÄ·á¸»ÄÚÔÚÐÅÏ¢¡£
Deep learning±¾ÉíËãÊÇmachine learningµÄÒ»¸ö·ÖÖ§£¬¼òµ¥¿ÉÒÔÀí½âΪneural
networkµÄ·¢Õ¹¡£ 
Ò»ÖÖµäÐ͵ÄÓÃÀ´Ê¶±ðÊý×ֵľí»ýÍøÂçÊÇLeNet-5¡£µ±ÄêÃÀ¹ú´ó¶àÊýÒøÐоÍÊÇÓÃËüÀ´Ê¶±ð֧ƱÉÏÃæµÄÊÖдÊý×ֵġ£Äܹ»´ïµ½ÕâÖÖÉÌÓõĵز½£¬ËüµÄ׼ȷÐÔ¿ÉÏë¶øÖª¡£
LeNet-5µÄÍøÂç½á¹¹ÈçÏ£º 
Óë»úÆ÷ѧϰÏà¹ØÁªµÄ¸ÅÄî

Êý¾ÝÍÚ¾ò£¨Data Mining£©
Êý¾ÝÍÚ¾ò=»úÆ÷ѧϰ+Êý¾Ý¿â¡£Êý¾ÝÍÚ¾òÊÇÔÚ´óÐÍÊý¾Ý´æ´¢¿âÖУ¬×Ô¶¯µØ·¢ÏÖÓÐÓÃÐÅÏ¢µÄ¹ý³Ì¡£
×ÔÈ»ÓïÑÔ´¦Àí £¨Natural Language Process£©
×ÔÈ»ÓïÑÔ´¦Àí=Îı¾´¦Àí+»úÆ÷ѧϰ¡£×ÔÈ»ÓïÑÔ´¦Àí¼¼ÊõÖ÷ÒªÊÇÈûúÆ÷Àí½âÈËÀàµÄÓïÑÔµÄÒ»ÃÅÁìÓò¡£ÔÚ×ÔÈ»ÓïÑÔ´¦Àí¼¼ÊõÖУ¬´óÁ¿Ê¹ÓÃÁ˱àÒëÔÀíÏà¹ØµÄ¼¼Êõ£¬ÀýÈç´Ê·¨·ÖÎö£¬Óï·¨·ÖÎöµÈµÈ£¬³ý´ËÖ®Í⣬ÔÚÀí½âÕâ¸ö²ãÃæ£¬ÔòʹÓÃÁËÓïÒåÀí½â£¬»úÆ÷ѧϰµÈ¼¼Êõ¡£×÷ΪΨһÓÉÈËÀà×ÔÉí´´ÔìµÄ·ûºÅ£¬×ÔÈ»ÓïÑÔ´¦ÀíÒ»Ö±ÊÇ»úÆ÷ѧϰ½ç²»¶ÏÑо¿µÄ·½Ïò¡£°´ÕÕ°Ù¶È»úÆ÷ѧϰר¼ÒÓ࿵Ä˵·¨¡°ÌýÓë¿´£¬Ëµ°×Á˾ÍÊǰ¢Ã¨ºÍ°¢¹·¶¼»áµÄ£¬¶øÖ»ÓÐÓïÑÔ²ÅÊÇÈËÀà¶ÀÓеġ±¡£ÈçºÎÀûÓûúÆ÷ѧϰ¼¼Êõ½øÐÐ×ÔÈ»ÓïÑԵĵÄÉî¶ÈÀí½â£¬Ò»Ö±Êǹ¤ÒµºÍѧÊõ½ç¹Ø×¢µÄ½¹µã¡£
ģʽʶ±ð£¨Pattern Recognition£©
ģʽʶ±ð=»úÆ÷ѧϰ¡£Á½ÕßµÄÖ÷񻂿±ðÔÚÓÚǰÕßÊÇ´Ó¹¤Òµ½ç·¢Õ¹ÆðÀ´µÄ¸ÅÄºóÕßÔòÖ÷ÒªÔ´×Ô¼ÆËã»úѧ¿Æ¡£
ͳ¼ÆÑ§Ï°£¨Statistical Learning£©
ͳ¼ÆÑ§Ï°½üËÆµÈÓÚ»úÆ÷ѧϰ¡£Í³¼ÆÑ§Ï°ÊǸöÓë»úÆ÷ѧϰ¸ß¶ÈÖØµþµÄѧ¿Æ¡£ÒòΪ»úÆ÷ѧϰÖеĴó¶àÊý·½·¨À´×Ôͳ¼ÆÑ§£¬ÉõÖÁ¿ÉÒÔÈÏΪ£¬Í³¼ÆÑ§µÄ·¢Õ¹´Ù½ø»úÆ÷ѧϰµÄ·±ÈÙ²ýÊ¢¡£ÀýÈçÖøÃûµÄÖ§³ÖÏòÁ¿»úËã·¨£¬¾ÍÊÇÔ´×Ôͳ¼ÆÑ§¿Æ¡£µ«ÊÇÔÚijÖ̶ֳÈÉÏÁ½ÕßÊÇÓзֱðµÄ£¬Õâ¸ö·Ö±ðÔÚÓÚ£ºÍ³¼ÆÑ§Ï°ÕßÖØµã¹Ø×¢µÄÊÇͳ¼ÆÄ£Ð͵ķ¢Õ¹ÓëÓÅ»¯£¬Æ«Êýѧ£¬¶ø»úÆ÷ѧϰÕ߸ü¹Ø×¢µÄÊÇÄܹ»½â¾öÎÊÌ⣬ƫʵ¼ù£¬Òò´Ë»úÆ÷ѧϰÑо¿Õß»áÖØµãÑо¿Ñ§Ï°Ëã·¨ÔÚ¼ÆËã»úÉÏÖ´ÐеÄЧÂÊÓë׼ȷÐÔµÄÌáÉý¡£
¼ÆËã»úÊÓ¾õ£¨Computer Vision£©
¼ÆËã»úÊÓ¾õ=ͼÏñ´¦Àí+»úÆ÷ѧϰ¡£Í¼Ïñ´¦Àí¼¼ÊõÓÃÓÚ½«Í¼Ïñ´¦ÀíΪÊʺϽøÈë»úÆ÷ѧϰģÐÍÖеÄÊäÈ룬»úÆ÷ѧϰÔò¸ºÔð´ÓͼÏñÖÐʶ±ð³öÏà¹ØµÄģʽ¡£¼ÆËã»úÊÓ¾õÏà¹ØµÄÓ¦Ó÷dz£µÄ¶à£¬ÀýÈç°Ù¶Èʶͼ¡¢ÊÖд×Ö·ûʶ±ð¡¢³µÅÆÊ¶±ðµÈµÈÓ¦Óá£Õâ¸öÁìÓòÊÇÓ¦ÓÃǰ¾°·Ç³£»ðÈȵģ¬Í¬Ê±Ò²ÊÇÑо¿µÄÈÈÃÅ·½Ïò¡£Ëæ×Å»úÆ÷ѧϰµÄÐÂÁìÓòÉî¶ÈѧϰµÄ·¢Õ¹£¬´ó´ó´Ù½øÁ˼ÆËã»úͼÏñʶ±ðµÄЧ¹û£¬Òò´ËδÀ´¼ÆËã»úÊÓ¾õ½çµÄ·¢Õ¹Ç°¾°²»¿É¹ÀÁ¿¡£
ÓïÒôʶ±ð£¨Speech Recognition£©
ÓïÒôʶ±ð=ÓïÒô´¦Àí+»úÆ÷ѧϰ¡£ÓïÒôʶ±ð¾ÍÊÇÒôƵ´¦Àí¼¼ÊõÓë»úÆ÷ѧϰµÄ½áºÏ¡£ÓïÒôʶ±ð¼¼ÊõÒ»°ã²»»áµ¥¶ÀʹÓã¬Ò»°ã»á½áºÏ×ÔÈ»ÓïÑÔ´¦ÀíµÄÏà¹Ø¼¼Êõ¡£Ä¿Ç°µÄÏà¹ØÓ¦ÓÃÓÐÆ»¹ûµÄÓïÒôÖúÊÖsiriµÈ¡£
¼ÆËã»úͼÐÎѧ¡¢Êý×ÖͼÏñ´¦Àí¡¢¼ÆËã»úÊÓ¾õ
¼ÆËã»úÊÓ¾õ£¨ Computer Vision£¬¼ò³Æ CV£©£¬ÊÇÈüÆËã»ú¡°¿´¶®¡±ÈËÀà¿´µ½µÄÊÀ½ç£¬ÊäÈëÊÇͼÏñ£¬Êä³öÊÇͼÏñÖеĹؼüÐÅÏ¢£»
ͼƬ -> dog or cat?
ͼƬ -> [xyz xyz xyz ... xyz]
¼ÆËã»úͼÐÎѧ£¨Computer Graphics£¬¼ò³Æ CG£©£¬ÊÇÈüÆËã»ú¡°ÃèÊö¡±ÈËÀà¿´µ½µÄÊÀ½ç£¬ÊäÈëÊÇÈýάģÐͺͳ¡¾°ÃèÊö£¬Êä³öÊÇäÖȾͼÏñ£»
[xyz xyz xyz ... xyz] -> ͼƬ
Êý×ÖͼÏñ´¦Àí£¨Digital Image Processing£¬¼ò³Æ DIP£©£¬ÊäÈëµÄÊÇͼÏñ£¬Êä³öµÄÒ²ÊÇͼÏñ¡£Photoshop
ÖжÔÒ»¸±Í¼ÏñÓ¦ÓÃÂ˾µ¾ÍÊǵäÐ͵ÄÒ»ÖÖͼÏñ´¦Àí¡£³£¼û²Ù×÷ÓÐÄ£ºý¡¢»Ò¶È»¯¡¢ÔöÇ¿¶Ô±È¶ÈµÈ¡£
ͼƬ -> psºóµÄͼƬ
ÔÙ˵ÁªÏµ
CG ÖÐÒ²»áÓõ½ DIP£¬ÏÖ½ñµÄÈýάÓÎϷΪÁËÔö¼Ó±íÏÖÁ¦¶¼»áµþ¼ÓÈ«ÆÁµÄºóÆÚÌØÐ§£¬ÔÀí¾ÍÊÇ DIP£¬Ö»Êǽ«¼ÆËãÁ¿·ÅÔÚÁËÏÔ¿¨¶Ë¡£Í¨³£µÄ×ö·¨ÊÇ»æÖÆÒ»¸öÈ«ÆÁµÄ¾ØÐΣ¬ÔÚ
Pixel Shader ÖнøÐÐͼÏñ´¦Àí¡£
CV ´óÁ¿ÒÀÀµ DIP À´´òÔӻ±ÈÈç¶ÔÐèҪʶ±ðµÄÕÕÆ¬½øÐÐÔ¤´¦Àí£¬ÔöÇ¿¶Ô±È¶È¡¢È¥³ýÔëµã¡£
×îºó»¹ÒªÌáµ½½ñÄêµÄÈȵ㡪¡ªÔöÇ¿ÏÖʵ£¨AR£©£¬Ëü¼ÈÐèÒª CG£¬ÓÖÐèÒª CV£¬µ±È»Ò²²»»á©µô DIP¡£ËüÓÃ
DIP ½øÐÐÔ¤´¦Àí£¬Óà CV ½øÐиú×ÙÎïÌåµÄʶ±ðÓë×Ë̬»ñÈ¡£¬Óà CG ½øÐÐÐéÄâÈýάÎïÌåµÄµþ¼Ó¡£ |