Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
ͼÏñ·ÖÀà | Éî¶ÈѧϰPK´«Í³»úÆ÷ѧϰ
 
À´Ô´£ºÔƼÆËã ·¢²¼ÓÚ£º 2017-5-31
  4435  次浏览      28
 

ͼÏñ·ÖÀ࣬¹ËÃû˼Ò壬ÊÇÒ»¸öÊäÈëͼÏñ£¬Êä³ö¶Ô¸ÃͼÏñÄÚÈÝ·ÖÀàµÄÃèÊöµÄÎÊÌâ¡£ËüÊǼÆËã»úÊÓ¾õµÄºËÐÄ£¬Êµ¼ÊÓ¦Óù㷺¡£

ͼÏñ·ÖÀàµÄ´«Í³·½·¨ÊÇÌØÕ÷ÃèÊö¼°¼ì²â£¬ÕâÀഫͳ·½·¨¿ÉÄܶÔÓÚһЩ¼òµ¥µÄͼÏñ·ÖÀàÊÇÓÐЧµÄ£¬µ«ÓÉÓÚʵ¼ÊÇé¿ö·Ç³£¸´ÔÓ£¬´«Í³µÄ·ÖÀà·½·¨²»¿°Öظº¡£ÏÖÔÚ£¬ÎÒÃDz»ÔÙÊÔͼÓôúÂëÀ´ÃèÊöÿһ¸öͼÏñÀà±ð£¬¾ö¶¨×ª¶øÊ¹ÓûúÆ÷ѧϰµÄ·½·¨´¦ÀíͼÏñ·ÖÀàÎÊÌâ¡£

¡¡¡¡

Ŀǰ£¬Ðí¶àÑо¿ÕßʹÓÃCNNµÈÉî¶ÈѧϰģÐͽøÐÐͼÏñ·ÖÀà;ÁíÍ⣬¾­µäµÄKNNºÍSVMË㷨ҲȡµÃ²»´íµÄ½á¹û¡£È»¶ø£¬ÎÒÃÇËÆºõÎÞ·¨¶ÏÑÔ£¬ÄÄÖÖ·½·¨¶ÔÓÚͼÏñ·ÖÀ´ÎÊÌâЧ¹û×î¼Ñ¡£

¡¡¡¡

±¾ÏîÄ¿ÖУ¬ÎÒÃÇ×öÁËһЩÓÐÒâ˼µÄÊÂÇ飺

½«ÒµÄÚÆÕ±éÓÃÓÚͼÏñ·ÖÀàµÄCNNºÍÇ¨ÒÆÑ§Ï°Ëã·¨ÓëKNN£¬ SVM £¬ BP Éñ¾­ÍøÂç½øÐбȽϡ£

»ñÈ¡Éî¶Èѧϰ¾­Ñé¡£

̽Ë÷¹È¸è»úÆ÷ѧϰ¿ò¼ÜTensorFlow¡£

ÏÂÃæÊǾßÌåʵʩϸ½Ú¡£

ϵͳÉè¼Æ

ÔÚ±¾ÏîÄ¿ÖУ¬ÓÃÓÚʵÑéµÄ5ÖÖË㷨ΪKNN¡¢SVM¡¢BPÉñ¾­ÍøÂç¡¢CNNÒÔ¼°Ç¨ÒÆÑ§Ï°¡£ÎÒÃDzÉÓÃÈçÏÂÈýÖÖ·½Ê½½øÐÐʵÑé

KNN¡¢SVM¡¢BPÉñ¾­ÍøÂçÊÇÎÒÃÇÔÚѧУÄܹ»Ñ§µ½µÄ¡£¹¦ÄÜÇ¿´ó¶øÇÒÒײ¿Êð¡£ËùÒÔµÚÒ»²½£¬ÎÒÃÇÖ÷ҪʹÓà sklearn ʵÏÖKNN£¬SVM£¬ºÍBPÉñ¾­ÍøÂç¡£

ÓÉÓÚ´«Í³µÄ¶à²ã¸ÐÖª»úÄ£ÐÍÔÚͼÏñʶ±ð·½ÃæÐ§¹ûÉõ¼Ñ£¬µ«ÓÉÓÚÆä½Úµã¼äµÄÈ«Á¬½Óģʽ¶ÔÓÚÆäÑÓÕ¹ÐÔÔì³ÉÁË×è°­£¬Òò´Ë¶ÔÓڸ߷ֱæÂʵÄͼÏñ£¬Ê¶±ðÂʲ»ÊǺÜÀíÏë¡£ËùÒÔÕâÒ»²½£¬ÎÒÃÇÓà Google TensorFlow ¿ò¼Ü¹¹½¨ CNN ¡£

¶ÔÓÚÒѾ­Ô¤ÑµÁ·¹ýµÄÉî¶ÈÉñ¾­ÍøÂçInception V3½øÐÐÖØÑµÁ·¡£Inception V3ÓÉ TensorFlow Ìṩ£¬Ê¹ÓÃImageNet×Ô2012ÄêÒÔÀ´µÄÊý¾Ý½øÐÐѵÁ·¡£ImageNetÊǼÆËã»úÊÓ¾õÁìÓòÒ»¸ö¾­µäÌôÕ½£¬²ÎÈüÕßÊÔͼÓÃÄ£Ðͽ«È«²¿Í¼Ïñ·ÅÖÁ1000¸ö·ÖÀàÖС£ÎªÁËÒªÖØÐÂѵÁ·ÒѾ­Ô¤ÑµÁ·ºÃµÄÄ£ÐÍ£¬ÎÒÃDZØÐë±£Ö¤ÎÒÃÇ×Ô¼ºµÄÊý¾Ý¼¯Ã»Óб»Ô¤ÑµÁ·¹ý¡£

ʵʩ

µÚÒ»ÖÖ·½·¨£ºÊ¹ÓÃsklearnÔ¤´¦ÀíÊý¾ÝÒÔ¼°ÊµÏÖKNN£¬SVMºÍBPÉñ¾­ÍøÂç¡£

²½Öè1£¬Ê¹ÓÃopenCV°ü£¬¶¨Òå2¸öÔ¤´¦Àíº¯Êý£¬·Ö±ðÊÇͼÏñÌØÕ÷ÏòÁ¿(ÓÃÀ´µ÷ÕûͼÏñ´óС²¢½«Í¼Ïñ±âƽ»¯³ÉһϵÁÐÐÐÏñËØ)ºÍÌáÈ¡ÑÕɫֱ·½Í¼(ʹÓÃcv2.normalize´ÓHSVÉ«ÓòÖÐÌáȡһ¸ö3DÑÕɫֱ·½Í¼²¢×öƽ»¬´¦Àí)¡£

²½Öè2£¬¹¹Ôì²ÎÊý¡£ÓÉÓÚÎÒÃÇÊÔͼÔÚÕû¸öÊý¾Ý¼¯ÒÔ¼°¾ßÓв»Í¬Àà±ðÊýÄ¿µÄ×ÓÊý¾Ý¼¯ÉϽøÐÐÐÔÄܲâÊÔ£¬ËùÒÔÎÒÃǰѸ÷¸öÊý¾Ý¼¯¿´×÷Ϊ²ÎÊý£¬ÒÔ±ã½øÐÐʵÑé·ÖÎö¡£ÁíÍ⣬ÎÒÃÇ»¹ÉèÖÃÁËKNNÖеÄÁÚ¾ÓÊýÄ¿×÷Ϊ²ÎÊý¡£

²½Öè3£¬ÌáȡͼÏñÌØÕ÷²¢Ð´ÈëÊý×é¡£ÎÒÃÇʹÓÃcv2.imreadº¯Êý¶ÁȡͼÏñ£¬¸ù¾Ý¹æ·¶»¯µÄͼÏñÃû³Æ½øÐзÖÀࡣȻºóÔËÐеڲ½Öè1ÖÐÌáµ½µÄ2¸öº¯Êý£¬·Ö±ðµÃµ½2ÖÖͼÏñÌØÕ÷²¢Ð´ÈëÊý×é¡£

²½Öè4£¬Ê¹Óú¯Êýtrain_test_split·Ö¸îÊý¾Ý¼¯¡£85%µÄÊý¾Ý×÷ΪѵÁ·¼¯£¬15%µÄÊý¾Ý×÷Ϊ²âÊÔ¼¯¡£

²½Öè5£¬Ê¹ÓÃKNN£¬SVMºÍBPÉñ¾­ÍøÂç·½·¨È¥ÆÀ¹ÀÊý¾Ý¡£¶ÔÓÚKNN£¬Ê¹Óà KNeighborsClassifier £¬¶ÔÓÚSVM£¬Ê¹ÓÃSVC£¬¶ÔÓÚBPÉñ¾­ÍøÂ磬ʹÓÃMLPClassifier¡£

µÚ¶þÖÖ·½·¨£º»ùÓÚTensorFlow¹¹½¨CNN¡£Ê¹ÓÃTensorFlowµÃµ½¼ÆËãͼ²¢ÔÚC++ÖÐʵÏÖ£¬±ÈPython¸ü¸ßЧ¡£

TensorFlowÖÐʹÓõ½µÄµÄ¼¸¸ö¸ÅÄռλ·û£¬±äÁ¿£¬Êýѧ¹«Ê½£¬³É±¾¼ÆÁ¿£¬×îÓÅ·½·¨£¬CNNÌåϵ½á¹¹¡£

²½Öè1£¬µÚÒ»²ã·ÅÖÃͼÏñ¡£

²½Öè2£¬¹¹½¨3²ã¾í»ý²ã(3 Convolutional layers)£¬2X2µÄmax-poolingºÍReLU¡£ÊäÈëÊÇ4άÕÅÁ¿£º¡¾Í¼Ïñ±àºÅ£¬Y×ø±ê£¬X×ø±ê£¬Í¨µÀ¡¿¡£Êä³öÊÇÁíÒ»¸ö¾­´¦ÀíµÃµ½µÄ4άÕÅÁ¿£º¡¾Í¼Ïñ±àºÅ(²»±ä)£¬Y×ø±ê£¬X×ø±ê£¬Í¨µÀ¡¿¡£

²½Öè3£¬¹¹½¨2²ãÈ«Á¬½Ó²ã(2 Fully-Connected Layers)¡£ÊäÈëÊÇ2άÕÅÁ¿£º¡¾Í¼Ïñ±àºÅ£¬ÊäÈë±àºÅ¡¿¡£Êä³öÊÇ2άÕÅÁ¿¡¾Í¼Ïñ±àºÅ£¬Êä³ö±àºÅ¡¿¡£Ê¹ÓÃ

²½Öè4£¬Ê¹Óúϲ¢²ã(Flatten Layer)Á´½Ó¾í»ý²ãºÍÈ«Á¬½Ó²ã¡£

²½Öè5£¬Ê¹ÓÃsoftmax layer±ê×¼»¯Êä³ö¡£

²½Öè6£¬ÓÅ»¯ÑµÁ·½á¹û¡£ÎÒÃÇʹÓý»²æìØ (cross entropy) ×÷Ϊ³É±¾¼ÆÁ¿º¯Êý£¬È¡Æä¾ùÖµ¡£×îÓÅ·½·¨Ê¹Óà tf. train. AdamOptimizer() ¡£

µÚÈýÖÖ·½·¨£ºRetrain Inception V3¡£Ê¹Óà Retrain Inception V3 £¬²¢ÀûÓÃÇ¨ÒÆÑ§Ï°¼õÉÙ¹¤×÷Á¿¡£

ÎÒÃǵõ½pre-trainedÄ£ÐÍ£¬ÒƳýÔ­Óж¥²ã£¬ÑµÁ·ÐÂÄ£ÐÍ¡£È»ºó·ÖÎöÔÚ´ÅÅÌÉϵÄËùÓÐͼÏñ²¢¼ÆËãËüÃÇµÄ bottleneckÖµ¡£½Å±¾»áÔËÐÐ4000´Î¡£Ã¿´ÎÔËÐж¼»á´ÓѵÁ·¼¯ÖÐËæ»úѡȡ10¸öͼÏñ£¬ÕÒµ½ËüÃÇµÄ bottleneck Öµ²¢×¢Èë×îºóÒ»²ãµÃµ½Ô¤²â½á¹û¡£È»ºóÔÚ·´Ïò´«²¥¹ý³ÌÖУ¬¸ù¾ÝÔ¤²â½á¹ûºÍʵ¼Ê±êÇ©µÄ±È½Ï½á¹ûÈ¥¸üÐÂÿ²ãµÄÈ¨ÖØ¡£

ʵÑé

ʵÑéÖÐʹÓõ½µÄÊý¾Ý¼¯ÊÇOxford-IIIT Pet Êý¾Ý¼¯¡£ÆäÖÐÓÐÈ®Àà25À࣬èÀà12ÀࡣÿÀàÓÐ200¸öͼÏñ¡£ÎÒÃÇʹÓõ½¸ÃÊý¾Ý¼¯ÖеÄ10¸öÀà±ðµÄèµÄÊý¾Ý£¬·Ö±ðÊÇ[¡®Sphynx¡¯,¡¯Siamese¡¯,¡¯Ragdoll¡¯,¡¯Persian¡¯, ¡¯Maine-Coon¡¯, ¡¯ British-shorthair¡¯ , ¡¯Bombay¡¯ ,¡¯Birman¡¯,¡¯ Bengal¡¯ , ¡¯Abyssinian¡¯] ¡£¼´£¬¹²ÓÐ2000¸öͼÏñ£¬ÓÉÓÚͼÏñ´óС²»Ò»£¬ÎÒÃǵ÷Õû´óСͳһΪ¹Ì¶¨³ß´ç64X64»ò128X128¡£

¡¡

±¾ÏîÄ¿ÖУ¬ÎÒÃÇÖ÷ҪʹÓÃOpenCVÔ¤´¦ÀíͼÏñ¡£Ò»°ãͨ¹ý±äÐΡ¢¼ô²Ã»òÁÁ»¯Ëæ»ú´¦ÀíѵÁ·¼¯¡£ github

¸³Öµ

µÚÒ»ÖÖ·½·¨£ºKNN£¬SVM£¬ºÍBPÉñ¾­ÍøÂç

µÚÒ»²¿·Ö£ºÊ¹ÓÃsklearnÔ¤´¦ÀíÊý¾ÝÒÔ¼°ÊµÏÖKNN£¬SVMºÍBPÉñ¾­ÍøÂç¡£ÔÚ image_ to_ feature _vector º¯ÊýÖУ¬ÎÒÃÇÉ趨³ß´ç128X128¡£¾­ÊÔÑé±íÃ÷£¬Í¼Ïñ³ß´çÔ½´ó£¬½á¹ûÔ½¾«È·£¬ÔËÐиºµ£Ô½´ó¡£×îÖÕÎÒÃǾö¶¨Ê¹ÓÃ128X128µÄ³ß´ç¡£ÔÚextract_color_histogramº¯ÊýÖУ¬É趨ÿ¸öͨµÀµÄÈÝÆ÷ÊýÁ¿Îª32,32,32¡£¶ÔÓÚÊý¾Ý¼¯£¬Ê¹ÓÃ3ÖÖÊý¾Ý¼¯¡£µÚÒ»¸öÊǾßÓÐ400¸öͼÏñ£¬2¸ö±êÇ©µÄ×ÓÊý¾Ý¼¯¡£µÚ¶þ¸öÊǾßÓÐ1000¸öͼÏñ£¬5¸ö±êÇ©µÄ×ÓÊý¾Ý¼¯¡£µÚÈý¸öÊÇÕû¸öÊý¾Ý¼¯£¬1997¸öͼÏñ£¬10¸ö±êÇ©¡£

ÔÚKNeighborsClassifierÖУ¬ÎÒÃÇÖ»¸Ä±äÁÚ¾ÓÊýÁ¿ÇÒ´æ´¢½á¹û×÷Ϊÿ¸öÊý¾Ý¼¯µÄ×î¼ÑKÖµ£¬ÆäËû²ÎÊýĬÈÏ¡£

ÔÚMLPClassifierÖУ¬ÎÒÃÇÉ趨ÿ²ãÓÐ50¸öÉñ¾­Ôª¡£

ÔÚSVCÖУ¬×î´óµü´ú´ÎÊýÊÇ1000£¬ÀàÈ¨ÖØÊÇ¡°balanced¡±¡£

ÒÀ¾ÝÊý¾Ý¼¯£¬2¸ö±êÇ©µ½10¸ö±êÇ©²»Í¬£¬ÔËÐÐʱ¼ä´óԼΪ3µ½5·ÖÖÓ²»µÈ¡£

µÚ¶þÖÖ·½·¨£º»ùÓÚTensorFlow¹¹½¨CNN

ÓÉÓÚÔÚÕû¸öÊý¾Ý¼¯ÖÐÔËÐÐʱ¼ä¹ý³¤£¬ÎÒÃÇÔÚÿ¸öµü´úÖзÖÅú´Î´¦Àí¡£Ã¿Åú´ÎÒ»°ãÓÐ32¸ö»ò64¸öͼÏñ¡£Êý¾Ý¼¯·ÖΪ1600¸öͼÏñµÄѵÁ·¼¯£¬400¸öͼÏñµÄÑéÖ¤¼¯£¬300¸öͼÏñµÄ²âÊÔ¼¯¡£

±¾·½·¨ÖÐÓдóÁ¿µÄ²ÎÊý¿Éµ÷Õû¡£Ñ§Ï°ËÙÂÊÉ趨Ϊ1x10^-4;ͼÏñ´óСÉ趨Ϊ64x64ºÍ128x128;È»ºóÊDzãºÍÐÎ×´£¬È»¶øÓÐÌ«¶àµÄ²ÎÊý¿Éµ÷Õû£¬ÎÒÃÇÒÀ¾Ý¾­Ñé²¢½øÐÐʵÑéÈ¥µÃµ½×î¼Ñ½á¹û¡£

ΪÁ˵õ½×î¼ÑµÄlayers£¬ÎÒÃǽøÐÐʵÑé¡£Ê×ÏÈ£¬²ÎÊýÈçÏ£º

# Convolutional Layer 1. filter_size1
 = 5 num_filters1 = 6
# Convolutional Layer 2. filter_size2 
= 5 num_filters2 = 64 # Convolutional 
Layer 3. filter_size3

= 5 num_filters3 = 128

# Fully-connected layer 1. fc1_size = 256

# Fully-connected layer 2. fc1_size = 256

ÎÒÃÇʹÓÃÁË3¸ö¾í»ý²ãºÍ2¸öÈ«Á¬½Ó²ã£¬È»¶ø±¯¾çµÄÊǹý¶ÈÄâºÏ¡£¾­¹ýÑо¿·¢ÏÖ£¬¶ÔÓڸù¹Ô죬ÎÒÃǵÄÊý¾Ý¼¯¹ýС£¬ÍøÂç¹ýÓÚ¸´ÔÓ¡£

×îÖÕ£¬ÎÒÃÇʹÓÃÈçϲÎÊý£º

# Convolutional Layer 1. filter_size1 
= 5 num_filters1 = 64
# Convolutional Layer 2. filter_size2
= 3 num_filters2 = 64
# Fully-connected layer 1. fc1_size = 128
# Number of neurons in fully-connected layer.
# Fully-connected layer 2. fc2_size = 128
# Number of neurons in fully-connected layer.
# Number of color channels for the images: 
1 channel for gray-scale. num_channels = 3

ÎÒÃÇֻʹÓÃÁË2¸ö¾í»ý²ãºÍ2¸öÈ«Á¬½Ó²ã¡£ÒÀÈ»²»¾¡ÈËÒ⣬¾­¹ý4000´Îµü´ú£¬½á¹ûÈԾɹýÄâºÏ£¬²»¹ýºÃÔÚ²âÊÔ½á¹û10%ÓÅÓÚǰÕß¡£×îÖÕ£¬¾­¹ý5000´Îµü´ú£¬ÎÒÃǵõ½43%µÄ¾«È·¶È£¬ÔËÐÐʱ¼äÊǰëСʱÒÔÉÏ¡£

PS£ºÎÒÃÇʹÓÃÁíÒ»¸öÊý¾Ý¼¯CIFAR-10½øÐÐÁËʵÑé¡£

¡¡¡¡

¸ÃÊý¾Ý¼¯°üº¬60000¸ö32x32µÄ²ÊɫͼÏñ£¬·ÖΪ10¸öÀà±ð£¬Ã¿¸öÀà±ð6000¸öͼÏñ¡£ÑµÁ·¼¯50000¸öͼÏñ£¬²âÊÔ¼¯10000¸öͼÏñ¡£Ê¹ÓÃͬÑùµÄÍøÂç½á¹¹£¬¾­¹ý10¸öСʱµÄѵÁ·£¬×îÖյõ½78%µÄ¾«È·¶È¡£

µÚÈýÖÖ·½·¨£ºRetrain Inception V3

ÓëÒÔÉÏ·½·¨ÏàËÆ£¬ÑµÁ·´ÎÊýΪ4000£¬ÒÀ¾Ý½á¹û½øÐе÷Õû¡£Ñ§Ï°ËÙÂÊÒÀ¾ÝÿÅú´ÎµÄͼÏñÊýÁ¿½øÐе÷Õû¡£80%µÄÊý¾ÝÓÃÀ´ÑµÁ·£¬10%ÓÃÀ´ÑéÖ¤£¬10%ÓÃÀ´²âÊÔ¡£

ʵÑé½á¹û

µÚÒ»ÖÖ·½·¨£ºKNN£¬SVM£¬ºÍBPÉñ¾­ÍøÂç

¡¡¡¡

ÔÚKNNÖУ¬Knn_raw_pixelºÍKnn_histoµÄ¾«È·¶ÈµÄÖµ±È½Ï½Ó½ü¡£ÔÚ5Àà±êÇ©Çé¿öÏ£¬Ç°Õ߱ȺóÕßÒªµÍ£¬ÕûÌåÀ´Ëµ£¬Ô­Ê¼ÏñËØ±íÏÖ¸üºÃ¡£

ÔÚMLP·ÖÀàÆ÷ÖУ¬Ô­Ê¼ÏñËØ¾«È·µØÒªµÍÓÚÖù״ͼ¾«È·¶È¡£¶ÔÓÚÕû¸öÊý¾Ý¼¯(10¸ö±êÇ©)À´½²£¬Ô­Ê¼ÏñËØ¾«È·¶È¾¹È»µÍÓÚËæ»ú²ÂÏëµÄ¾«È·¶È¡£

ÉÏÃæÁ½ÖÖsklearn·½·¨¶¼Ã»Óеõ½·Ç³£ºÃµÄÐÔÄÜ¡£¶ÔÓÚÕû¸öÊý¾Ý¼¯£¬Ö»ÓÐ24%µÄ¾«È·¶È¡£ÊµÑé½á¹ûÖ¤Ã÷£¬ sklearn ·½·¨²»Äܹ»ÓÐЧ½øÐÐͼÏñ·ÖÀࡣΪÁËÓÐЧ½øÐÐͼÏñ·ÖÀಢÇÒÌá¸ß¾«È·¶È£¬ÓбØÒªÊ¹ÓÃÉî¶ÈѧϰµÄ·½·¨¡£

µÚ¶þÖÖ·½·¨£º»ùÓÚTensorFlow¹¹½¨CNN

ÓÉÓÚ¹ýÄâºÏ£¬ÎÒÃÇÎÞ·¨µÃµ½ºÃµÄʵÑé½á¹û¡£ÔËÐÐʱ¼äÒ»°ãΪ°ë¸öСʱ£¬ÓÉÓÚ¹ýÄâºÏ£¬ÎÒÃÇÈÏΪ£¬ÔËÐÐʱ¼äÎÞ·¨Ô¤¹À¡£Í¨¹ýÓë·½·¨1±È½Ï£¬¿ÉÒԵóö£º¼´Ê¹CNN¹ýÄâºÏѵÁ·¼¯£¬ÊµÑé½á¹ûÒÀ¾ÉÓÅÓÚ·½·¨1¡£

µÚÈýÖÖ·½·¨£ºRetrain Inception V3

¡¡¡¡

Õû¸öѵÁ·¹ý³Ì²»³¬¹ý10·ÖÖÓ£¬ÇÒÎÒÃǵõ½Á˷dz£ºÃµÄ½á¹û¡£ÊÂʵ֤Ã÷£¬Éî¶ÈѧϰºÍÇ¨ÒÆÑ§Ï°Ê®·ÖÇ¿´ó¡£

Demo£º

¡¡¡¡

½áÂÛ

»ùÓÚÒÔÉÏʵÑé±È½Ï£¬ÎÒÃǵóö£º

KNN£¬SVM£¬ºÍBPÉñ¾­ÍøÂçÔÚͼÏñ·ÖÀàÖв»¹»ÓÐЧ¡£

¼´Ê¹ÔÚCNNÖйýÄâºÏ£¬CNNµÄʵÑé½á¹ûÒÀ¾É±È´«Í³·ÖÀàËã·¨ºÃ¡£

Ç¨ÒÆÑ§Ï°ÔÚͼÏñ·ÖÀàÎÊÌâÉϷdz£ÓÐЧ¡£ÔËÐÐʱ¼ä¶ÌÇÒ½á¹û¾«×¼£¬Äܹ»Á¼ºÃµØ½â¾ö¹ýÄâºÏºÍÊý¾Ý¼¯¹ýСµÄÎÊÌâ¡£

ͨ¹ý±¾´ÎÏîÄ¿£¬ÎÒÃǵõ½ÁËÐí¶à±¦¹óµÄ¾­Ñ飬ÈçÏÂËùʾ£º

µ÷ÕûͼÏñʹÆä¸üС¡£

¶ÔÓÚѵÁ·µÄÿ´Îµü´ú£¬Ëæ»úѡȡСÅú´ÎÊý¾Ý¡£

Ëæ»úѡȡСÅú´ÎÊý¾Ý×÷ΪÑéÖ¤¼¯½øÐÐÑéÖ¤£¬²¢ÇÒÔÚѵÁ·ÆÚ¼ä·´À¡ÑéÖ¤ÆÀ·Ö¡£

ÀûÓÃImage Augmentation°ÑÊäÈëͼÏñ¼¯×ª±äΪ¿Éµ÷ÕûµÄ¸ü´óµÄÐÂÊý¾Ý¼¯¡£

ͼÏñÊý¾Ý¼¯Òª´óÓÚ200x10¡£

¸´ÔÓÍøÂç½á¹¹ÐèÒª¸ü¶àµÄѵÁ·¼¯¡£

СÐĹýÄâºÏ¡£

 
   
4435 ´Îä¯ÀÀ       28
Ïà¹ØÎÄÕÂ

»ùÓÚͼ¾í»ýÍøÂçµÄͼÉî¶Èѧϰ
×Ô¶¯¼ÝÊ»ÖеÄ3DÄ¿±ê¼ì²â
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
ÏîĿʵս£ºÈçºÎ¹¹½¨ÖªÊ¶Í¼Æ×
 
Ïà¹ØÎĵµ

5GÈ˹¤ÖÇÄÜÎïÁªÍøµÄµäÐÍÓ¦ÓÃ
Éî¶ÈѧϰÔÚ×Ô¶¯¼ÝÊ»ÖеÄÓ¦ÓÃ
ͼÉñ¾­ÍøÂçÔÚ½»²æÑ§¿ÆÁìÓòµÄÓ¦ÓÃÑо¿
ÎÞÈË»úϵͳԭÀí
Ïà¹Ø¿Î³Ì

È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ&TensorFlow
»úÆ÷ÈËÈí¼þ¿ª·¢¼¼Êõ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
ͼÏñ´¦ÀíËã·¨·½·¨Óëʵ¼ù