±à¼ÍƼö: |
±¾ÎÄÖ÷Òª½éÉÜÁËÌØÕ÷ÃèÊö×Ó¡¢ÌØÕ÷ÌáÈ¡²ãºÍ¾ö²ß²ãÆ¥ÅäµÄÎÊÌ⣬ϣÍû¶ÔÄúµÄѧϰÓÐËù°ïÖú¡£
±¾ÎÄÀ´×ÔÓÚCSDN£¬ÓÉ»ðÁú¹ûÈí¼þAlice±à¼¡¢ÍƼö¡£ |
|
1. ÕªÒª ¼° Ä¿µÄ
ÀûÓþí»ýÉñ¾ÍøÂçÔÚŷʽ¿Õ¼äÏÂѧϰ¸ßЧÐÔÄܵÄÃèÊö×Ó descriptor¡£µÄ·½·¨ÔÚËĸö·½ÃæÓëÖÚ²»Í¬£¬1.ÎÒÃÇÌá³öÁËÒ»ÖÖ½¥½øµÄ³éÑù²ßÂÔ£¬Ê¹ÍøÂçÄܹ»ÔÚ¼¸´ÎµÄʱ¼äÄÚ·ÃÎÊÊýÊ®ÒÚµÄѵÁ·Ñù±¾¡£2.´Ó¾Ö²¿Æ¥ÅäÎÊÌâµÄ»ù±¾¸ÅÄîÅÉÉú¶øÀ´£¬ÎÒÃÇÇ¿µ÷ÁËÃèÊö·ûÖ®¼äµÄÏà¶Ô¾àÀë¡£3.¶ÔÖмäÌØÕ÷ͼ½øÐжîÍâµÄ¼à¶½¡£
4.½«ÃèÊö·ûµÄ½ô´ÕÐÔ¿¼ÂÇÔÚÄÚ¡£¾ÍÊDzÉÓÃL2¾àÀë¶ÔÌØÕ÷ÃèÊö×Ó½øÐжÈÁ¿¡£ÊÕ»ñµ½Á˷dz£ºÃµÄ½á¹û£¨Í¬ÆÚÒ²ÓÐÏà¹ØµÄ¹¤×÷£©¡£
ÒýÓõÄÔÎĸüÄÜ˵Ã÷ÎÊÌ⣺
The proposed L2-Net is a CNN based model without
metric learning layers, and it outputs 128 dimensional
descriptors, which can be directly matched by L2 distance.
Comment£ºÃ»Óвâ¶Èѧϰ²ã£¬Ñо¿µÄÊÇÌØÕ÷ÃèÊö×Ó¡¢ÌØÕ÷ÌáÈ¡²ãºÍ¾ö²ß²ãÆ¥ÅäµÄÎÊÌâ¡£
Ëðʧº¯ÊýÖÐÈÚºÏÁËÈý¸öÎó²î£ºÆäÒ»£¬ÌØÕ÷ÃèÊö×ÓÖ®¼äµÄÎó²î£»Æä¶þ£¬¿ØÖÆÃèÊö×ӵijíÃܶȺ͹ýÄâºÏ£»ÆäÈý£¬¶þÍâµÄ¼à¶½¿ØÖÆÖмäµÄÌØÕ÷ͼ¡£
2. ·½·¨ ¼° ϸ½Ú

ͼ1. ʹÓõÄÍøÂç½á¹¹¡£3x3 Cov = ¾í»ý²ã + ÅúÕýÔò»¯ + ÕûÁ÷º¯Êý¡£ 8x8 Conv
= ¾í»ý + ÅúÕýÔò»¯¡£µäÐ͵ÄÈ«¾í»ý½á¹¹£¬½µ²ÉÑùͨ¹ý¿ç²½¾í»ýʵÏÖ£¨stride = 2£©¡£Ã¿²ã¾í»ý²ãºóÃæ¶¼¸úËæÅúÕýÔò»¯¡£½øÐÐÁËСµÄÐ޸ģ¬ÅúÕýÔò»¯²ãµÄÈ¨ÖØºË
Æ«ÖÃûÓиüУ¬¹Ì¶¨Îª1ºÍ0.ÔÚÉè¼ÆÃèÊö×Ó¹ý³ÌÖУ¬±ê×¼»¯ÊǺܹؼüµÄÒ»²¿£¬²ÉÓÃLocal Response
Normalization ²ã×÷ΪÊä³ö²ã£¬²úÉúµ¥Î»ÃèÊö×Ó¡£L2-Net ½«32x32µÄÊäÈëͼÏñ¿éת»»³É128άµÄÌØÕ÷ÏòÁ¿¡£×¢Ò⣺ÓÒ²àµÄÍøÂç¼Ü¹¹ÊÇ½è¼øÁËÇ°ÃæµÄ¹¤×÷£¬Ò²¾ÍÊÇcenter-surroundÄ£ÐÍ¡£ÕâÀï²»ÉîÈëÑо¿¡£
ÒýÓÃÔÎÄ£ºSince normalization is an important step in
designing descriptors, we use a Local Response Normalization
layer (LRN) as the output layer to produce unit descriptors.
2.1 ѵÁ·Êý¾ÝºÍÓë´¦Àí¼¼ÇÉ
Á½¸ö±ê×¼µÄ²âÊÔ¼¯£ºBrown dataset ºÍ HPatches dataset¡£¶ÔÓÚÿһ¸öͼÏñ¿é£¬½øÐÐÈ¥¾ùÖµºÍ¶Ô±È¶È¹éÒ»»¯¡£Ò²¾ÍÊÇÎÒÃÇÆ½³£Ëù˵µÄÈ¥³ý¾ùÖµ³ýÒÔ±ê×¼²î¡£
For each patch, we remove the pixel mean calculated
across all the training patches, and then contrast
normalization is applied, i.e., subtracted by the
mean and divided by the standard deviation¡£
2.2 ѵÁ·¼¯½øÐн¥½ø³éÑù
Ö÷ÒªÊÇÒòΪÔÚѵÁ·Ñù±¾ÖУ¬·ÇÆ¥ÅäµÄͼÏñ¶ÔÔ¶Ô¶¶àÓÚÆ¥ÅäµÄͼÏñ¶Ô£¬ËùÓÐµÄ·ÇÆ¥Åä¶Ô²»¿ÉÄÜÍêÈ«±éÀúµ½£¬ËùÒÔÒ»¸öºÃµÄ²ÉÑù²ßÂÔºÜÖØÒª¡££¨ÆäʵÊÇÒ»Öַdz£¼òµ¥µÄ²ÉÑù²ßÂÔ£©
ÒýÓÃÔÎÄ£ºIn local patch matching problem, the number
of potential non-matching (negative) patches is orders
of magnitude larger than the number of matching (positive)
patches. Due to the so large amount of negative pairs,
it is impossible to traverse all of them, therefore
a good sampling
strategy is very crucial.
2.3 Ëðʧº¯ÊýÉè¼Æ£¨¾«»ª£©
1. ÌØÕ÷Ö®¼äµÄ²â¶È
2. ÃèÊö×ÓµÄÌØÕ÷ά¶ÈÓ¦¸Ã×î´óÏÞ¶ÈÈ¥Ïà¹Ø £¨Ì¸µ½Õâ¸öÊÂËÆºõҲû½âÊÍÇå³þ£©
3. ¶ÔÖмäµÄÌØÕ÷ͼҲҪʩ¼ÓÔ¼Êø £¨Æäʵ¿ÉÒÔÓÃÕýÔò»¯À´½âÊ͵ģ©
2.3 ѵÁ·²ÎÊý
ÎÒÃÇʹÓÃSGD´ÓÍ·¿ªÊ¼ÑµÁ·ÍøÂ磬³õʼѧϰÂÊΪ0.01£¬¶¯Á¿Îª0.9£¬È¨ÖØË¥¼õΪ0.0001¡£Ñ§Ï°ÂÊÿ20¸öʱÆÚ³ýÒÔ10£¬ÑµÁ·²»³¬¹ý50¸öʱÆÚ¡£¶ÔÓÚcsl2ÍøÂçµÄѵÁ·£¬ÎÒÃÇʹÓÃѵÁ·Á¼ºÃµÄL2ÍøÂç³õʼ»¯Á½¸öËþ¡£Í¼1-£¨b£©ÖÐ×óËþµÄ²ÎÊýÊǹ̶¨µÄ£¬ÎÒÃÇ΢µ÷ÓÒËþÖ±µ½ÊÕÁ²¡£ÎÒÃÇÈÃp1=p2=q/2=64£¬Êý¾ÝÀ©³ä£¨¿ÉÑ¡£©ÊÇͨ¹ýËæ»úÐýת£¨90¡¢180¡¢270¶È£©ºÍ·×ªÀ´ÊµÏֵġ£
3. ʵÑéÓë½áÂÛ

ÕâÕűíÓÐÁ½¸ö¾ÑéÖµµÃѧϰ£º
1. Êý¾ÝÔöÇ¿µÄЧ¹û£ºÈ·ÊµÊý¾ÝÔöÇ¿¿ÉÒÔÌáÉýÄ£Ð͵ÄÐÔÄÜ
2. Êý¾Ý´¦ÀíµÄЧ¹û£ºÍ¬µÈÇé¿öÏÂÃèÊö×ӵĸ¡µã±í´ïÐÎʽÃ÷ÏÔÓÅÓÚ¶þÖµ±í´ïÐÎʽ
3.¹ØÓڽṹµÄ̽ÌÖ£ºÒ»°ãÇé¿öϲ»ÔÞ³ÉʹÓóػ¯Ð§Ó¦¡£Í¬Ê±ÔÞ³ÉʹÓò»Í¬Éî¶ÈµÄ¿ò¼Ü
ÏÖÔÚ¾À½áµÄÊÇ£¬Í¬ÑùʹÓõÄÀàËÆµÄ¡¢¼òµ¥µÄÍøÂç½á¹¹£¬ÎªÊ²Ã´¿ÉÒԵõ½Èç´ËºÃµÄ½á¹û£¿£¿£¿ ÔÒòÒ»¶¨ÊdzöÏÖÔÚËðʧº¯ÊýµÄ¹¹ÔìÉÏ£¡£¡£¡

ÌØÕ÷ά¶È½ôÖµÄÖØÒªÐÔ¡£ÎÒÃdz¢ÊÔÔÚûÓÐE2µÄÇé¿öÏÂѵÁ·L2ÍøÂ磬µ«ÊÇÍøÂç²»ÊÕÁ²¡£ÓÉÓÚ´óÁ¿µÄѵÁ·Ñù±¾±»ÊäÈëµ½ÍøÂçÖУ¬ÍøÂç¸üÈÝÒ×¼ÇÒäѵÁ·Êý¾Ý¶ø²»ÊÇѧϰ·º»¯¡£Èç¹ûûÓÐE2£¬Ôò»á·¢ÉúÇ¿¹ýÄâºÏ£¬²¢ÇÒÊä³öÃèÊö·ûµÄάÊý¸ß¶ÈÏà¹Ø¡£Òò´Ë£¬½ôÐÔ¶Ô½¥½ø³éÑù²ßÂÔÖÁ¹ØÖØÒª¡£Í¨¹ýÏÞÖÆ½ôÐÔ£¬ÍøÂçʵ¼ÊÉÏÇãÏòÓÚÌáÈ¡°üº¬¸ü¶àÐÅÏ¢µÄ²»Ïà¹ØÌØÕ÷
Comment£ºÆäʵÕâÊÇ×Ô¼º²Ù¿ØµÄÊÔÑéѵÁ·¹ý³Ì¡£Èç¹ûÖ±½ÓÓ¦ÓÃÊý¾Ý¿â£¬ÀïÃæÓдóÁ¿Ïà¹ØÐԷdz£Ç¿µÄͼÏñ¶Ô£¬Õâ¾Í»áÔì³ÉÍøÂçÈ¥¼ÇÒäѵÁ·Êý¾Ý£¬¶ø²»ÊÇ·º»¯µÄÈ¥Ñ§Ï°ÌØÕ÷¡£Òò´Ë£¬Æäʵ°É£¬Ìá¼°µ½µÄÌØÕ÷½ôÃÜÐÍÖ®ËùÒÔûÓÐÊýÀíÖ¤Ã÷£¬ÊÇÒòΪѵÁ·Êý¾ÝÏà¶Ô¶ÀÁ¢£¬Õâ¾Í°µº¬×ÅÌØÕ÷ά¶È¼äÏà¶ÔÈ¥Ïà¹Ø¡£
L2¾àÀëµÄÓÅÊÆ¡£»¹ºÃ»¹ºÃ Ò²¾ÍÒ»°ãÀ²...
DIFµÄÓÐЧÐÔ£¬ÊµÑ黹ûÓÐÖØ¸´³öÀ´....
Åú¹éÒ»»¯µÄÊÕÒæ£ºÕâ¸öÓ¦¸ÃÊÇËùÓÐÈ˶¼¹ØÐĵģ¬Åú¹éÒ»»¯Ò»°ã¿ÉÒÔ¼Ó¿ìÊÕÁ²ËÙ¶ÈÕâûµÄ˵£¬¹Ø¼üÊÇBatchNorm¶ÔÌá¸ßÄ£Ð͵Ä׼ȷ¶Èµ½µ×¹±Ï×¼¸ºÎ£¿ÔÚÎÒÃǵÄBN²ãÖУ¬È¨ÖئÁºÍÆ«²î¦Â¹Ì¶¨Îª1ºÍ0£¬ÒòΪÎÒÃÇ·¢ÏÖѧϰËüÃÇ»áʹÊä³öµÄÌØÕ÷Ó³É䣨ºÍÃèÊö·û£©·Ö²¼²»Á¼¡£ÔÚÕâ¸öʵÑéÖУ¬³ýÁËÁ½¸öBN²ãÔÚDIF֮ǰ£¨ÒòΪDIFÒÀÀµÓÚ±ê×¼»¯ÌØÕ÷£©Ñ§Ï°ÁËËùÓÐBN²ãµÄ¼ÓȨºÍÆ«²î²ÎÊý¡£ÑµÁ·³ÌÐòÈçͼ3-£¨a£©ÖеÄÇúÏßCËùʾ¡£±È½ÏÇúÏßAºÍC£¬¿ÉÒÔ·¢ÏÖ¸üЦÁºÍÆ«²î¦Âµ¼ÖÂÐÔÄÜÂÔÓÐϽµ¡£ÎªÁË˵Ã÷ÕâÒ»ÏÖÏ󣬼ÙÉèa¡«N£¨¦Ì1£¬¦Ò1£©ºÍb¡«N£¨¦Ì2£¬¦Ò2£©ÊÇÁ½¸ö·þ´Ó¸ß˹·Ö²¼µÄËæ»ú±äÁ¿¡£²»ÄÑÀí½â£¬·ÖÀëËüÃǵÄ×î¼òµ¥·½·¨ÊÇÔö¼Ó|¦Ì1-¦Ì2
|£¬¶ø
¼õС|¦Ò1 |ºÍ|¦Ò2 |¡£Òò´Ë£¬Ñ§Ï°¦ÁºÍ¦Â»áʹÌáÈ¡µÄÌØÕ÷±äµÃ¼âÈñºÍ·ÇÁã·Ö²¼£¬´Ó¶øÓ°ÏìÐÔÄÜ¡£½â¾öÕâЩÎÊÌâµÄ»ù´¡ÊÇÎÒÃÇÏ£Íû²»Í¬ÃæÆ¬µÄÌØÕ÷Ó³É䣨ºÍÃèÊö·û£©ÊǶÀÁ¢µÄ¡¢Í¬·Ö²¼µÄ¡£Í¨¹ýÕâÖÖ·½Ê½£¬ÍøÂç±»ÆÈÌáÈ¡³ö¾ßÓи߶ÈÇø·ÖÐÔ¶ø·ÇÆ«¼ûµÄÌØÕ÷µÄÉèÖ÷½·¨ÊÇDIFǰÁ½¸öBN²ãûÓнøÐÐѧϰ£¬½âÊ͵ÄÔÒòÊÇDIFÒÀÀµ¹éÒ»»¯ÌØÕ÷£¬¹ý¶àµÄʹÓÃBN²ã»áÆÆ»µ²»Í¬¶ÔͼÏà¼äµÄ¶ÀÁ¢Í¬·Ö²¼ÐÔÖÊ£¬ÓÖÈÆ»ØÈ¥ÁË£¬ÎÒÃÇÒªµÄÊÇ·º»¯µÄÅбðÄÜÁ¦£¬¶ø²»ÊǼÇÒäѵÁ·¼¯µÄÄÜÁ¦¡£
½áÂÛ£ºÔÚ±¾ÎÄÖУ¬ÎÒÃÇÌá³öÁËÒ»ÖÖеÄÊý¾ÝÇý¶¯ÃèÊö·û£¬Ëü¿ÉÒÔÔÚÅ·¼¸ÀïµÂ¿Õ¼äÖнøÐÐÆ¥Å䣬²¢ÇÒÐÔÄÜÃ÷ÏÔÓÅÓÚÏÖÓеÄÊý¾ÝÇý¶¯ÃèÊö·û¡£ËüµÄÁ¼ºÃÐÔÄÜÖ÷Òª¹é¹¦ÓÚÒ»ÖÖеĽ¥½ø²ÉÑù²ßÂÔ
ÒÔ¼°Ò»¸ö°üº¬ÈýÏîµÄרÓÃËðʧº¯Êý¡£Í¨¹ýÖð²½³éÑù£¬ÎÒÃÇÉè·¨·ÃÎÊÁËÊýÊ®ÒÚ¸öѵÁ·Ñù±¾¡£Í¨¹ý»Øµ½Æ¥Å䣨NNS£©µÄ»ù±¾¸ÅÄÎÒÃÇÉîÈëÑо¿ÁËÿ¸öÅú´ÎÖеÄÐÅÏ¢¡£Í¨¹ýÒªÇó½ô´Õ£¬ÎÒÃdzɹ¦µØ´¦ÀíÁ˹ý¶ÈÄâºÏ¡£Í¨¹ýʹÓÃÖмäÌØÕ÷Ó³É䣬½øÒ»²½Ìá¸ßÁËÐÔÄÜ¡£
|