Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
pythonÊý×ÖͼÏñ´¦Àí£ºÍ¼Ïñ¼òµ¥Â˲¨
 
×÷ÕߣºÐìÆä»ª
  2568  次浏览      28
 2020-9-27
 
±à¼­ÍƼö:
±¾ÎÄÖ÷Òª½éÉÜpythonÊý×ÖͼÏñ´¦Àí,ͼÏñ¼òµ¥Â˲¨£¬Í¼ÎIJ¢Ã¯½éÉÜskimage¿âÖÐͨ¹ýfiltersÄ£¿é½øÐÐÂ˲¨²Ù×÷£¬Ï£Íû¶ÔÄúµÄѧϰÓÐËù°ïÖú¡£
±¾ÎÄÀ´×ÔÓÚ²©¿ÍÔ°£¬ÓÉ»ðÁú¹ûÈí¼þAlice±à¼­¡¢ÍƼö¡£

¶ÔͼÏñ½øÐÐÂ˲¨£¬¿ÉÒÔÓÐÁ½ÖÖЧ¹û£ºÒ»ÖÖÊÇÆ½»¬Â˲¨£¬ÓÃÀ´ÒÖÖÆÔëÉù£»ÁíÒ»ÖÖÊÇ΢·ÖËã×Ó£¬¿ÉÒÔÓÃÀ´¼ì²â±ßÔµºÍÌØÕ÷ÌáÈ¡¡£

skimage¿âÖÐͨ¹ýfiltersÄ£¿é½øÐÐÂ˲¨²Ù×÷¡£

1¡¢sobelËã×Ó

sobelËã×Ó¿ÉÓÃÀ´¼ì²â±ßÔµ

º¯Êý¸ñʽΪ£ºskimage.filters.sobel(image, mask=None)

from skimage import data,filters
import matplotlib.pyplot as plt
img = data.camera()
edges = filters.sobel(img)
plt.imshow(edges,plt.cm.gray)

2¡¢robertsËã×Ó

robertsËã×ÓºÍsobelËã×ÓÒ»Ñù£¬ÓÃÓÚ¼ì²â±ßÔµ

µ÷ÓøñʽҲÊÇÒ»ÑùµÄ£º

edges = filters.roberts(img)

3¡¢scharrËã×Ó

¹¦ÄÜͬsobel£¬µ÷Óøñʽ£º

edges = filters.scharr(img)

4¡¢prewittËã×Ó

¹¦ÄÜͬsobel£¬µ÷Óøñʽ£º

edges = filters.prewitt(img)

5¡¢cannyËã×Ó

cannyËã×ÓÒ²ÊÇÓÃÓÚÌáÈ¡±ßÔµÌØÕ÷£¬µ«Ëü²»ÊÇ·ÅÔÚfiltersÄ£¿é£¬¶øÊÇ·ÅÔÚfeatureÄ£¿é

º¯Êý¸ñʽ£ºskimage.feature.canny(image£¬sigma=1.0)

¿ÉÒÔÐÞ¸ÄsigmaµÄÖµÀ´µ÷ÕûЧ¹û

from skimage import data,filters,feature
import matplotlib.pyplot as plt
img = data.camera()
edges1 = feature.canny(img) #sigma=1
edges2 = feature.canny(img,sigma=3) #sigma=3

plt.figure('canny',figsize=(8,8))
plt.subplot(121)
plt.imshow(edges1,plt.cm.gray)

plt.subplot(122)
plt.imshow(edges2,plt.cm.gray)

plt.show()

´Ó½á¹û¿ÉÒÔ¿´³ö£¬sigmaԽС£¬±ßÔµÏßÌõԽϸС¡£

6¡¢gaborÂ˲¨

gaborÂ˲¨¿ÉÓÃÀ´½øÐбßÔµ¼ì²âºÍÎÆÀíÌØÕ÷ÌáÈ¡¡£

º¯Êýµ÷Óøñʽ£ºskimage.filters.gabor_filter(image, frequency)

ͨ¹ýÐÞ¸ÄfrequencyÖµÀ´µ÷ÕûÂ˲¨Ð§¹û£¬·µ»ØÒ»¶Ô±ßÔµ½á¹û£¬Ò»¸öÊÇÓÃÕæÊµÂ˲¨ºËµÄÂ˲¨½á¹û£¬Ò»¸öÊÇÏëÏóµÄÂ˲¨ºËµÄÂ˲¨½á¹û¡£

from skimage import data,filters
import matplotlib.pyplot as plt
img = data.camera()
filt_real, filt_imag = filters.gabor_filter(img,frequency=0.6)

plt.figure('gabor',figsize=(8,8))
plt.subplot(121)
plt.title('filt_real')
plt.imshow(filt_real,plt.cm.gray)

plt.subplot(122)
plt.title('filt-imag')
plt.imshow(filt_imag,plt.cm.gray)

plt.show()

ÒÔÉÏΪfrequency=0.6µÄ½á¹ûͼ¡£

ÒÔÉÏΪfrequency=0.1µÄ½á¹ûͼ

7¡¢gaussianÂ˲¨

¶àάµÄÂ˲¨Æ÷£¬ÊÇÒ»ÖÖÆ½»¬Â˲¨£¬¿ÉÒÔÏû³ý¸ß˹ÔëÉù¡£

µ÷Óú¯ÊýΪ£ºskimage.filters.gaussian_filter(image, sigma)

ͨ¹ýµ÷½ÚsigmaµÄÖµÀ´µ÷ÕûÂ˲¨Ð§¹û

from skimage import data,filters
import matplotlib.pyplot as plt
img = data.astronaut()
edges1 = filters.gaussian_filter(img,sigma=0.4) #sigma=0.4

edges2 = filters.gaussian_filter(img,sigma=5) #sigma=5
plt.figure('gaussian',figsize=(8,8))
plt.subplot(121)
plt.imshow(edges1,plt.cm.gray)

plt.subplot(122)
plt.imshow(edges2,plt.cm.gray)

plt.show()

¿É¼ûsigmaÔ½´ó£¬¹ýÂ˺óµÄͼÏñԽģºý

8.median

ÖÐÖµÂ˲¨£¬Ò»ÖÖÆ½»¬Â˲¨£¬¿ÉÒÔÏû³ýÔëÉù¡£

ÐèÒªÓÃskimage.morphologyÄ£¿éÀ´ÉèÖÃÂ˲¨Æ÷µÄÐÎ×´¡£

from skimage import data,filters
import matplotlib.pyplot as plt
from skimage.morphology import disk
img = data.camera()
edges1 = filters.median(img,disk(5))
edges2= filters.median(img,disk(9))

plt.figure('median',figsize=(8,8))

plt.subplot(121)
plt.imshow(edges1,plt.cm.gray)

plt.subplot(122)
plt.imshow(edges2,plt.cm.gray)

plt.show()

´Ó½á¹û¿ÉÒÔ¿´³ö£¬Â˲¨Æ÷Ô½´ó£¬Í¼ÏñԽģºý¡£

9¡¢Ë®Æ½¡¢´¹Ö±±ßÔµ¼ì²â

ÉϱßËù¾ÙµÄÀý×Ó¶¼ÊǽøÐÐÈ«²¿±ßÔµ¼ì²â£¬ÓÐЩʱºòÎÒÃÇÖ»ÐèÒª¼ì²âˮƽ±ßÔµ£¬»ò´¹Ö±±ßÔµ£¬¾Í¿ÉÓÃÏÂÃæµÄ·½·¨¡£

ˮƽ±ßÔµ¼ì²â£ºsobel_h, prewitt_h, scharr_h

´¹Ö±±ßÔµ¼ì²â£º sobel_v, prewitt_v, scharr_v

from skimage import data,filters
import matplotlib.pyplot as plt
img = data.camera()
edges1 = filters.sobel_h(img)
edges2 = filters.sobel_v(img)

plt.figure('sobel_v_h',figsize=(8,8))

plt.subplot(121)
plt.imshow(edges1,plt.cm.gray)

plt.subplot(122)
plt.imshow(edges2,plt.cm.gray)

plt.show()

Éϱß×óͼΪ¼ì²â³öµÄˮƽ±ßÔµ£¬ÓÒͼΪ¼ì²â³öµÄ´¹Ö±±ßÔµ¡£

10¡¢½»²æ±ßÔµ¼ì²â

¿ÉʹÓÃRobertsµÄÊ®×Ö½»²æºËÀ´½øÐйýÂË£¬ÒÔ´ïµ½¼ì²â½»²æ±ßÔµµÄÄ¿µÄ¡£ÕâЩ½»²æ±ßԵʵ¼ÊÉÏÊÇÌݶÈÔÚij¸ö·½ÏòÉϵÄÒ»¸ö·ÖÁ¿¡£

ÆäÖÐÒ»¸öºË£º

0 1

-1 0

¶ÔÓ¦µÄº¯Êý£º

roberts_neg_diag(image£©

Àý£º

from skimage import data,filters
import matplotlib.pyplot as plt
img =data.camera()
dst =filters.roberts_neg_diag(img)

plt.figure('filters',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)

plt.subplot(122)
plt.title('filted image')
plt.imshow(dst,plt.cm.gray)

ÁíÍâÒ»¸öºË£º

1 0

0 -1

¶ÔÓ¦º¯ÊýΪ£º

roberts_pos_diag(image£©

from skimage import data,filters
import matplotlib.pyplot as plt
img =data.camera()
dst =filters.roberts_pos_diag(img)

plt.figure('filters',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)

plt.subplot(122)
plt.title('filted image')
plt.imshow(dst,plt.cm.gray)

   
2568 ´Îä¯ÀÀ       28
Ïà¹ØÎÄÕÂ

»ùÓÚͼ¾í»ýÍøÂçµÄͼÉî¶Èѧϰ
×Ô¶¯¼ÝÊ»ÖеÄ3DÄ¿±ê¼ì²â
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
ÏîĿʵս£ºÈçºÎ¹¹½¨ÖªÊ¶Í¼Æ×
 
Ïà¹ØÎĵµ

5GÈ˹¤ÖÇÄÜÎïÁªÍøµÄµäÐÍÓ¦ÓÃ
Éî¶ÈѧϰÔÚ×Ô¶¯¼ÝÊ»ÖеÄÓ¦ÓÃ
ͼÉñ¾­ÍøÂçÔÚ½»²æÑ§¿ÆÁìÓòµÄÓ¦ÓÃÑо¿
ÎÞÈË»úϵͳԭÀí
Ïà¹Ø¿Î³Ì

È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ&TensorFlow
»úÆ÷ÈËÈí¼þ¿ª·¢¼¼Êõ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
ͼÏñ´¦ÀíËã·¨·½·¨Óëʵ¼ù
×îл¼Æ»®
DeepSeekÔÚÈí¼þ²âÊÔÓ¦ÓÃʵ¼ù 4-12[ÔÚÏß]
DeepSeek´óÄ£ÐÍÓ¦Óÿª·¢Êµ¼ù 4-19[ÔÚÏß]
UAF¼Ü¹¹ÌåϵÓëʵ¼ù 4-11[±±¾©]
AIÖÇÄÜ»¯Èí¼þ²âÊÔ·½·¨Óëʵ¼ù 5-23[ÉϺ£]
»ùÓÚ UML ºÍEA½øÐзÖÎöÉè¼Æ 4-26[±±¾©]
ÒµÎñ¼Ü¹¹Éè¼ÆÓ뽨ģ 4-18[±±¾©]
 
×îÐÂÎÄÕÂ
¶àÄ¿±ê¸ú×Ù£ºAI²úÆ·¾­ÀíÐèÒªÁ˽âµÄCVͨʶ
Éî¶Èѧϰ¼Ü¹¹
¾í»ýÉñ¾­ÍøÂç֮ǰÏò´«²¥Ëã·¨
´Ó0µ½1´î½¨AIÖÐ̨
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
×îпγÌ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
È˹¤ÖÇÄÜÓë»úÆ÷ѧϰӦÓÃʵս
È˹¤ÖÇÄÜ-ͼÏñ´¦ÀíºÍʶ±ð
È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ& TensorFlow+Keras¿ò¼Üʵ¼ù
È˹¤ÖÇÄÜ+Python£«´óÊý¾Ý
³É¹¦°¸Àý
ij×ÛºÏÐÔ¿ÆÑлú¹¹ È˹¤ÖÇÄÜÓë»úÆ÷ѧϰӦÓÃ
Ä³ÒøÐÐ È˹¤ÖÇÄÜ+Python+´óÊý¾Ý
±±¾© È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ& TensorFlow¿ò¼Üʵ¼ù
ijÁìÏÈÊý×ÖµØÍ¼ÌṩÉÌ PythonÊý¾Ý·ÖÎöÓë»úÆ÷ѧϰ
ÖйúÒÆ¶¯ È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰºÍÉî¶Èѧϰ