Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
»úÆ÷Ñ§Ï°ÊµÕ½Ö®ÌØÕ÷¹¤³Ì
 
×÷Õߣº²×º£¶þÑô
  2396  次浏览      27
 2021-6-11
 
±à¼­ÍƼö:
±¾ÎÄÊ×ÏȽéÉÜÁË»úÆ÷ѧϰ¸ÅÊö¡¢È»ºó½éÉÜÁË-ÌØÕ÷¹¤³Ì£ºÌØÕ÷³éÈ¡¡¢ÌØÕ÷Ô¤´¦Àí¡¢ÌØÕ÷Ñ¡Ôñ¡¢ÌØÕ÷½µÎ¬¡£

±¾ÎÄÀ´×ÔÓÚcsdn£¬ÓÉ»ðÁú¹ûÈí¼þLinda±à¼­¡¢ÍƼö¡£

1.»úÆ÷ѧϰ¸ÅÊö

1.1 ʲôÊÇ»úÆ÷ѧϰ

(1)±³¾°½éÉÜ

(2)¶¨Òå

»úÆ÷ѧϰÊÇ´ÓÊý¾ÝÖÐ×Ô¶¯·ÖÎö»ñµÃ¹æÂÉ£¨Ä£ÐÍ£©£¬²¢ÀûÓùæÂɶÔδ֪Êý¾Ý½øÐÐÔ¤²â.

(3)½âÊÍ

1.2 ΪʲôҪ»úÆ÷ѧϰ

(1)½â·ÅÉú²úÁ¦£º

ÖÇÄܿͷþ£º²»ÖªÆ£¾ë24СʱСʱ×÷Òµ

(2)Á¿»¯Í¶×Ê£º±ÜÃâ¸ü¶àµÄ½»Ò×ÈËÔ±

½â¾öרҵÎÊÌ⣺

(3)Ò½ÁÆ£º

°ïÖúÒ½Éú¸¨ÖúÒ½ÁÆ

(4)Ìṩ±ãÀû£º

°¢ÀïET³ÇÊдóÄÔ£ºÖÇÄܳÇÊÐ

1.3 »úÆ÷ѧϰӦÓó¡¾°

»úÆ÷ѧϰµÄÓ¦Óó¡¾°·Ç³£¶à£¬¿ÉÒÔËµÉøÍ¸µ½Á˸÷¸öÐÐÒµÁìÓòµ±ÖС£Ò½ÁÆ¡¢º½¿Õ¡¢½ÌÓý¡¢ÎïÁ÷¡¢µçÉ̵ȵÈÁìÓòµÄ¸÷ÖÖ³¡¾°¡£

(1)ÓÃÔÚÍÚ¾ò¡¢Ô¤²âÁìÓò£º

Ó¦Óó¡¾°£ºµêÆÌÏúÁ¿Ô¤²â¡¢Á¿»¯Í¶×Ê¡¢¹ã¸æÍƼö¡¢ÆóÒµ¿Í»§·ÖÀà¡¢SQLÓï¾ä°²È«¼ì²â·ÖÀà¡­

(2)ÓÃÔÚͼÏñÁìÓò£º

Ó¦Óó¡¾°£º½ÖµÀ½»Í¨±êÖ¾¼ì²â¡¢Í¼Æ¬ÉÌÆ·Ê¶±ð¼ì²âµÈµÈ

(3)ÓÃÔÚ×ÔÈ»ÓïÑÔ´¦ÀíÁìÓò£º

Ó¦Óó¡¾°£ºÎı¾·ÖÀà¡¢Çé¸Ð·ÖÎö¡¢×Ô¶¯ÁÄÌì¡¢Îı¾¼ì²âµÈµÈ

µ±Ç°ÖØÒªµÄÊÇÕÆÎÕһЩ»úÆ÷ѧϰËã·¨µÈ¼¼ÇÉ£¬´Óij¸öÒµÎñÁìÓòÇÐÈë½â¾öÎÊÌâ¡£

1.4 ѧϰ¿ò¼ÜºÍ×ÊÁϵĽéÉÜ

(1)ѧϰ¿ò¼Ü

2.ÌØÕ÷¹¤³Ì

ѧϰĿ±ê:

Á˽âÌØÕ÷¹¤³ÌÔÚ»úÆ÷ѧϰµ±ÖеÄÖØÒªÐÔ

Ó¦ÓÃsklearnʵÏÖÌØÕ÷Ô¤´¦Àí

Ó¦ÓÃsklearnʵÏÖÌØÕ÷³éÈ¡

Ó¦ÓÃsklearnʵÏÖÌØÕ÷Ñ¡Ôñ

Ó¦ÓÃPCAʵÏÖÌØÕ÷µÄ½µÎ¬

˵Ã÷»úÆ÷ѧϰËã·¨¼à¶½Ñ§Ï°ÓëÎ޼ලѧϰµÄÇø±ð

˵Ã÷¼à¶½Ñ§Ï°ÖеķÖÀà¡¢»Ø¹éÌØµã

˵Ã÷»úÆ÷ѧϰË㷨Ŀ±êÖµµÄÁ½ÖÖÊý¾ÝÀàÐÍ

˵Ã÷»úÆ÷ѧϰ(Êý¾ÝÍÚ¾ò)µÄ¿ª·¢Á÷³Ì

2.1 ÌØÕ÷¹¤³Ì½éÉÜ

ѧϰСĿ±ê:

(1)˵³ö»úÆ÷ѧϰµÄѵÁ·Êý¾Ý¼¯½á¹¹×é³É

(2)Á˽âÌØÕ÷¹¤³ÌÔÚ»úÆ÷ѧϰµ±ÖеÄÖØÒªÐÔ

(3)ÖªµÀÌØÕ÷¹¤³ÌµÄ·ÖÀà

´ø×ÅÎÊÌâѧ£º´ÓÀúÊ·Êý¾Ýµ±ÖлñµÃ¹æÂÉ£¿ÕâЩÀúÊ·Êý¾ÝÊÇÔõôµÄ¸ñʽ£¿

ÌØÕ÷¹¤³Ì֪ʶͼÆ×:

2.1.1 Êý¾Ý¼¯µÄ¹¹³É

(1)¿ÉÓÃÊý¾Ý¼¯

(2)Êý¾Ý¼¯µÄ¹¹³É

½á¹¹£ºÌØÕ÷Öµ+Ä¿±êÖµ

2.1.2 ΪʲôÐèÒªÌØÕ÷¹¤³Ì(Feature Engineering)

»úÆ÷ѧϰÁìÓòµÄ´óÉñAndrew Ng(Îâ¶÷´ï)ÀÏʦ˵¡°Coming up with features is difficult, time-consuming, requires expert knowledge. ¡°Applied machine learning¡± is basically feature engineering. ¡±

×¢£ºÒµ½ç¹ã·ºÁ÷´«£ºÊý¾ÝºÍÌØÕ÷¾ö¶¨ÁË»úÆ÷ѧϰµÄÉÏÏÞ£¬¶øÄ£ÐͺÍËã·¨Ö»ÊDZƽüÕâ¸öÉÏÏÞ¶øÒÑ¡£

(1) ÌØÕ÷¹¤³ÌµÄÒâÒåºÍ×÷ÓÃ

ÒâÒå: »áÖ±½ÓÓ°Ïì»úÆ÷ѧϰµÄЧ¹û

×÷ÓÃ: ɸѡ,´¦ÀíÑ¡ÔñһЩºÏÊʵÄÌØÕ÷

(2)¾Ù¸ö¼òµ¥µÄÀý×ÓÀí½âÒ»ÏÂ:

ºÃº¢×ÓÃÇÒª×ö·¹,ÒªÏë·¹ºÃ³Ô,²»½öÐèÒª¾«Õ¿µÄ³øÒÕ,»¹ÐèÒªÓÅÖʵÄʳ²Ä;

ÎÒÃǸù¾Ý´ó³øÑ¡ºÃµÄʳ²Ä,È¥²ËÊг¡Âò;

È»ºó¶Ôʳ²ÄÇåÏ´,È¥µôÔãÆÉ,ÇкÃ;

×îºó·ÖÀà×°µ½ÈÝÆ÷µÄ¹ý³Ì,¾ÍÏëµ±ÓÚ»úÆ÷ѧϰÖеÄÌØÕ÷¹¤³Ì.

ÈçºÎÈúÃʳ²ÄµÄ¼ÛֵȫÃÀʵÏÖ,¾Í¿´´ó³øÔõô×öÁË.×öµÄ¹ý³Ì¾ÍÊÇË㷨ѵÁ·µÄ¹ý³Ì.

´ó³ø¶à´Îʵ¼ù³¢ÊÔ,µ÷Õû×ö²Ë·½·¨,»ðºò,ÅäÁϵÈ,×îºó×ܽáµÃ³öÒ»¸ö²Ëµ¥.Õâ¸ö²Ëµ¥±ãÊÇÄ£ÐÍ.

ÓÐÁËÕâ¸öÄ£ÐÍ,¾Í¿ÉÒÔÈøü¶àµÄºÃº¢×Ó×ö³öºÃ·¹.

¶àºÃ!

(3)ÌØÕ÷¹¤³Ì°üº¬ÄÚÈÝ:

ÌØÕ÷³éÈ¡

ÌØÕ÷Ô¤´¦Àí

ÌØÕ÷Ñ¡Ôñ

ÌØÕ÷½µÎ¬

2.1.3 ÌØÕ÷¹¤³ÌËùÐ蹤¾ß

(1)Scikit-learn¹¤¾ß½éÉÜ

PythonÓïÑԵĻúÆ÷ѧϰ¹¤¾ß

Scikit-learn°üÀ¨Ðí¶àÖªÃûµÄ»úÆ÷ѧϰËã·¨µÄʵÏÖ

Scikit-learnÎĵµÍêÉÆ£¬ÈÝÒ×ÉÏÊÖ£¬·á¸»µÄAPI

(2)°²×°

conda install Scikit-learn==0.20 »ò
pip3 install Scikit-learn==0.20

°²×°ºÃÖ®ºó¿ÉÒÔͨ¹ýÒÔÏÂÃüÁî²é¿´ÊÇ·ñ°²×°³É¹¦

import sklearn

×¢£º°²×°scikit-learnÐèÒªNumpy,PandasµÈ¿â

(3)Scikit-learn°üº¬µÄÄÚÈÝ

sklearn½Ó¿Ú:

·ÖÀà¡¢¾ÛÀà¡¢»Ø¹é

ÌØÕ÷¹¤³Ì

Ä£ÐÍÑ¡Ôñ¡¢µ÷ÓÅ

2.2 ÌØÕ÷³éÈ¡

ѧϰĿ±ê

Ó¦ÓÃDictVectorizerʵÏÖ¶ÔÀà±ðÌØÕ÷½øÐÐÊýÖµ»¯¡¢ÀëÉ¢»¯

Ó¦ÓÃCountVectorizerʵÏÖ¶ÔÎı¾ÌØÕ÷½øÐÐÊýÖµ»¯

Ó¦ÓÃTfidfVectorizerʵÏÖ¶ÔÎı¾ÌØÕ÷½øÐÐÊýÖµ»¯

˵³öÁ½ÖÖÎı¾ÌØÕ÷ÌáÈ¡µÄ·½Ê½Çø±ð

ʲôÊÇÌØÕ÷ÌáÈ¡ÄØ£¿

2.2.1 ÌØÕ÷ÌáÈ¡

(1)°üÀ¨½«ÈÎÒâÊý¾Ý£¨ÈçÎı¾»òͼÏñ£©×ª»»Îª¿ÉÓÃÓÚ»úÆ÷ѧϰµÄÊý×ÖÌØÕ÷.

×¢£ºÌØÕ÷Öµ»¯ÊÇΪÁ˼ÆËã»ú¸üºÃµÄÈ¥Àí½âÊý¾Ý

ÌØÕ÷ÌáÈ¡¾ÙÀý:

×ÖµäÌØÕ÷ÌáÈ¡(ÌØÕ÷ÀëÉ¢»¯)

Îı¾ÌØÕ÷ÌáÈ¡

ͼÏñÌØÕ÷ÌáÈ¡£¨Éî¶Èѧϰ½«½éÉÜ£©

(2)ÌØÕ÷ÌáÈ¡API

sklearn.feature_extraction

2.2.2 ×ÖµäÌØÕ÷ÌáÈ¡

(1)×÷Ó㺶Ô×ÖµäÊý¾Ý½øÐÐÌØÕ÷Öµ»¯

sklearn.feature_extraction. DictVectorizer(sparse=True,¡­)

DictVectorizer.fit_transform(X) X: ×Öµä»òÕß°üº¬×ÖµäµÄµü´úÆ÷·µ»ØÖµ£º·µ»Øsparse¾ØÕó

DictVectorizer.inverse_transform (X) X:array Êý×é»òÕßsparse¾ØÕó ·µ»ØÖµ:ת»»Ö®Ç°Êý¾Ý¸ñʽ

DictVectorizer.get_feature_names() ·µ»ØÀà±ðÃû³Æ

(2)Ó¦ÓÃ:

ÎÒÃǶÔÒÔÏÂÊý¾Ý½øÐÐÌØÕ÷ÌáÈ¡

[{'city': '±±¾©','temperature':100}
{'city': 'ÉϺ£','temperature':60}
{'city': 'ÉîÛÚ','temperature':30}]

(3)Á÷³Ì·ÖÎö:

ʵÀý»¯ÀàDictVectorizer

µ÷ÓÃfit_transform·½·¨ÊäÈëÊý¾Ý²¢×ª»»£¨×¢Òâ·µ»Ø¸ñʽ£©

from sklearn.feature_extraction import DictVectorizer

def dict_vec():
# ʵÀý»¯dict
dict = DictVectorizer(sparse=False)
#dict_vecµ÷ÓÃfit_transform
#Èý¸öÑù±¾µÄÌØÕ÷ÖµÊý¾Ý(×ÖµäÐÎʽ)
data = dict.fit_transform ([{'city': '±±¾©','temperature':100},{'city': 'ÉϺ£','temperature':60}, {'city': 'ÉîÛÚ','temperature':30}])
# ´òÓ¡ÌØÕ÷³éȡ֮ºóµÄÌØÕ÷½á¹û
print(dict.get_feature_names())
print(data)
return None
dict_vec()

Êä³ö½á¹û:

/home/yuyang/anaconda3/envs/ tensor1-6/bin/python3.5 "/media/yuyang/Yinux/heima/ Machine learning/demo.py"
['city=ÉϺ£', 'city=±±¾©', 'city=ÉîÛÚ', 'temperature']
[[ 0. 1. 0. 100.]
[ 1. 0. 0. 60.]
[ 0. 0. 1. 30.]]
Process finished with exit code 0

DictVectorizerĬÈÏ·µ»ØÏ¡Êèsparse¾ØÕó,Ϊ½âÔ¼ÄÚ´æ¿Õ¼ä

×¢Òâ¹Û²ìûÓмÓÉÏsparse=False²ÎÊýµÄ½á¹û

/home/yuyang/anaconda3/envs/ tensor1-6/bin/python3.5 "/media/yuyang/Yinux/heima/ Machine learning/demo.py"
['city=ÉϺ£', 'city=±±¾©', 'city=ÉîÛÚ', 'temperature']
(0, 1) 1.0
(0, 3) 100.0
(1, 0) 1.0
(1, 3) 60.0
(2, 2) 1.0
(2, 3) 30.0
Process finished with exit code 0

Õâ¸ö½á¹û²¢²»ÊÇÎÒÃÇÏëÒª¿´µ½µÄ£¬ËùÒÔ¼ÓÉϲÎÊý,µÃµ½ÏëÒªµÄ½á¹û

ÔÚ×öpandasµÄÀëÉ¢»¯Ê±ºò£¬Ò²ÊµÏÖÁËÀàËÆµÄЧ¹û£¬ÎÒÃǰÑÕâ¸ö´¦ÀíÊý¾ÝµÄ¼¼ÇÉÓÃרҵµÄ³Æºô"one-hot"±àÂ룬֮ǰÎÒÃÇÒ²½âÊ͹ýΪʲôÐèÒªÕâÖÖÀëÉ¢»¯µÄÁË£¬ÊÇ·ÖÎöÊý¾ÝµÄÒ»ÖÖÊֶΡ£±ÈÈçÏÂÃæÀý×Ó£º

(4)×ܽá:¶ÔÓÚÌØÕ÷µ±ÖдæÔÚÀà±ðÐÅÏ¢µÄÎÒÃǶ¼»á×öone-hot±àÂë´¦Àí

2.2.3Îı¾ÌØÕ÷ÌáÈ¡

(1)×÷Ó㺶ÔÎı¾Êý¾Ý½øÐÐÌØÕ÷Öµ»¯

sklearn.feature_extraction.text. CountVectorizer(stop_words=[])·µ»Ø´ÊƵ¾ØÕó stop_words=[] ÔÚÁбíÖÐÖ¸¶¨²»ÐèÒªµÄ´Ê½øÐйýÂË

CountVectorizer.fit_transform(X)

X:Îı¾»òÕß°üº¬Îı¾×Ö·û´®µÄ¿Éµü´ú¶ÔÏó ·µ»ØÖµ£º·µ»Øsparse¾ØÕó

CountVectorizer.inverse_transform(X)

X:arrayÊý×é»òÕßsparse¾ØÕó ·µ»ØÖµ:ת»»Ö®Ç°Êý¾Ý¸ñ

CountVectorizer.get_feature_names() ·µ»ØÖµ:µ¥´ÊÁбí

CountVectorizer:

µ¥´ÊÁбí:½«ËùÓÐÎÄÕµĵ¥´Êͳ¼Æµ½Ò»¸öÁÐ±íµ±ÖÐ(ÖØ¸´µÄ´ÎÖ»µ±×öÒ»´Î),ĬÈÏ»á¹ýÂ˵ôµ¥¸ö×Öĸ

¶ÔÓÚµ¥¸ö×Öĸ,¶ÔÎÄÕÂÖ÷ÌâûÓÐÓ°Ïì,µ¥´Ê¿ÉÒÔÓÐÓ°Ïì.

sklearn.feature_extraction.text.TfidfVectorizer

(2)Ó¦ÓÃ:

ÎÒÃǶÔÒÔÏÂÊý¾Ý½øÐÐÌØÕ÷ÌáÈ¡:

["life is short,i like python",
"life is too long,i dislike python"]

(3)Á÷³Ì·ÖÎö:

ʵÀý»¯ÀàCountVectorizer

µ÷ÓÃfit_transform·½·¨ÊäÈëÊý¾Ý²¢×ª»» £¨×¢Òâ·µ»Ø¸ñʽ£¬ÀûÓÃtoarray()½øÐÐsparse¾ØÕóת»»arrayÊý×飩

from sklearn.feature_extraction.text import CountVectorizer
def countvec():
# ʵÀý»¯count
count = CountVectorizer()
data = count.fit_transform (["life is is short,i like python", "life is too long,i dislike python"])
# ÄÚÈÝ
print(count.get_feature_names())
print(data.toarray())
return None
countvec()

Êä³ö½á¹û:

/home/yuyang/anaconda3/envs/ tensor1-6/bin/python3.5 "/media/yuyang/Yinux/heima/ Machine learning/demo.py"
['dislike', 'is', 'life', 'like', 'long', 'python', 'short', 'too']
[[0 2 1 1 0 1 1 0]
[1 1 1 0 1 1 0 1]]
Process finished with exit code 0

ÎÊÌâ:Èç¹ûÎÒÃǽ«Êý¾ÝÌæ»»³ÉÖÐÎÄ£¿

"data = count.fit_transform (["ÈËÉú ¿à¶Ì ÎÒ Ï²»¶ python", "Éú»î Ì«³¤ÁË,ÎÒ²» ϲ»¶ python"])"

ÄÇô×îÖյõ½µÄ½á¹ûÊÇ:

/home/yuyang/anaconda3/envs/ tensor1-6/bin/python3.5 "/media/yuyang/Yinux/heima/Machine learning/demo.py"
['python', 'ÈËÉú', 'ϲ»¶', 'Ì«³¤ÁË', 'ÎÒ²»', 'Éú»î', '¿à¶Ì']
[[1 1 1 0 0 0 1]
[1 0 1 1 1 1 0]]
Process finished with exit code 0

×¢:²»Ö§³Öµ¥¸öÖÐÎÄ·Ö´Ê

Ϊʲô»áµÃµ½ÕâÑùµÄ½á¹ûÄØ£¬×Ðϸ·ÖÎöÖ®ºó»á·¢ÏÖÓ¢ÎÄĬÈÏÊÇÒÔ¿Õ¸ñ·Ö¿ªµÄ¡£Æäʵ¾Í´ïµ½ÁËÒ»¸ö·Ö´ÊµÄЧ¹û£¬ËùÒÔÎÒÃÇÒª¶ÔÖÐÎĽøÐзִʴ¦Àí.

ÖÐÎķִʲÉÓÃjieba·Ö´Ê´¦Àí

(4)jieba·Ö´Ê´¦Àí

jieba.cut()·µ»Ø´ÊÓï×é³ÉµÄÉú³ÉÆ÷

ÐèÒª°²×°ÏÂjieba¿â

pip3 install jieba

°¸Àý·ÖÎö:

from sklearn.feature_extraction.text import CountVectorizer
import jieba
def cutword():
'''
½øÐзִʴ¦Àí
:return:
'''
# ½«Èý¸ö¾ä×ÓÓÃjieba.cut´¦Àí
contetn1 = jieba.cut("½ñÌìºÜ²Ð¿á£¬Ã÷Ìì¸ü²Ð¿á£¬ºóÌìºÜÃÀºÃ£¬µ«¾ø¶Ô´ó²¿·ÖÊÇËÀÔÚÃ÷ÌìÍíÉÏ£¬ËùÒÔÿ¸öÈ˲»Òª·ÅÆú½ñÌì¡£")
contetn2 = jieba.cut("ÎÒÃÇ¿´µ½µÄ´ÓºÜÔ¶ÐÇϵÀ´µÄ¹âÊÇÔÚ¼¸°ÙÍòÄê֮ǰ·¢³öµÄ£¬ÕâÑùµ±ÎÒÃÇ¿´µ½ÓîÖæÊ±£¬ÎÒÃÇÊÇÔÚ¿´ËüµÄ¹ýÈ¥¡£")
contetn3 = jieba.cut("Èç¹ûÖ»ÓÃÒ»ÖÖ·½Ê½Á˽âijÑùÊÂÎÄã¾Í²»»áÕæÕýÁ˽âËü¡£Á˽âÊÂÎïÕæÕýº¬ÒåµÄÃØÃÜÈ¡¾öÓÚÈçºÎ½«ÆäÓëÎÒÃÇËùÁ˽âµÄÊÂÎïÏàÁªÏµ¡£")
# ÏȽ«×ÅÈý¸öת»»³ÉÁбí
c1 = ' '.join(list(contetn1))
c2 = ' '.join(list(contetn2))
c3 = ' '.join(list(contetn3))
return c1, c2, c3

def chvec():
# ʵÀý»¯conunt
count = CountVectorizer (stop_words=['²»Òª', 'ÎÒÃÇ', 'ËùÒÔ']) #Ö¸¶¨²»ÐèÒªµÄ´Ê½øÐйýÂË
# ¶¨ÒåÒ»¸ö·Ö´ÊµÄº¯Êý
c1, c2, c3 = cutword()
data = count.fit_transform([c1, c2, c3])
# ÄÚÈÝ
print(count.get_feature_names())
print(data.toarray())
return None

Êä³ö½á¹û:

/home/yuyang/anaconda3/envs/ tensor1-6/bin/python3.5 "/media/yuyang/Yinux/heima/ Machine learning/demo.py"
Building prefix dict from the default dictionary ...
Dumping model to file cache /tmp/jieba.cache
Loading model cost 0.604 seconds.
Prefix dict has been built succesfully.
['Ò»ÖÖ', '²»»á', '֮ǰ', 'Á˽â', 'ÊÂÎï', '½ñÌì', '¹âÊÇÔÚ', '¼¸°ÙÍòÄê', '·¢³ö', 'È¡¾öÓÚ', 'Ö»ÓÃ', 'ºóÌì', 'º¬Òå', '´ó²¿·Ö', 'ÈçºÎ', 'Èç¹û', 'ÓîÖæ', '·ÅÆú', '·½Ê½', 'Ã÷Ìì', 'ÐÇϵ', 'ÍíÉÏ', 'ijÑù', '²Ð¿á', 'ÿ¸ö', '¿´µ½', 'ÕæÕý', 'ÃØÃÜ', '¾ø¶Ô', 'ÃÀºÃ', 'ÁªÏµ', '¹ýÈ¥', 'ÕâÑù']
[[0 0 0 0 0 2 0 0 0 0 0 1 0 1 0 0 0 1 0 2 0 1 0 2 1 0 0 0 1 1 0 0 0]
[0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 2 0 0 0 0 0 1 1]
[1 1 0 4 3 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 2 1 0 0 1 0 0]]
Process finished with exit code 0

 

¸ÃÈçºÎ´¦Àíij¸ö´Ê»ò¶ÌÓïÔÚ¶àÆªÎÄÕÂÖгöÏֵĴÎÊý¸ßÕâÖÖÇé¿ö

2.2.4 Tf-idfÎı¾ÌØÕ÷ÌáÈ¡

TF-IDFµÄÖ÷Ҫ˼Ï룺Èç¹ûij¸ö´Ê»ò¶ÌÓïÔÚһƪÎÄÕÂÖгöÏֵĸÅÂʸߣ¬²¢ÔÚÆäËûÎÄÕÂÖкÜÉÙ³öÏÖ£¬ÔòÈÏΪ´Ë´Ê»òÕß¶ÌÓï¾ßÓкܺõÄÀà±ðÇø·ÖÄÜÁ¦£¬ÊʺÏÓÃÀ´·ÖÀà¡£

TF-IDF×÷ÓãºÓÃÒÔÆÀ¹ÀÒ»×ִʶÔÓÚÒ»¸öÎļþ¼¯»òÒ»¸öÓïÁÏ¿âÖÐµÄÆäÖÐÒ»·ÝÎļþµÄÖØÒª³Ì¶È¡£

(1)¹«Ê½

´ÊƵ£¨term frequency£¬tf£©Ö¸µÄÊÇijһ¸ö¸ø¶¨µÄ´ÊÓïÔÚ¸ÃÎļþÖгöÏֵįµÂÊ

ÄæÏòÎĵµÆµÂÊ£¨inverse document frequency£¬idf)ÊÇÒ»¸ö´ÊÓïÆÕ±éÖØÒªÐԵĶÈÁ¿¡£Ä³Ò»Ìض¨´ÊÓïµÄidf£¬¿ÉÒÔÓÉ×ÜÎļþÊýÄ¿³ýÒÔ°üº¬¸Ã´ÊÓïÖ®ÎļþµÄÊýÄ¿£¬ÔÙ½«µÃµ½µÄÉÌÈ¡ÒÔ10Ϊµ×µÄ¶ÔÊýµÃµ½

×îÖյóö½á¹û¿ÉÒÔÀí½âÎªÖØÒª³Ì¶È¡£

×¢£º¼ÙÈçһƪÎļþµÄ×Ü´ÊÓïÊýÊÇ100¸ö£¬¶ø´ÊÓï"·Ç³£"³öÏÖÁË5´Î£¬ÄÇô"·Ç³£"Ò»´ÊÔÚ¸ÃÎļþÖÐµÄ´ÊÆµ¾ÍÊÇ5/100=0.05¡£¶ø¼ÆËãÎļþƵÂÊ£¨IDF£©µÄ·½·¨ÊÇÒÔÎļþ¼¯µÄÎļþ×ÜÊý£¬³ýÒÔ³öÏÖ"·Ç³£"Ò»´ÊµÄÎļþÊý¡£ËùÒÔ£¬Èç¹û"·Ç³£"Ò»´ÊÔÚ1,000·ÝÎļþ³öÏÖ¹ý£¬¶øÎļþ×ÜÊýÊÇ10,000,000·ÝµÄ»°£¬ÆäÄæÏòÎļþƵÂʾÍÊÇlg£¨10,000,000 / 1,0000£©=3¡£×îºó"·Ç³£"¶ÔÓÚÕâÆªÎĵµµÄtf-idfµÄ·ÖÊýΪ0.05 * 3=0.15

(2)°¸Àý

rom sklearn.feature_extraction.text import TfidfVectorizer
import jieba
def cutword():
'''
½øÐзִʴ¦Àí
:return:
'''
# ½«Èý¸ö¾ä×ÓÓÃjieba.cut´¦Àí
contetn1 = jieba.cut("½ñÌìºÜ²Ð¿á£¬Ã÷Ìì¸ü²Ð¿á£¬ºóÌìºÜÃÀºÃ£¬µ«¾ø¶Ô´ó²¿·ÖÊÇËÀÔÚÃ÷ÌìÍíÉÏ£¬ËùÒÔÿ¸öÈ˲»Òª·ÅÆú½ñÌì¡£")
contetn2 = jieba.cut("ÎÒÃÇ¿´µ½µÄ´ÓºÜÔ¶ÐÇϵÀ´µÄ¹âÊÇÔÚ¼¸°ÙÍòÄê֮ǰ·¢³öµÄ£¬ÕâÑùµ±ÎÒÃÇ¿´µ½ÓîÖæÊ±£¬ÎÒÃÇÊÇÔÚ¿´ËüµÄ¹ýÈ¥¡£")
contetn3 = jieba.cut("Èç¹ûÖ»ÓÃÒ»ÖÖ·½Ê½Á˽âijÑùÊÂÎÄã¾Í²»»áÕæÕýÁ˽âËü¡£Á˽âÊÂÎïÕæÕýº¬ÒåµÄÃØÃÜÈ¡¾öÓÚÈçºÎ½«ÆäÓëÎÒÃÇËùÁ˽âµÄÊÂÎïÏàÁªÏµ¡£")
# ÏȽ«×ÅÈý¸öת»»³ÉÁбí
c1 = ' '.join(list(contetn1))
c2 = ' '.join(list(contetn2))
c3 = ' '.join(list(contetn3))
return c1, c2, c3
def tfidfvec():
# ʵÀý»¯conunt
tfidf = TfidfVectorizer()
# ½øÐÐ3¾ä»°µÄ·Ö´Ê
c1, c2, c3 = cutword()
#¶ÔÁ½ÆªÎÄÕ½øÐÐÌØÕ÷ÌáÈ¡
data = tfidf.fit_transform([c1, c2, c3])
# ÄÚÈÝ
print(tfidf.get_feature_names())
print(data.toarray())
return None
tfidfvec()

(3)Tf-idfµÄÖØÒªÐÔ

·ÖÀà»úÆ÷ѧϰËã·¨½øÐÐÎÄÕ·ÖÀàÖÐǰÆÚÊý¾Ý´¦Àí·½Ê½.

¸ù¾Ý²»Í¬´Ê»ãÔÚÎÄÕÂÖеÄÖØÒª³Ì¶È,ÅжÏÎÄÕÂÀà±ð.

2.3ÌØÕ÷Ô¤´¦Àí

ѧϰĿ±ê:

Á˽âÊýÖµÐÍÊý¾Ý¡¢Àà±ðÐÍÊý¾ÝÌØµã

Ó¦ÓÃMinMaxScalerʵÏÖ¶ÔÌØÕ÷Êý¾Ý½øÐйéÒ»»¯

Ó¦ÓÃStandardScalerʵÏÖ¶ÔÌØÕ÷Êý¾Ý½øÐбê×¼»¯

2.3.1ʲôÊÇÌØÕ÷Ô¤´¦Àí

#scikit-learnµÄ½âÊÍ

provides several common utility functions and transformer classes to change raw feature vectors into a representation that is more suitable for the downstream estimators.

·­Òë:ͨ¹ýһЩת»»º¯Êý½«ÌØÕ÷ת»»³É¸ü¼ÓÊʺÏË㷨ģÐ͵Ĺý³Ì

¿ÉÒÔͨ¹ýÉÏÃæÄÇÕÅͼÀ´Àí½â

(1)°üº¬ÄÚÈÝ

ÊýÖµÐÍÊý¾ÝµÄÎÞÁ¿¸Ù»¯£º

¹éÒ»»¯

±ê×¼»¯

(2)ÌØÕ÷Ô¤´¦ÀíAPI

ΪʲôÎÒÃÇÒª½øÐйéÒ»»¯/±ê×¼»¯£¿

sklearn.preprocessing

ÌØÕ÷µÄµ¥Î»»òÕß´óСÏà²î½Ï´ó£¬»òÕßÄ³ÌØÕ÷µÄ·½²îÏà±ÈÆäËûµÄÌØÕ÷Òª´ó³ö¼¸¸öÊýÁ¿¼¶£¬ÈÝÒ×Ó°Ï죨֧Å䣩Ŀ±ê½á¹û£¬Ê¹µÃһЩËã·¨ÎÞ·¨Ñ§Ï°µ½ÆäËüµÄÌØÕ÷.

Ô¼»á¶ÔÏóÊý¾Ý

ÎÒÃÇÐèÒªÓõ½Ò»Ð©·½·¨½øÐÐÎÞÁ¿¸Ù»¯£¬Ê¹²»Í¬¹æ¸ñµÄÊý¾Ýת»»µ½Í¬Ò»¹æ¸ñ.

2.3.2 ¹éÒ»»¯

(1)¶¨Òå

ͨ¹ý¶ÔԭʼÊý¾Ý½øÐб任°ÑÊý¾ÝÓ³Éäµ½(ĬÈÏΪ[0,1])Ö®¼ä

(2)¹«Ê½

ÄÇôÔõôÀí½âÕâ¸ö¹ý³ÌÄØ£¿ÎÒÃÇͨ¹ýÒ»¸öÀý×Ó

(3)API

sklearn.preprocessing.MinMaxScaler (feature_range=(0,1)¡­ )

MinMaxScalar.fit_transform(X)

X:numpy array¸ñʽµÄÊý¾Ý[n_samples,n_features]

·µ»ØÖµ£º×ª»»ºóµÄÐÎ×´ÏàͬµÄarray

(4)Êý¾Ý¼ÆËã

ÎÒÃǶÔÒÔÏÂÊý¾Ý½øÐÐÔËËã:

milage,Liters,Consumtime,target
40920,8.326976,0.953952,3
14488,7.153469,1.673904,2
26052,1.441871,0.805124,1
75136,13.147394,0.428964,1

·ÖÎö:

1¡¢ÊµÀý»¯MinMaxScalar

2¡¢Í¨¹ýfit_transformת»»

×¢:ֻȡǰÈýÁÐÊý¾Ý(ÌØÕ÷Öµ),×îºóÒ»ÁÐÊÇÄ¿±êÖµ.

from sklearn.preprocessing import MinMaxScaler
import pandas as pd
def minmaxscalar():
"""
¶ÔÔ¼»á¶ÔÏó½øÐйéÒ»»¯´¦Àí
:return:
"""
#¶ÁÈ¡Êý¾Ý,Ñ¡ÔñÒª´¦ÀíµÄÌØÕ÷
dating = pd.read_csv ("./data/dating.txt")
data = dating[['milage','Liters','Consumtime']]

#ʵÀý»¯minmaxscaler½øÐÐfit_transform
#mm = MinMaxScaler(feature_range=(2, 3))#½«Êý¾ÝÓ³Éäµ½2-3
mm = MinMaxScaler() #ĬÈÏfeature_range=(0, 1)
data = mm.fit_transform(data)
print(data)
print(data.shape)
return None

minmaxscalar()

Êä³ö½á¹û:

[[0.44832535 0.39805139 0.56233353]
[0.15873259 0.34195467 0.98724416]
[0.28542943 0.06892523 0.47449629]
...
[0.29115949 0.50910294 0.51079493]
[0.52711097 0.43665451 0.4290048 ]
[0.47940793 0.3768091 0.78571804]]
(1000, 3)
Process finished with exit code 0

ÎÊÌ⣺Èç¹ûÊý¾ÝÖÐÒì³£µã½Ï¶à£¬»áÓÐʲôӰÏ죿

(5)¹éÒ»»¯×ܽá

×¢Òâ×î´óÖµ×îСֵÊDZ仯µÄ£¬ÁíÍ⣬×î´óÖµÓë×îСֵ·Ç³£ÈÝÒ×ÊÜÒì³£µãÓ°Ï죬ËùÒÔ¹éÒ»»¯·½·¨Â³°ôÐԽϲֻÊʺϴ«Í³¾«È·Ð¡Êý¾Ý³¡¾°¡£

Ôõô°ì?

2.3.3 ±ê×¼»¯

(1)¶¨Òå

ͨ¹ý¶ÔԭʼÊý¾Ý½øÐб任°ÑÊý¾Ý±ä»»µ½¾ùֵΪ0,±ê×¼²îΪ1·¶Î§ÄÚ

(2)¹«Ê½

×÷ÓÃÓÚÿһÁУ¬meanΪƽ¾ùÖµ£¬¦ÒΪ±ê×¼²î

ËùÒԻص½¸Õ²ÅÒì³£µãµÄµØ·½£¬ÎÒÃÇÔÙÀ´¿´¿´±ê×¼»¯.

(1)¶ÔÓÚ¹éÒ»»¯À´Ëµ£ºÈç¹û³öÏÖÒì³£µã£¬Ó°ÏìÁË×î´óÖµºÍ×îСֵ£¬ÄÇô½á¹ûÏÔÈ»»á·¢Éú¸Ä±ä

(2)¶ÔÓÚ±ê×¼»¯À´Ëµ£ºÈç¹û³öÏÖÒì³£µã£¬ÓÉÓÚ¾ßÓÐÒ»¶¨Êý¾ÝÁ¿£¬ÉÙÁ¿µÄÒì³£µã¶ÔÓÚÆ½¾ùÖµµÄÓ°Ïì²¢²»´ó£¬´Ó¶ø·½²î¸Ä±ä½ÏС¡£

(3)API

sklearn.preprocessing.StandardScaler( )

´¦ÀíÖ®ºóÿÁÐÀ´ËµËùÓÐÊý¾Ý¶¼¾Û¼¯ÔÚ¾ùÖµ0¸½½ü;±ê×¼²î²îΪ1

StandardScaler.fit_transform(X)

X:numpy array¸ñʽµÄÊý¾Ý[n_samples,n_features]

·µ»ØÖµ£º×ª»»ºóµÄÐÎ×´ÏàͬµÄarray

(4)ÊýÖµ¼ÆËã

from sklearn.preprocessing import StandardScaler
import pandas as pd
def stdscalar():
"""
¶ÔÔ¼»á¶ÔÏó½øÐбê×¼»¯´¦Àí
:return:
"""
#¶ÁÈ¡Êý¾Ý,Ñ¡ÔñÒª´¦ÀíµÄÌØÕ÷
dating = pd.read_csv("./data/dating.txt")
data = dating [['milage','Liters','Consumtime']]
#ʵÀý»¯minmaxscaler½øÐÐfit_transform
#mm = MinMaxScaler(feature_range=(2, 3))#½«Êý¾ÝÓ³Éäµ½2-3
std = StandardScaler() #ĬÈÏfeature_range=(0, 1)
data = std.fit_transform(data)
print(data)
return None
stdscalar()

Êä³ö½á¹û:

[[ 0.33193158 0.41660188 0.24523407]
[-0.87247784 0.13992897 1.69385734]
[-0.34554872 -1.20667094 -0.05422437]
...
[-0.32171752 0.96431572 0.06952649]
[ 0.65959911 0.60699509 -0.20931587]
[ 0.46120328 0.31183342 1.00680598]]
Process finished with exit code 0

(5)×ܽá

±ê×¼»¯·½·¨,ÔÚÒÑÓÐÑù±¾×ã¹»¶àµÄÇé¿öϱȽÏÎȶ¨£¬ÊʺÏÏÖ´úàÐÔÓ´óÊý¾Ý³¡¾°¡£

´¦Àíºó,ÿÁÐÊý¾Ý¾ùֵΪ0

2.4 ÌØÕ÷Ñ¡Ôñ

ѧϰĿ±ê:

ÖªµÀÌØÕ÷Ñ¡ÔñµÄǶÈëʽ¡¢¹ýÂËʽÒÔ¼°°ü¹üÊÏÈýÖÖ·½Ê½

Ó¦ÓÃVarianceThresholdʵÏÖɾ³ýµÍ·½²îÌØÕ÷

Á˽âÏà¹ØÏµÊýµÄÌØµãºÍ¼ÆËã

Ó¦ÓÃÏà¹ØÐÔϵÊýʵÏÖÌØÕ÷Ñ¡Ôñ

ÔÚÒýÈëÌØÕ÷Ñ¡Ôñ֮ǰ£¬ÏȽéÉÜÒ»¸ö½µÎ¬µÄ¸ÅÄî.

2.4.1½µÎ¬

½µÎ¬ÊÇÖ¸ÔÚijЩÏÞ¶¨Ìõ¼þÏ£¬½µµÍ**Ëæ»ú±äÁ¿(ÌØÕ÷)¸öÊý£¬µÃµ½Ò»×é¡°²»Ïà¹Ø¡±**Ö÷±äÁ¿µÄ¹ý³Ì.

 

2.4.2 ½µÎ¬µÄ2ÖÖ·½Ê½

(1)ÌØÕ÷Ñ¡Ôñ

(2)Ö÷³É·Ö·ÖÎö£¨¿ÉÒÔÀí½âÒ»ÖÖÌØÕ÷ÌáÈ¡µÄ·½Ê½£©

2.4.3ʲôÊÇÌØÕ÷Ñ¡Ôñ

(1)¶¨Òå

Êý¾ÝÖаüº¬ÈßÓà»òÎ޹رäÁ¿£¨»ò³ÆÌØÕ÷¡¢ÊôÐÔ¡¢Ö¸±êµÈ£©£¬Ö¼ÔÚ´ÓÔ­ÓÐÌØÕ÷ÖÐÕÒ³öÖ÷ÒªÌØÕ÷¡£

(2)·½·¨

(3)Ä£¿é

sklearn.feature_selection

2.4.4 ¹ýÂËʽ

2.4.4.1 µÍ·½²îÌØÕ÷¹ýÂË

ɾ³ýµÍ·½²îµÄÒ»Ð©ÌØÕ÷¡£ÔÙ½áºÏ·½²îµÄ´óСÀ´¿¼ÂÇÕâ¸ö·½Ê½µÄ½Ç¶È¡£

(·½²î¿ÉÒÔ±íʾÊý¾ÝµÄÀëÉ¢³Ì¶È)

ÌØÕ÷·½²îС£ºÄ³¸öÌØÕ÷´ó¶àÑù±¾µÄÖµ±È½ÏÏà½ü

ÌØÕ÷·½²î´ó£ºÄ³¸öÌØÕ÷ºÜ¶àÑù±¾µÄÖµ¶¼Óвî±ð

(1)API

sklearn.feature_selection. VarianceThreshold(threshold = 0.0)

ɾ³ýËùÓеͷ½²îÌØÕ÷

Variance.fit_transform(X)

X:numpy array¸ñʽµÄÊý¾Ý[n_samples,n_features]

·µ»ØÖµ£ºÑµÁ·¼¯²îÒìµÍÓÚthresholdµÄÌØÕ÷½«±»É¾³ý¡£Ä¬ÈÏÖµÊDZ£ÁôËùÓзÇÁã·½²îÌØÕ÷£¬¼´É¾³ýËùÓÐÑù±¾ÖоßÓÐÏàֵͬµÄÌØÕ÷¡£thresholdµÄÖµÔ½´ó,ɾ³ýµÄÌØÕ÷ÖµÔ½¶à.

(2)ÊýÖµ¼ÆËã

ÎÒÃǶÔÏÂÃæÊý¾Ý½øÐÐÔËËã

[[0, 2, 0, 3],
[0, 1, 4, 3],
[0, 1, 1, 3]]

(3)ÊýÖµ·ÖÎö

1¡¢³õʼ»¯VarianceThreshold,Ö¸¶¨·§Öµ·½²î

2¡¢µ÷ÓÃfit_transform

from sklearn.feature_selection import VarianceThreshold
def varthreshold():
"""
ɾ³ýËùÓеͷ½²îÌØÕ÷
:return:
"""
var = VarianceThreshold (threshold=0.0) #ɾ³ý·½²îΪ0µÄÌØÕ÷
data = var.fit_transform([[0, 2, 0, 3],
[0, 1, 4, 3],
[0, 1, 1, 3]])
print(data)
return None
varthreshold()

 

/home/yuyang/anaconda3/envs/ tensor1-6/bin/python3.5 "/media/yuyang/Yinux/heima/ Machine learning/demo.py"
[[2 0]
[1 4]
[1 1]]
Process finished with exit code 0

 

2.4.4.2 Ïà¹ØÏµÊý

Ƥ¶ûÑ·Ïà¹ØÏµÊý(Pearson Correlation Coefficient)

·´Ó³±äÁ¿Ö®¼äÏà¹Ø¹ØÏµÃÜÇг̶ȵÄͳ¼ÆÖ¸±ê

(1)Ƥ¶ûÑ·Ïà¹ØÏµÊý(ÎÞÐè¼ÇÒä)

±ÈÈç˵ÎÒÃǼÆËãÄê¹ã¸æ·ÑͶÈëÓëÔ¾ùÏúÊÛ¶î

ÄÇô֮¼äµÄÏà¹ØÏµÊýÔõô¼ÆËã

×îÖÕ¼ÆË㣺

ÉÏÃæÊÇЭ·½²î£¬ÏÂÃæÊǸ÷×Եıê×¼²î

ËùÒÔÎÒÃÇ×îÖյóö½áÂÛÊÇ¹ã¸æÍ¶Èë·ÑÓëÔÂÆ½¾ùÏúÊÛ¶îÖ®¼äÓи߶ȵÄÕýÏà¹Ø¹ØÏµ¡£

(2)ÌØµã

(3)API

from scipy.stats import pearsonr
#x:(N,)array_like
#y(N,)arrat_like
Returns:(Pearson's correlation coefficient, p-value) #·µ»ØÔª×éÖÐ,µÚÒ»¸öÊýΪƤ¶ûÑ·Ïà¹ØÏµÊý

(4)ÊýÖµ·ÖÎö

import pandas as pd
from scipy.stats import pearsonr
data = pd.read_csv ('./data/factor_returns.csv')
factor = ['pe_ratio', 'pb_ratio', 'market_cap', 'return_on_asset_net_profit', 'du_return_on_equity', 'ev',
'earnings_per_share', 'revenue', 'total_expense']
datas = [(factor[i], factor[j + 1], pearsonr(data[factor[i]], data[factor[j + 1]])[0])
for i in range(len(factor))
for j in range(i, len(factor) - 1)]
for data in datas:
print("Ö¸±ê {} ÓëÖ¸±ê {} Ö®¼äµÄÏà¹ØÐÔ´óСΪ {} ".format(*data))

2.5 ÌØÕ÷½µÎ¬

Ä¿±ê:

Ó¦ÓÃPCAʵÏÖÌØÕ÷µÄ½µÎ¬

Ó¦ÓÃ:

Óû§ÓëÎïÆ·Àà±ðÖ®¼äÖ÷³É·Ö·ÖÎö

2.5.1 ʲôÊÇÖ÷³É·Ö·ÖÎö(PCA)

¶¨Ò壺¸ßάÊý¾Ýת»¯ÎªµÍάÊý¾ÝµÄ¹ý³Ì£¬Ôڴ˹ý³ÌÖпÉÄÜ»áÉáÆúÔ­ÓÐÊý¾Ý¡¢´´ÔìеıäÁ¿

×÷ÓãºÊÇÊý¾ÝάÊýѹËõ£¬¾¡¿ÉÄܽµµÍÔ­Êý¾ÝµÄάÊý£¨¸´ÔÓ¶È£©£¬ËðʧÉÙÁ¿ÐÅÏ¢¡£

Ó¦Ó㺻عé·ÖÎö»òÕß¾ÛÀà·ÖÎöµ±ÖÐ

ÄÇô¸üºÃµÄÀí½âÕâ¸ö¹ý³ÌÄØ£¿ÎÒÃÇÀ´¿´Ò»ÕÅͼ:

(1)¼ÆËã°¸ÀýÀí½â

¼ÙÉè¶ÔÓÚ¸ø¶¨5¸öµã£¬Êý¾ÝÈçÏÂ:

(-1,-2)
(-1, 0)
( 0, 0)
( 2, 1)
( 0, 1)

ÒªÇ󣺽«Õâ¸ö¶þάµÄÊý¾Ý¼ò»¯³Éһά£¿ ²¢ÇÒËðʧÉÙÁ¿µÄÐÅÏ¢

Õâ¸ö¹ý³ÌÈçºÎ¼ÆËãµÄÄØ£¿ÕÒµ½Ò»¸öºÏÊʵÄÖ±Ïߣ¬Í¨¹ýÒ»¸ö¾ØÕóÔËËãµÃ³öÖ÷³É·Ö·ÖÎöµÄ½á¹û:

(2)API

sklearn.decomposition.PCA (n_components=None)

½«Êý¾Ý·Ö½âΪ½ÏµÍάÊý¿Õ¼ä

n_components:

СÊý£º±íʾ±£Áô°Ù·ÖÖ®¶àÉÙµÄÐÅÏ¢

ÕûÊý£º¼õÉÙµ½¶àÉÙÌØÕ÷

PCA.fit_transform(X) X:numpy array¸ñʽµÄÊý¾Ý[n_samples,n_features]

·µ»ØÖµ£º×ª»»ºóÖ¸¶¨Î¬¶ÈµÄarray

(3)ÊýÖµ·ÖÎö

ÏȾÙÒ»¸ö¼òµ¥µÄÀý×Ó:

½«ÏÂÃæµÄ3¸öÑù±¾,4¸öÌØÕ÷¾ØÕó½µÎ¬:

[[2,8,4,5],
[6,3,0,8],
[5,4,9,1]]

 

from sklearn.decomposition import PCA
def pca():
"""
Ö÷³É·Ö·ÖÎö½øÐнµÎ¬
:return:
"""
pca = PCA(n_components=0.7) #±£Áô°Ù·ÖÖ®ÎåÊ®µÄÐÅÏ¢
data = pca.fit_transform ([[2,8,4,5],[6,3,0,8],[5,4,9,1]])
print(data)
return None
pca()


Êä³ö:

[[ 1.22879107e-15 3.82970843e+00]
[ 5.74456265e+00 -1.91485422e+00]
[-5.74456265e+00 -1.91485422e+00]]
Process finished with exit code 0

(4)Ó¦Óó¡¾°

ÌØÕ÷ÊýÁ¿·Ç³£´óµÄʱºò(ÉϰٸöÌØÕ÷):PCAȥѹËõÏà¹ØµÄÈßÓàÐÅÏ¢

´´ÔìеıäÁ¿(еÄÌØÕ÷):ÀýÈ罫¹ÉƱÊý¾ÝÖÐ,¸ß¶ÈÏà¹ØµÄÁ½¸öÖ¸±ê,revenueÓëÖ¸±êtotal_expensѹËõ³ÉÒ»¸öеÄÖ¸±ê(ÌØÕ÷)

2.5.2 °¸Àý:̽¾¿Óû§¶ÔÎïÆ·Àà±ðµÄϲºÃϸ·Ö½µÎ¬

KaggleÏîÄ¿:

(1)Êý¾ÝÈçÏ£º

products.csv£ºÉÌÆ·ÐÅÏ¢

×ֶΣºproduct_id, product_name, aisle_id, department_id

order_products__prior.csv£º¶©µ¥ÓëÉÌÆ·ÐÅÏ¢

×ֶΣºorder_id, product_id, add_to_cart_order, reordered

orders.csv£ºÓû§µÄ¶©µ¥ÐÅÏ¢

×ֶΣºorder_id,user_id,eval_set, order_number,¡­.

aisles.csv£ºÉÌÆ·ËùÊô¾ßÌåÎïÆ·Àà±ð

×ֶΣº aisle_id, aisle

(2)ÐèÇó

(3)·ÖÎö

ºÏ²¢±í£¬Ê¹µÃuser_idÓëaisleÔÚÒ»ÕÅ±íµ±ÖÐ

½øÐн»²æ±í±ä»»

½øÐнµÎ¬

(4)ÍêÕû´úÂë

from sklearn.decomposition import PCA
import pandas as pd
def pca():
"""
Ö÷³É·Ö·ÖÎö½øÐнµÎ¬
:return:
"""
# µ¼ÈëËÄÕűíµÄÊý¾Ý
prior = pd.read_csv ("./data/instacart/order_products__prior.csv")
products = pd.read_csv ("./data/instacart/products.csv")
orders = pd.read_csv ("./data/instacart/orders.csv")
aisles = pd.read_csv ("./data/instacart/aisles.csv")
# ºÏ²¢ËÄÕÅ±íµ½Ò»Õűí
#onÖ¸¶¨Á½ÕÅ±í¹²Í¬ÓµÓеļü ÄÚÁ¬½Ó
mt = pd.merge(prior, products, on= ['product_id', 'product_id'])
mt1 = pd.merge(mt, orders, on= ['order_id', 'order_id'])
mt2 = pd.merge(mt1, aisles, on= ['aisle_id', 'aisle_id'])
# ½øÐн»²æ±í±ä»»,pd.crosstab ͳ¼ÆÓû§ÓëÎïÆ·Ö®¼äµÄ´ÎÊý¹ØÏµ£¨Í³¼Æ´ÎÊý£©
user_sisle_cross = pd.crosstab (mt2['user_id'], mt2['aisle'])
# PCA½øÐÐÖ÷³É·Ö·ÖÎö
pc = PCA(n_components=0.95)
data = pc.fit_transform (user_sisle_cross)
print(data)
pca()


mt2±íÊä³ö:

½»²æ±íÊä³ö:

½µÎ¬ºóÊä³ö:¡ª¡ª¡ª¡ª¡ª¡ª¡ª¡ª¡ª¡ª¡ª¡ª¡ª¡ª¡ª¡ª

 

   
2396 ´Îä¯ÀÀ       27
Ïà¹ØÎÄÕÂ

»ùÓÚͼ¾í»ýÍøÂçµÄͼÉî¶Èѧϰ
×Ô¶¯¼ÝÊ»ÖеÄ3DÄ¿±ê¼ì²â
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
ÏîĿʵս£ºÈçºÎ¹¹½¨ÖªÊ¶Í¼Æ×
 
Ïà¹ØÎĵµ

5GÈ˹¤ÖÇÄÜÎïÁªÍøµÄµäÐÍÓ¦ÓÃ
Éî¶ÈѧϰÔÚ×Ô¶¯¼ÝÊ»ÖеÄÓ¦ÓÃ
ͼÉñ¾­ÍøÂçÔÚ½»²æÑ§¿ÆÁìÓòµÄÓ¦ÓÃÑо¿
ÎÞÈË»úϵͳԭÀí
Ïà¹Ø¿Î³Ì

È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ&TensorFlow
»úÆ÷ÈËÈí¼þ¿ª·¢¼¼Êõ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
ͼÏñ´¦ÀíËã·¨·½·¨Óëʵ¼ù
×îл¼Æ»®
DeepSeekÔÚÈí¼þ²âÊÔÓ¦ÓÃʵ¼ù 4-12[ÔÚÏß]
DeepSeek´óÄ£ÐÍÓ¦Óÿª·¢Êµ¼ù 4-19[ÔÚÏß]
UAF¼Ü¹¹ÌåϵÓëʵ¼ù 4-11[±±¾©]
AIÖÇÄÜ»¯Èí¼þ²âÊÔ·½·¨Óëʵ¼ù 5-23[ÉϺ£]
»ùÓÚ UML ºÍEA½øÐзÖÎöÉè¼Æ 4-26[±±¾©]
ÒµÎñ¼Ü¹¹Éè¼ÆÓ뽨ģ 4-18[±±¾©]
 
×îÐÂÎÄÕÂ
¶àÄ¿±ê¸ú×Ù£ºAI²úÆ·¾­ÀíÐèÒªÁ˽âµÄCVͨʶ
Éî¶Èѧϰ¼Ü¹¹
¾í»ýÉñ¾­ÍøÂç֮ǰÏò´«²¥Ëã·¨
´Ó0µ½1´î½¨AIÖÐ̨
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
×îпγÌ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
È˹¤ÖÇÄÜÓë»úÆ÷ѧϰӦÓÃʵս
È˹¤ÖÇÄÜ-ͼÏñ´¦ÀíºÍʶ±ð
È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ& TensorFlow+Keras¿ò¼Üʵ¼ù
È˹¤ÖÇÄÜ+Python£«´óÊý¾Ý
³É¹¦°¸Àý
ij×ÛºÏÐÔ¿ÆÑлú¹¹ È˹¤ÖÇÄÜÓë»úÆ÷ѧϰӦÓÃ
Ä³ÒøÐÐ È˹¤ÖÇÄÜ+Python+´óÊý¾Ý
±±¾© È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ& TensorFlow¿ò¼Üʵ¼ù
ijÁìÏÈÊý×ÖµØÍ¼ÌṩÉÌ PythonÊý¾Ý·ÖÎöÓë»úÆ÷ѧϰ
ÖйúÒÆ¶¯ È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰºÍÉî¶Èѧϰ