Åбð·ÖÎö µÄSPSS²Ù×÷Á÷³Ì
1£®Discriminant AnalysisÅбð·ÖÎöÖ÷¶Ô»°¿ò Èçͼ
1-1 Ëùʾ


ͼ 1-1 Discriminant Analysis
Ö÷¶Ô»°¿ò
£¨1£©Ñ¡Ôñ·ÖÀà±äÁ¿¼°Æä·¶Î§
ÔÚÖ÷¶Ô»°¿òÖÐ×óÃæµÄ¾ØÐοòÖÐÑ¡Ôñ±íÃ÷ÒÑÖªµÄ¹Û²âÁ¿ËùÊôÀà±ðµÄ±äÁ¿(Ò»¶¨ÊÇÀëÉ¢±äÁ¿)£¬
°´ÉÏÃæµÄÒ»¸öÏòÓҵļýÍ·°´Å¥£¬Ê¹¸Ã±äÁ¿ÃûÒÆµ½ÓÒÃæµÄGrouping Variable ¿òÖС£
´Ëʱ¾ØÐοòÏÂÃæµÄDefine Range °´Å¥¼ÓÁÁ£¬°´¸Ã°´Å¥ÆÁÄ»ÏÔʾһ¸öС¶Ô»°¿òÈçͼ1-2
Ëùʾ£¬¹©Ö¸¶¨¸Ã·ÖÀà±äÁ¿µÄÊýÖµ·¶Î§¡£

ͼ 1-2 Define Range ¶Ô»°¿ò
ÔÚMinimum ¿òÖÐÊäÈë¸Ã·ÖÀà±äÁ¿µÄ×îСֵÔÚMaximum ¿òÖÐÊäÈë¸Ã·ÖÀà±äÁ¿µÄ×î´óÖµ¡£°´Continue
°´Å¥·µ»ØÖ÷¶Ô»°¿ò¡£
(2)Ö¸¶¨Åбð·ÖÎöµÄ×Ô±äÁ¿

ͼ 1-3 Õ¹¿ª Selection Variable
¶Ô»°¿òµÄÖ÷¶Ô»°¿ò
ÔÚÖ÷¶Ô»°¿òµÄ×óÃæµÄ±äÁ¿±íÖÐÑ¡Ôñ±íÃ÷¹Û²âÁ¿ÌØÕ÷µÄ±äÁ¿£¬°´ÏÂÃæÒ»¸ö¼ýÍ·°´Å¥¡£
°ÑÑ¡ÖеıäÁ¿ÒƵ½Independents ¾ØÐοòÖУ¬×÷Ϊ²ÎÓëÅбð·ÖÎöµÄ±äÁ¿¡£
£¨3£© Ñ¡Ôñ¹Û²âÁ¿

ͼ 1-4 Set Value ×Ó¶Ô»°¿ò
Èç¹ûÏ£ÍûʹÓÃÒ»²¿·Ö¹Û²âÁ¿½øÐÐÅбðº¯ÊýµÄÍÆµ¼¶øÇÒÓÐÒ»¸ö±äÁ¿µÄij¸öÖµ¿ÉÒÔ×÷ΪÕâЩ¹Û²âÁ¿µÄ±êʶ£¬ÔòÓÃSelect
¹¦ÄܽøÐÐÑ¡Ôñ£¬²Ù×÷·½·¨Êǵ¥»÷Select °´Å¥Õ¹¿ªSelection Variable¡£Ñ¡Ôñ¿òÈçͼ1-3
Ëùʾ¡£
²¢´Ó±äÁ¿Áбí¿òÖÐÑ¡Ôñ±äÁ¿ÒÆÈë¸Ã¿òÖÐÔÙµ¥»÷Selection Variable
Ñ¡Ôñ¿òÓÒ²àµÄValue°´Å¥£¬Õ¹¿ªSet Value(×Ó¶Ô»°¿ò)¶Ô»°¿ò£¬Èçͼ1-4 Ëùʾ£¬¼üÈë±êʶ²ÎÓë·ÖÎöµÄ¹Û²âÁ¿Ëù¾ßÓеĸñäÁ¿Öµ£¬Ò»°ã¾ùʹÓÃÊý¾ÝÎļþÖеÄËùÓкϷ¨¹Û²âÁ¿´Ë²½Öè¿ÉÒÔÊ¡ÂÔ¡£
£¨4£© Ñ¡Ôñ·ÖÎö·½·¨

ÔÚÖ÷¶Ô»°¿òÖÐ×Ô±äÁ¿¾ØÐοòÏÂÃæÓÐÁ½¸öÑ¡ÔñÏ±»Ñ¡Öеķ½·¨Ç°ÃæµÄԲȦÖмÓÓкڵ㡣ÕâÁ½¸öÑ¡ÔñÏîÊÇÓÃÓÚÑ¡ÔñÅбð·ÖÎö·½·¨µÄ£º
Enter independent together Ñ¡Ïµ±ÈÏΪËùÓÐ×Ô±äÁ¿¶¼ÄܶԹ۲âÁ¿ÌØÐÔÌṩ·á¸»µÄÐÅϢʱ£¬Ê¹ÓøÃÑ¡ÔñÏѡÔñ¸ÃÏ²»¼ÓÑ¡ÔñµØÊ¹ÓÃËùÓÐ×Ô±äÁ¿½øÐÐÅбð·ÖÎö£¬½¨Á¢È«Ä£ÐÍ£¬²»ÐèÒª½øÒ»²½½øÐÐÑ¡Ôñ¡£
Use stepwise method Ñ¡Ïµ±²»ÈÏΪËùÓÐ×Ô±äÁ¿¶¼ÄܶԹ۲âÁ¿ÌØÐÔÌṩ·á¸»µÄÐÅϢʱ£¬Ê¹ÓøÃÑ¡ÔñÏî¡£Òò´ËÐèÒªÅбð¹±Ï׵ĴóС£¬ÔÙ½øÐÐÑ¡Ôñµ±Êó±êµ¥»÷¸ÃÏîʱMethod
°´Å¥¼ÓÁÁ£¬¿ÉÒÔ½øÒ»²½Ñ¡ÔñÅбð·ÖÎö·½·¨¡£
2£®Method¶Ô»°¿ò Èçͼ 1-5 Ëùʾ:¡¡

ͼ 1-5 Stepwise Method
¶Ô»°¿ò
µ¥»÷¡°Method¡±°´Å¥Õ¹¿ªStepwise Method¶Ô»°¿ò¡£
£¨1£©Method À¸Ñ¡Ôñ½øÐÐÖð²½Åбð·ÖÎöµÄ·½·¨
¿É¹©Ñ¡ÔñµÄÅбð·ÖÎö·½·¨ÓУº
Wilks'lambda Ñ¡Ïÿ²½¶¼ÊÇWilk µÄ¸Å¼ÆÁ¿×îСµÄ½øÈëÅбðº¯Êý
Unexplained variance Ñ¡Ïÿ²½¶¼ÊÇʹ¸÷À಻¿É½âÊ͵ķ½²îºÍ×îСµÄ±äÁ¿½øÈëÅбðº¯Êý¡£
Mahalanobis¡¯distance Ñ¡Ïÿ²½¶¼Ê¹¿¿µÃ×î½üµÄÁ½Àà¼äµÄMahalanobis
¾àÀë×î´óµÄ±äÁ¿½øÈëÅбðº¯Êý
Smallest F ratio Ñ¡Ïÿ²½¶¼Ê¹ÈκÎÁ½Àà¼äµÄ×îСµÄF Öµ×î´óµÄ±äÁ¿½øÈëÅÐÐ̺¯Êý
Rao¡¯s V Ñ¡Ïÿ²½¶¼»áʹRao V ͳ¼ÆÁ¿²úÉú×î´óÔöÁ¿µÄ±äÁ¿½øÈëÅбðº¯Êý¡£¿ÉÒÔ¶ÔÒ»¸öÒª¼ÓÈ뵽ģÐÍÖеıäÁ¿µÄV
ÖµÖ¸¶¨Ò»¸ö×îСÔöÁ¿¡£Ñ¡Ôñ´ËÖÖ·½·¨ºó£¬Ó¦¸ÃÔÚ¸ÃÏîÏÂÃæµÄV-to-enter ºóµÄ¾ØÐοòÖÐÊäÈëÕâ¸öÔöÁ¿µÄÖ¸¶¨Öµ¡£µ±Ä³±äÁ¿µ¼ÖµÄVÖµÔöÁ¿´óÓÚÖ¸¶¨ÖµµÄ±äÁ¿ºó½øÈëÅбðº¯Êý¡£
(2) Criteria À¸Ñ¡ÔñÖð²½ÅбðÍ£Ö¹µÄÅоÝ
¿É¹©Ñ¡ÔñµÄÅоÝÓÐ:
l Use F value Ñ¡ÏʹÓÃFÖµ£¬ÊÇϵͳĬÈϵÄÅоݵ±¼ÓÈËÒ»¸ö±äÁ¿(»òÌÞ³ýÒ»¸ö±äÁ¿)ºó£¬¶ÔÔÚÅбðº¯ÊýÖеıäÁ¿½øÐз½²î·ÖÎö¡£µ±¼ÆËãµÄFÖµ´óÓÚÖ¸¶¨µÄEntry
ֵʱ£¬¸Ã±äÁ¿±£ÁôÔÚº¯ÊýÖС£Ä¬ÈÏÖµÊÇEntryΪ3.84£ºµ±¸Ã±äÁ¿Ê¹¼ÆËãµÄFֵСÓÚÖ¸¶¨µÄRemoval ֵʱ£¬¸Ã±äÁ¿´Óº¯ÊýÖÐÌÞ³ý¡£Ä¬ÈÏÖµÊÇRemovalΪ2.71¡£¼´µ±±»¼ÓÈëµÄ±äÁ¿F
ֵΪ3.84 ʱ²Å°Ñ¸Ã±äÁ¿¼ÓÈ뵽ģÐÍÖУ¬·ñÔò±äÁ¿²»ÄܽøÈëÄ£ÐÍ£»»òÕߣ¬µ±Òª´ÓÄ£ÐÍÖÐÒÆ³öµÄ±äÁ¿FÖµ<2.71ʱ,¸Ã±äÁ¿²Å±»ÒƳöÄ£ÐÍ,·ñÔòÄ£ÐÍÖеıäÁ¿²»»á±»ÒƳö.ÉèÖÃÕâÁ½¸öֵʱӦ¸Ã×¢ÒâEntryÖµ¡µRemoval
Öµ¡£
l Use Probability of FÑ¡ÏÓÃF¼ìÑéµÄ¸ÅÂʾö¶¨±äÁ¿ÊÇ·ñ¼ÓÈ뺯Êý»ò±»ÌÞ³ý¶ø²»ÊÇÓÃFÖµ¡£¼ÓÈë±äÁ¿µÄFÖµ¸ÅÂʵÄĬÈÏÖµÊÇ0.05(5%);ÒÆ³ö±äÁ¿µÄF
Öµ¸ÅÂÊÊÇ0.10(10%)¡£RemovalÖµ(ÒÆ³ö±äÁ¿µÄFÖµ¸ÅÂÊ) >EntryÖµ(¼ÓÈë±äÁ¿µÄFÖµ¸ÅÂÊ)¡£
(3) DisplayÀ¸ÏÔʾѡÔñµÄÄÚÈÝ
¶ÔÓÚÖð²½Ñ¡Ôñ±äÁ¿µÄ¹ý³ÌºÍ×îºó½á¹ûµÄÏÔʾ¿ÉÒÔͨ¹ýDisplay À¸ÖеÄÁ½Ïî½øÐÐÑ¡Ôñ£º
Summary of steps ¸´Ñ¡ÏҪÇóÔÚÖð²½Ñ¡Ôñ±äÁ¿¹ý³ÌÖеÄÿһ²½Ö®ºóÏÔʾÿ¸ö±äÁ¿µÄͳ¼ÆÁ¿¡£
F for Pairwise distances ¸´Ñ¡ÏҪÇóÏÔʾÁ½Á½ÀàÖ®¼äµÄÁ½Á½F
Öµ¾ØÕó¡£
3.Statistics¶Ô»°¿ò Ö¸¶¨Êä³öµÄͳ¼ÆÁ¿Èçͼ1-6 Ëùʾ£º

ͼ 1-6 Statistics ¶Ô»°¿ò
¿ÉÒÔÑ¡ÔñµÄÊä³öͳ¼ÆÁ¿·ÖΪÒÔÏÂ3 Àà:
(l) ÃèÊöͳ¼ÆÁ¿
ÔÚ Descriptives À¸ÖÐÑ¡Ôñ¶ÔÔʼÊý¾ÝµÄÃèÊöͳ¼ÆÁ¿µÄÊä³ö£º
Means ¸´Ñ¡Ï¿ÉÒÔÊä³ö¸÷ÀàÖи÷×Ô±äÁ¿µÄ¾ùÖµMEAN¡¢±ê×¼²îstd
Dev ºÍ¸÷×Ô±äÁ¿×ÜÑù±¾µÄ¾ùÖµºÍ±ê×¼²î¡£
Univariate ANOV ¸´Ñ¡Ï¶Ô¸÷ÀàÖÐͬһ×Ô±äÁ¿¾ùÖµ¶¼ÏàµÈµÄ¼ÙÉè½øÐмìÑ飬Êä³öµ¥±äÁ¿µÄ·½²î·ÖÎö½á¹û¡£
Box¡¯s M ¸´Ñ¡Ï¶Ô¸÷ÀàµÄз½²î¾ØÕóÏàµÈµÄ¼ÙÉè½øÐмìÑé¡£Èç¹ûÑù±¾×ã¹»´ó£¬±íÃ÷²îÒì²»ÏÔÖøµÄp
Öµ±íÃ÷¾ØÕó²îÒì²»Ã÷ÏÔ¡£
(2) Function coefficients À¸£ºÑ¡ÔñÅбðº¯ÊýϵÊýµÄÊä³öÐÎʽ
Fisherh¡¯s ¸´Ñ¡Ï¿ÉÒÔÖ±½ÓÓÃÓÚ¶ÔÐÂÑù±¾½øÐÐÅбð·ÖÀàµÄ·ÑѩϵÊý¡£¶ÔÿһÀà¸ø³öÒ»×éϵÊý¡£²¢¸ø³ö¸Ã×éÖÐÅбð·ÖÊý×î´óµÄ¹Û²âÁ¿¡£
Unstandardized ¸´Ñ¡Ïδ¾±ê×¼»¯´¦ÀíµÄÅбðϵÊý¡£
(3) Matrices À¸£ºÑ¡Ôñ×Ô±äÁ¿µÄϵÊý¾ØÕó
Within-groups correlation matrix¸´Ñ¡Ï¼´ÀàÄÚÏà¹Ø¾ØÕó£¬
ËüÊǸù¾ÝÔÚ¼ÆËãÏà¹Ø¾ØÕó֮ǰ½«¸÷×é(Àà)з½²î¾ØÕ󯽾ùºó¼ÆËãÀàÄÚÏà¹Ø¾ØÕó¡£
Within-groups covariance matrix¸´Ñ¡Ï¼´¼ÆËã²¢ÏÔʾºÏ²¢ÀàÄÚз½²î¾ØÕó£¬
Êǽ«¸÷×é(Àà)з½²î¾ØÕ󯽾ùºó¼ÆËãµÄ¡£Çø±ðÓÚ×Üз½²îÕó¡£
Separate-groups covariance matrices¸´Ñ¡Ï¶ÔÿÀàÊä³öÏÔʾһ¸öз½²î¾ØÕó¡£
Total covariance matrix¸´Ñ¡Ï¼ÆËã²¢ÏÔʾ×ÜÑù±¾µÄз½²î¾ØÕó¡£
4.Classification ¶Ô»°¿òÖ¸¶¨·ÖÀà²ÎÊýºÍÅбð½á¹û Èçͼ1-7
Ëùʾ

ͼ 1-7 Classification
¶Ô»°¿ò
ÔÚÖ÷¶Ô»°¿òÖе¥»÷Classify °´Å¥Õ¹¿ªÏàÓ¦µÄ¶Ô»°¿ò
(1) ÔÚ Prior ProbabilitiesÀ¸ÖÐÑ¡ÔñÏÈÑé¸ÅÂÊ£¬Á½ÕßÑ¡ÆäÒ»
All groups equal Ñ¡Ï¸÷ÀàÏÈÑé¸ÅÂÊÏàµÈ¡£Èô·ÖΪmÀ࣬Ôò¸÷ÀàÏÈÑé¸ÅÂʾùΪ1/m¡£
Compute from groups sizesÑ¡ÏÓɸ÷ÀàµÄÑù±¾Á¿¼ÆËã¾ö¶¨£¬¼´¸÷ÀàµÄÏÈÑé¸ÅÂÊÓëÆäÑù±¾Á¿³ÉÕý±È¡£
(2) Use Covariance Matrix À¸£ºÑ¡Ôñ·ÖÀàʹÓõÄз½²î¾ØÕó
Within-groupsÑ¡Ïָ¶¨Ê¹Óúϲ¢×éÄÚз½²î¾ØÕó½øÐзÖÀà¡£
Separate-groupsÑ¡Ïָ¶¨Ê¹Óø÷×éз½²î¾ØÕó½øÐзÖÀà¡£
ÓÉÓÚ·ÖÀàÊǸù¾ÝÅбðº¯Êý£¬¶ø²»ÊǸù¾ÝÔʼ±äÁ¿£¬Òò´Ë¸ÃÑ¡ÔñÏî²»ÊÇ×ܵȼÛÓÚ¶þ´ÎÅбð¡£
(3) Plots À¸Ñ¡ÔñÒªÇóÊä³öµÄͳ¼ÆÍ¼
Combined-groups¸´Ñ¡ÏÉú³ÉÒ»ÕŰüÀ¨¸÷ÀàµÄÉ¢µãͼ¡£
¸ÃÉ¢µãͼÊǸù¾ÝǰÁ½¸öÅбðº¯ÊýÖµ×÷µÄÉ¢µãͼ¡£Èç¹ûÖ»ÓÐÒ»¸öÅбðº¯Êý¾ÍÊä³öÖ±·½Í¼¡£
Separate-groups¸´Ñ¡Ï¸ù¾ÝǰÁ½¸öÅбðº¯ÊýÖµ¶ÔÿһÀàÉú³ÉÒ»Õż¤µãͼ£¬¹²·ÖΪ¼¸Àà¾ÍÉú³É¼¸ÕÅÉ¢µãͼ¡£Èç¹ûÖ»ÓÐÒ»¸öÅбðº¯Êý¾ÍÊä³öÖ±·½Í¼¡£
Territorial map¸´Ñ¡ÏÉú³ÉÓÃÓÚ¸ù¾Ýº¯ÊýÖµ°Ñ¹Û²âÁ¿·Öµ½¸÷×éÖÐÈ¥µÄ±ß½çͼ¡£´ËÖÖͳ¼ÆÍ¼°ÑÒ»ÕÅͼµÄÆ½Ãæ»®·Ö³öÓëÀàÊýÏàͬµÄÇøÓò¡£Ã¿Ò»ÀàÕ¼¾ÝÒ»¸öÇø¸÷ÀàµÄ¾ùÖµÔÚ¸÷ÇøÖÐÓÃ*ºÅ±ê³ö¡£Èç¹û½öÓÐÒ»¸öÅбðº¯Êý£¬Ôò²»×÷´Ëͼ¡£
(4) Display À¸Ñ¡ÔñÉú³Éµ½Êä³ö´°ÖеķÖÀà½á¹û
Casewise results¸´Ñ¡ÏҪÇóÊä³öÿ¸ö¹Û²âÁ¿°üÀ¨Åбð·ÖÊý¡¢Êµ¼ÊÀà¡¢Ô¤²âÀà(¸ù¾ÝÅбðº¯ÊýÇóµÃµÄ·ÖÀà½á¹û)ºÍºóÑé¸ÅÂʵȡ£Ñ¡Ôñ´ËÏ¿ÉÒÔÑ¡ÔñÆä¸½ÊôÑ¡ÔñÏLimits
cases to¸´Ñ¡Ï²¢ÔÚºóÃæµÄС¾ØÐοòÖÐÊäÈë¹Û²âÁ¿Êýn Ñ¡Ôñ¡£´ËÏîÔò½ö¶Ôǰn¸ö¹Û²âÁ¿Êä³ö·ÖÀà½á¹û¡£¹Û²âÊýÁ¿´óʱ¿ÉÒÔÑ¡Ôñ´ËÏî¡£
Summary table¸´Ñ¡ÏҪÇóÊä³ö·ÖÀàµÄС½á£¬¸ø³öÕýÈ··ÖÀà¹Û²âÁ¿Êý(ÔʼÀàºÍ¸ù¾ÝÅбðº¯Êý¼ÆËãµÄÔ¤²âÀàÏàͬ)ºÍ´í·Ö¹Û²âÁ¿ÊýºÍ´í·ÖÂÊ¡£
Leave-one-out classification¸´Ñ¡ÏÊä³ö¶Ôÿ¸ö¹Û²âÁ¿½øÐзÖÀàµÄ½á¹û£¬ËùÒÀ¾ÝµÄÅбðÊÇÓɳý¸Ã¹Û²âÁ¿ÒÔÍâµÄÆäËû¹Û²âÁ¿µ¼³öµÄ¡£Ò²³ÆÎª½»»¥Ð£Ñé½á¹û
(5) ÔÚClassification¶Ô»°¿òµÄ×îÏÂÃæÓÐÒ»¸öÑ¡ÔñÏÓÃÒÔÑ¡Ôñ¶ÔȱʧֵµÄ´¦Àí·½·¨¡£Ñ¡ÖÐ
Replace missing value with mean¸´Ñ¡Ï¼´ÓøñäÁ¿µÄ¾ùÖµ´úÌæÈ±Ê§Öµ¡£¸ÃÑ¡ÔñÏîÇ°ÃæµÄС¾ØÐοòÖгöÏÖ¡°.¡±Ê±±íʾѡ¶¨ËùʾµÄ´¦Àí·½·¨.
5.Save¶Ô»°¿ò,Ö¸¶¨Éú³É²¢±£´æÔÚÊý¾ÝÎļþÖеÄбäÁ¿¡£Èçͼ1-8 Ëùʾ:

ͼ 1-8 Save ¶Ô»°¿ò
(1) Predicted group membership¸´Ñ¡ÏҪÇó½¨Á¢Ò»¸öбäÁ¿£¬Ô¤²â¹Û²âÁ¿µÄ·ÖÀà¡£ÊǸù¾ÝÅбð·ÖÊý°Ñ¹Û²âÁ¿°´ºóÑé¸ÅÂÊ×î´óÖ¸ÅÉËùÊôµÄÀࡣÿÔËÐÐÒ»´ÎDiscriminant¹ý³Ì£¬¾Í½¨Á¢Ò»¸ö±íÃ÷ʹÓÃÅбðº¯ÊýÔ¤²â¸÷¹Û²âÁ¿ÊôÓÚÄÄÒ»ÀàµÄбäÁ¿¡£µÚ1
´ÎÔËÐн¨Á¢Ð±äÁ¿µÄ±äÁ¿ÃûΪdis_l£¬Èç¹ûÔÚ¹¤×÷Êý¾ÝÎļþÖв»°Ñǰһ´Î½¨Á¢µÄбäÁ¿É¾³ý£¬µÚn´ÎÔËÐÐDescriminant
¹ý³Ì½¨Á¢µÄбäÁ¿Ä¬ÈϵıäÁ¿ÃûΪdis_n¡£
(2) Discriminant score¸´Ñ¡ÏҪÇó½¨Á¢±íÃ÷Åбð·ÖÊýµÄбäÁ¿¡£¸Ã·ÖÊýÊÇÓÉδ±ê×¼»¯µÄÅбðϵÊý³Ë×Ô±äÁ¿µÄÖµ£¬½«ÕâЩ³Ë»ýÇóºÍºó¼ÓÉϳ£ÊýµÃÀ´¡£Ã¿´ÎÔËÐÐDiscriminant¹ý³Ì¶¼¸ø³öÒ»×é±íÃ÷Åбð·ÖÊýµÄбäÁ¿£¬½¨Á¢¼¸¸öÅбðº¯Êý¾ÍÓм¸¸öÅбð·ÖÊý±äÁ¿¡£²ÎÓë·ÖÎöµÄ¹Û²âÁ¿¹²·ÖΪmÀ࣬Ôò½¨Á¢m¸öµäÔòÅбðº¯Êý¡£Ö¸¶¨¸ÃÑ¡ÔñÏ¾Í¿ÉÒÔÉú³Ém-l
¸ö±íÃ÷Åбð·ÖÊýµÄбäÁ¿¡£
(3) Probabilities of group membership¸´Ñ¡ÏҪÇó½¨Á¢Ð±äÁ¿£¬±íÃ÷¹Û²âÁ¿ÊôÓÚijһÀàµÄ¸ÅÂÊ¡£ÓÐmÀ࣬¶ÔÒ»¸ö¹Û²âÁ¿¾Í»á¸ø³öm¸ö¸ÅÂÊÖµ£¬Òò´Ë½¨Á¢m
¸öбäÁ¿.
6£®Ñ¡ÔñºÃ¸÷Ñ¡ÔñÏîÖ®ºó£¬µã»÷¡°OK¡±°´Å¥£¬Ìá½»ÔËÐÐDiscriminant¹ý³Ì¡£ |