Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
Siamese Network (Ó¦ÓÃÆª6) £ºÂÏÉúÍøÂçÓÃÓÚͼÏñ¿éÆ¥Åä
 
×÷ÕߣºÉò×Óºã
  3050  次浏览      27
 2020-10-14
 
±à¼­ÍƼö:
±¾ÎÄÖ÷Òª½éÉÜÁËÌØÕ÷ÃèÊö×Ó¡¢ÌØÕ÷ÌáÈ¡²ãºÍ¾ö²ß²ãÆ¥ÅäµÄÎÊÌ⣬ϣÍû¶ÔÄúµÄѧϰÓÐËù°ïÖú¡£
±¾ÎÄÀ´×ÔÓÚCSDN£¬ÓÉ»ðÁú¹ûÈí¼þAlice±à¼­¡¢ÍƼö¡£

1. ÕªÒª ¼° Ä¿µÄ

ÀûÓþí»ýÉñ¾­ÍøÂçÔÚŷʽ¿Õ¼äÏÂѧϰ¸ßЧÐÔÄܵÄÃèÊö×Ó descriptor¡£µÄ·½·¨ÔÚËĸö·½ÃæÓëÖÚ²»Í¬£¬1.ÎÒÃÇÌá³öÁËÒ»ÖÖ½¥½øµÄ³éÑù²ßÂÔ£¬Ê¹ÍøÂçÄܹ»ÔÚ¼¸´ÎµÄʱ¼äÄÚ·ÃÎÊÊýÊ®ÒÚµÄѵÁ·Ñù±¾¡£2.´Ó¾Ö²¿Æ¥ÅäÎÊÌâµÄ»ù±¾¸ÅÄîÅÉÉú¶øÀ´£¬ÎÒÃÇÇ¿µ÷ÁËÃèÊö·ûÖ®¼äµÄÏà¶Ô¾àÀë¡£3.¶ÔÖмäÌØÕ÷ͼ½øÐжîÍâµÄ¼à¶½¡£ 4.½«ÃèÊö·ûµÄ½ô´ÕÐÔ¿¼ÂÇÔÚÄÚ¡£¾ÍÊDzÉÓÃL2¾àÀë¶ÔÌØÕ÷ÃèÊö×Ó½øÐжÈÁ¿¡£ÊÕ»ñµ½Á˷dz£ºÃµÄ½á¹û£¨Í¬ÆÚÒ²ÓÐÏà¹ØµÄ¹¤×÷£©¡£

ÒýÓõÄÔ­ÎĸüÄÜ˵Ã÷ÎÊÌ⣺

The proposed L2-Net is a CNN based model without metric learning layers, and it outputs 128 dimensional descriptors, which can be directly matched by L2 distance.

Comment£ºÃ»Óвâ¶Èѧϰ²ã£¬Ñо¿µÄÊÇÌØÕ÷ÃèÊö×Ó¡¢ÌØÕ÷ÌáÈ¡²ãºÍ¾ö²ß²ãÆ¥ÅäµÄÎÊÌâ¡£

Ëðʧº¯ÊýÖÐÈÚºÏÁËÈý¸öÎó²î£ºÆäÒ»£¬ÌØÕ÷ÃèÊö×ÓÖ®¼äµÄÎó²î£»Æä¶þ£¬¿ØÖÆÃèÊö×ӵijíÃܶȺ͹ýÄâºÏ£»ÆäÈý£¬¶þÍâµÄ¼à¶½¿ØÖÆÖмäµÄÌØÕ÷ͼ¡£

2. ·½·¨ ¼° ϸ½Ú

ͼ1. ʹÓõÄÍøÂç½á¹¹¡£3x3 Cov = ¾í»ý²ã + ÅúÕýÔò»¯ + ÕûÁ÷º¯Êý¡£ 8x8 Conv = ¾í»ý + ÅúÕýÔò»¯¡£µäÐ͵ÄÈ«¾í»ý½á¹¹£¬½µ²ÉÑùͨ¹ý¿ç²½¾í»ýʵÏÖ£¨stride = 2£©¡£Ã¿²ã¾í»ý²ãºóÃæ¶¼¸úËæÅúÕýÔò»¯¡£½øÐÐÁËСµÄÐ޸ģ¬ÅúÕýÔò»¯²ãµÄÈ¨ÖØºË Æ«ÖÃûÓиüУ¬¹Ì¶¨Îª1ºÍ0.ÔÚÉè¼ÆÃèÊö×Ó¹ý³ÌÖУ¬±ê×¼»¯ÊǺܹؼüµÄÒ»²¿£¬²ÉÓÃLocal Response Normalization ²ã×÷ΪÊä³ö²ã£¬²úÉúµ¥Î»ÃèÊö×Ó¡£L2-Net ½«32x32µÄÊäÈëͼÏñ¿éת»»³É128άµÄÌØÕ÷ÏòÁ¿¡£×¢Ò⣺ÓÒ²àµÄÍøÂç¼Ü¹¹ÊÇ½è¼øÁËÇ°ÃæµÄ¹¤×÷£¬Ò²¾ÍÊÇcenter-surroundÄ£ÐÍ¡£ÕâÀï²»ÉîÈëÑо¿¡£

ÒýÓÃÔ­ÎÄ£ºSince normalization is an important step in designing descriptors, we use a Local Response Normalization layer (LRN) as the output layer to produce unit descriptors.

2.1 ѵÁ·Êý¾ÝºÍÓë´¦Àí¼¼ÇÉ

Á½¸ö±ê×¼µÄ²âÊÔ¼¯£ºBrown dataset ºÍ HPatches dataset¡£¶ÔÓÚÿһ¸öͼÏñ¿é£¬½øÐÐÈ¥¾ùÖµºÍ¶Ô±È¶È¹éÒ»»¯¡£Ò²¾ÍÊÇÎÒÃÇÆ½³£Ëù˵µÄÈ¥³ý¾ùÖµ³ýÒÔ±ê×¼²î¡£

For each patch, we remove the pixel mean calculated across all the training patches, and then contrast normalization is applied, i.e., subtracted by the mean and divided by the standard deviation¡£

2.2 ѵÁ·¼¯½øÐн¥½ø³éÑù

Ö÷ÒªÊÇÒòΪÔÚѵÁ·Ñù±¾ÖУ¬·ÇÆ¥ÅäµÄͼÏñ¶ÔÔ¶Ô¶¶àÓÚÆ¥ÅäµÄͼÏñ¶Ô£¬ËùÓÐµÄ·ÇÆ¥Åä¶Ô²»¿ÉÄÜÍêÈ«±éÀúµ½£¬ËùÒÔÒ»¸öºÃµÄ²ÉÑù²ßÂÔºÜÖØÒª¡££¨ÆäʵÊÇÒ»Öַdz£¼òµ¥µÄ²ÉÑù²ßÂÔ£©

ÒýÓÃÔ­ÎÄ£ºIn local patch matching problem, the number of potential non-matching (negative) patches is orders of magnitude larger than the number of matching (positive) patches. Due to the so large amount of negative pairs, it is impossible to traverse all of them, therefore a good sampling

strategy is very crucial.

2.3 Ëðʧº¯ÊýÉè¼Æ£¨¾«»ª£©

1. ÌØÕ÷Ö®¼äµÄ²â¶È

2. ÃèÊö×ÓµÄÌØÕ÷ά¶ÈÓ¦¸Ã×î´óÏÞ¶ÈÈ¥Ïà¹Ø £¨Ì¸µ½Õâ¸öÊÂËÆºõҲû½âÊÍÇå³þ£©

3. ¶ÔÖмäµÄÌØÕ÷ͼҲҪʩ¼ÓÔ¼Êø £¨Æäʵ¿ÉÒÔÓÃÕýÔò»¯À´½âÊ͵ģ©

2.3 ѵÁ·²ÎÊý

ÎÒÃÇʹÓÃSGD´ÓÍ·¿ªÊ¼ÑµÁ·ÍøÂ磬³õʼѧϰÂÊΪ0.01£¬¶¯Á¿Îª0.9£¬È¨ÖØË¥¼õΪ0.0001¡£Ñ§Ï°ÂÊÿ20¸öʱÆÚ³ýÒÔ10£¬ÑµÁ·²»³¬¹ý50¸öʱÆÚ¡£¶ÔÓÚcsl2ÍøÂçµÄѵÁ·£¬ÎÒÃÇʹÓÃѵÁ·Á¼ºÃµÄL2ÍøÂç³õʼ»¯Á½¸öËþ¡£Í¼1-£¨b£©ÖÐ×óËþµÄ²ÎÊýÊǹ̶¨µÄ£¬ÎÒÃÇ΢µ÷ÓÒËþÖ±µ½ÊÕÁ²¡£ÎÒÃÇÈÃp1=p2=q/2=64£¬Êý¾ÝÀ©³ä£¨¿ÉÑ¡£©ÊÇͨ¹ýËæ»úÐýת£¨90¡¢180¡¢270¶È£©ºÍ·­×ªÀ´ÊµÏֵġ£

3. ʵÑéÓë½áÂÛ

ÕâÕűíÓÐÁ½¸ö¾­ÑéÖµµÃѧϰ£º

1. Êý¾ÝÔöÇ¿µÄЧ¹û£ºÈ·ÊµÊý¾ÝÔöÇ¿¿ÉÒÔÌáÉýÄ£Ð͵ÄÐÔÄÜ

2. Êý¾Ý´¦ÀíµÄЧ¹û£ºÍ¬µÈÇé¿öÏÂÃèÊö×ӵĸ¡µã±í´ïÐÎʽÃ÷ÏÔÓÅÓÚ¶þÖµ±í´ïÐÎʽ

3.¹ØÓڽṹµÄ̽ÌÖ£ºÒ»°ãÇé¿öϲ»ÔÞ³ÉʹÓóػ¯Ð§Ó¦¡£Í¬Ê±ÔÞ³ÉʹÓò»Í¬Éî¶ÈµÄ¿ò¼Ü

ÏÖÔÚ¾À½áµÄÊÇ£¬Í¬ÑùʹÓõÄÀàËÆµÄ¡¢¼òµ¥µÄÍøÂç½á¹¹£¬ÎªÊ²Ã´¿ÉÒԵõ½Èç´ËºÃµÄ½á¹û£¿£¿£¿ Ô­ÒòÒ»¶¨ÊdzöÏÖÔÚËðʧº¯ÊýµÄ¹¹ÔìÉÏ£¡£¡£¡

ÌØÕ÷ά¶È½ôÖµÄÖØÒªÐÔ¡£ÎÒÃdz¢ÊÔÔÚûÓÐE2µÄÇé¿öÏÂѵÁ·L2ÍøÂ磬µ«ÊÇÍøÂç²»ÊÕÁ²¡£ÓÉÓÚ´óÁ¿µÄѵÁ·Ñù±¾±»ÊäÈëµ½ÍøÂçÖУ¬ÍøÂç¸üÈÝÒ×¼ÇÒäѵÁ·Êý¾Ý¶ø²»ÊÇѧϰ·º»¯¡£Èç¹ûûÓÐE2£¬Ôò»á·¢ÉúÇ¿¹ýÄâºÏ£¬²¢ÇÒÊä³öÃèÊö·ûµÄάÊý¸ß¶ÈÏà¹Ø¡£Òò´Ë£¬½ôÐÔ¶Ô½¥½ø³éÑù²ßÂÔÖÁ¹ØÖØÒª¡£Í¨¹ýÏÞÖÆ½ôÐÔ£¬ÍøÂçʵ¼ÊÉÏÇãÏòÓÚÌáÈ¡°üº¬¸ü¶àÐÅÏ¢µÄ²»Ïà¹ØÌØÕ÷

Comment£ºÆäʵÕâÊÇ×Ô¼º²Ù¿ØµÄÊÔÑéѵÁ·¹ý³Ì¡£Èç¹ûÖ±½ÓÓ¦ÓÃÊý¾Ý¿â£¬ÀïÃæÓдóÁ¿Ïà¹ØÐԷdz£Ç¿µÄͼÏñ¶Ô£¬Õâ¾Í»áÔì³ÉÍøÂçÈ¥¼ÇÒäѵÁ·Êý¾Ý£¬¶ø²»ÊÇ·º»¯µÄÈ¥Ñ§Ï°ÌØÕ÷¡£Òò´Ë£¬Æäʵ°É£¬Ìá¼°µ½µÄÌØÕ÷½ôÃÜÐÍÖ®ËùÒÔûÓÐÊýÀíÖ¤Ã÷£¬ÊÇÒòΪѵÁ·Êý¾ÝÏà¶Ô¶ÀÁ¢£¬Õâ¾Í°µº¬×ÅÌØÕ÷ά¶È¼äÏà¶ÔÈ¥Ïà¹Ø¡£

L2¾àÀëµÄÓÅÊÆ¡£»¹ºÃ»¹ºÃ Ò²¾ÍÒ»°ãÀ²...

DIFµÄÓÐЧÐÔ£¬ÊµÑ黹ûÓÐÖØ¸´³öÀ´....

Åú¹éÒ»»¯µÄÊÕÒæ£ºÕâ¸öÓ¦¸ÃÊÇËùÓÐÈ˶¼¹ØÐĵģ¬Åú¹éÒ»»¯Ò»°ã¿ÉÒÔ¼Ó¿ìÊÕÁ²ËÙ¶ÈÕâûµÄ˵£¬¹Ø¼üÊÇBatchNorm¶ÔÌá¸ßÄ£Ð͵Ä׼ȷ¶Èµ½µ×¹±Ï×¼¸ºÎ£¿ÔÚÎÒÃǵÄBN²ãÖУ¬È¨ÖئÁºÍÆ«²î¦Â¹Ì¶¨Îª1ºÍ0£¬ÒòΪÎÒÃÇ·¢ÏÖѧϰËüÃÇ»áʹÊä³öµÄÌØÕ÷Ó³É䣨ºÍÃèÊö·û£©·Ö²¼²»Á¼¡£ÔÚÕâ¸öʵÑéÖУ¬³ýÁËÁ½¸öBN²ãÔÚDIF֮ǰ£¨ÒòΪDIFÒÀÀµÓÚ±ê×¼»¯ÌØÕ÷£©Ñ§Ï°ÁËËùÓÐBN²ãµÄ¼ÓȨºÍÆ«²î²ÎÊý¡£ÑµÁ·³ÌÐòÈçͼ3-£¨a£©ÖеÄÇúÏßCËùʾ¡£±È½ÏÇúÏßAºÍC£¬¿ÉÒÔ·¢ÏÖ¸üЦÁºÍÆ«²î¦Âµ¼ÖÂÐÔÄÜÂÔÓÐϽµ¡£ÎªÁË˵Ã÷ÕâÒ»ÏÖÏ󣬼ÙÉèa¡«N£¨¦Ì1£¬¦Ò1£©ºÍb¡«N£¨¦Ì2£¬¦Ò2£©ÊÇÁ½¸ö·þ´Ó¸ß˹·Ö²¼µÄËæ»ú±äÁ¿¡£²»ÄÑÀí½â£¬·ÖÀëËüÃǵÄ×î¼òµ¥·½·¨ÊÇÔö¼Ó|¦Ì1-¦Ì2 |£¬¶ø
¼õС|¦Ò1 |ºÍ|¦Ò2 |¡£Òò´Ë£¬Ñ§Ï°¦ÁºÍ¦Â»áʹÌáÈ¡µÄÌØÕ÷±äµÃ¼âÈñºÍ·ÇÁã·Ö²¼£¬´Ó¶øÓ°ÏìÐÔÄÜ¡£½â¾öÕâЩÎÊÌâµÄ»ù´¡ÊÇÎÒÃÇÏ£Íû²»Í¬ÃæÆ¬µÄÌØÕ÷Ó³É䣨ºÍÃèÊö·û£©ÊǶÀÁ¢µÄ¡¢Í¬·Ö²¼µÄ¡£Í¨¹ýÕâÖÖ·½Ê½£¬ÍøÂç±»ÆÈÌáÈ¡³ö¾ßÓи߶ÈÇø·ÖÐÔ¶ø·ÇÆ«¼ûµÄÌØÕ÷µÄÉèÖ÷½·¨ÊÇDIFǰÁ½¸öBN²ãûÓнøÐÐѧϰ£¬½âÊ͵ÄÔ­ÒòÊÇDIFÒÀÀµ¹éÒ»»¯ÌØÕ÷£¬¹ý¶àµÄʹÓÃBN²ã»áÆÆ»µ²»Í¬¶ÔͼÏà¼äµÄ¶ÀÁ¢Í¬·Ö²¼ÐÔÖÊ£¬ÓÖÈÆ»ØÈ¥ÁË£¬ÎÒÃÇÒªµÄÊÇ·º»¯µÄÅбðÄÜÁ¦£¬¶ø²»ÊǼÇÒäѵÁ·¼¯µÄÄÜÁ¦¡£

½áÂÛ£ºÔÚ±¾ÎÄÖУ¬ÎÒÃÇÌá³öÁËÒ»ÖÖеÄÊý¾ÝÇý¶¯ÃèÊö·û£¬Ëü¿ÉÒÔÔÚÅ·¼¸ÀïµÂ¿Õ¼äÖнøÐÐÆ¥Å䣬²¢ÇÒÐÔÄÜÃ÷ÏÔÓÅÓÚÏÖÓеÄÊý¾ÝÇý¶¯ÃèÊö·û¡£ËüµÄÁ¼ºÃÐÔÄÜÖ÷Òª¹é¹¦ÓÚÒ»ÖÖеĽ¥½ø²ÉÑù²ßÂÔ

ÒÔ¼°Ò»¸ö°üº¬ÈýÏîµÄרÓÃËðʧº¯Êý¡£Í¨¹ýÖð²½³éÑù£¬ÎÒÃÇÉè·¨·ÃÎÊÁËÊýÊ®ÒÚ¸öѵÁ·Ñù±¾¡£Í¨¹ý»Øµ½Æ¥Å䣨NNS£©µÄ»ù±¾¸ÅÄÎÒÃÇÉîÈëÑо¿ÁËÿ¸öÅú´ÎÖеÄÐÅÏ¢¡£Í¨¹ýÒªÇó½ô´Õ£¬ÎÒÃdzɹ¦µØ´¦ÀíÁ˹ý¶ÈÄâºÏ¡£Í¨¹ýʹÓÃÖмäÌØÕ÷Ó³É䣬½øÒ»²½Ìá¸ßÁËÐÔÄÜ¡£

 

 

   
3050 ´Îä¯ÀÀ       27
Ïà¹ØÎÄÕÂ

»ùÓÚͼ¾í»ýÍøÂçµÄͼÉî¶Èѧϰ
×Ô¶¯¼ÝÊ»ÖеÄ3DÄ¿±ê¼ì²â
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
ÏîĿʵս£ºÈçºÎ¹¹½¨ÖªÊ¶Í¼Æ×
 
Ïà¹ØÎĵµ

5GÈ˹¤ÖÇÄÜÎïÁªÍøµÄµäÐÍÓ¦ÓÃ
Éî¶ÈѧϰÔÚ×Ô¶¯¼ÝÊ»ÖеÄÓ¦ÓÃ
ͼÉñ¾­ÍøÂçÔÚ½»²æÑ§¿ÆÁìÓòµÄÓ¦ÓÃÑо¿
ÎÞÈË»úϵͳԭÀí
Ïà¹Ø¿Î³Ì

È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ&TensorFlow
»úÆ÷ÈËÈí¼þ¿ª·¢¼¼Êõ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
ͼÏñ´¦ÀíËã·¨·½·¨Óëʵ¼ù
×îл¼Æ»®
DeepSeekÔÚÈí¼þ²âÊÔÓ¦ÓÃʵ¼ù 4-12[ÔÚÏß]
DeepSeek´óÄ£ÐÍÓ¦Óÿª·¢Êµ¼ù 4-19[ÔÚÏß]
UAF¼Ü¹¹ÌåϵÓëʵ¼ù 4-11[±±¾©]
AIÖÇÄÜ»¯Èí¼þ²âÊÔ·½·¨Óëʵ¼ù 5-23[ÉϺ£]
»ùÓÚ UML ºÍEA½øÐзÖÎöÉè¼Æ 4-26[±±¾©]
ÒµÎñ¼Ü¹¹Éè¼ÆÓ뽨ģ 4-18[±±¾©]
 
×îÐÂÎÄÕÂ
¶àÄ¿±ê¸ú×Ù£ºAI²úÆ·¾­ÀíÐèÒªÁ˽âµÄCVͨʶ
Éî¶Èѧϰ¼Ü¹¹
¾í»ýÉñ¾­ÍøÂç֮ǰÏò´«²¥Ëã·¨
´Ó0µ½1´î½¨AIÖÐ̨
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
×îпγÌ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
È˹¤ÖÇÄÜÓë»úÆ÷ѧϰӦÓÃʵս
È˹¤ÖÇÄÜ-ͼÏñ´¦ÀíºÍʶ±ð
È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ& TensorFlow+Keras¿ò¼Üʵ¼ù
È˹¤ÖÇÄÜ+Python£«´óÊý¾Ý
³É¹¦°¸Àý
ij×ÛºÏÐÔ¿ÆÑлú¹¹ È˹¤ÖÇÄÜÓë»úÆ÷ѧϰӦÓÃ
Ä³ÒøÐÐ È˹¤ÖÇÄÜ+Python+´óÊý¾Ý
±±¾© È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ& TensorFlow¿ò¼Üʵ¼ù
ijÁìÏÈÊý×ÖµØÍ¼ÌṩÉÌ PythonÊý¾Ý·ÖÎöÓë»úÆ÷ѧϰ
ÖйúÒÆ¶¯ È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰºÍÉî¶Èѧϰ