±à¼ÍƼö: |
±¾ÎÄÒÔQAÐÎʽ×ܽáÁË¡¸nlpÖеÄʵÌå¹ØÏµÁªºÏ³éÈ¡·½·¨¡¹,ÔĶÁÏÂÎÄ£¬Á˽â¸ü¶à֪ʶÏêÇé¡£
±¾ÎÄÀ´×ÔÓÚÖªºõ£¬ÓÉ»ðÁú¹ûÈí¼þAlice±à¼¡¢ÍƼö¡£ |
|
Question List
Q1£ºÓëÁªºÏ³éÈ¡¶Ô±È£¬Pipeline·½·¨ÓÐÄÄЩȱµã£¿
Q2£ºNER³ýÁËLSTM+CRF£¬»¹ÓÐÄÄЩ½âÂ뷽ʽ£¿ÈçºÎ½â¾öǶÌ×ʵÌåÎÊÌ⣿
Q3£ºPipelineÖеĹØÏµ·ÖÀàÓÐÄÄЩ³£Ó÷½·¨£¿ÈçºÎÓ¦ÓÃÈõ¼à¶½ºÍԤѵÁ·»úÖÆ£¿Ôõô½â¾ö¸ß¸´ÔÓ¶ÈÎÊÌâ¡¢½øÐÐone-pass¹ØÏµ·ÖÀࣿ
Q4£ºÊ²Ã´ÊǹØÏµÖصþÎÊÌ⣿
Q5£ºÁªºÏ³éÈ¡ÄѵãÔÚÄÄÀÁªºÏ³éÈ¡×ÜÌåÉÏÓÐÄÄЩ·½·¨£¿¸÷ÓÐÄÄЩȱµã£¿
Q6£º½éÉÜ»ùÓÚ¹²Ïí²ÎÊýµÄÁªºÏ³éÈ¡·½·¨£¿
Q7£º½éÉÜ»ùÓÚÁªºÏ½âÂëµÄÁªºÏ³éÈ¡·½·¨£¿
Q8£ºÊµÌå¹ØÏµ³éÈ¡µÄÇ°ÑØ¼¼ÊõºÍÌôÕ½ÓÐÄÄЩ£¿ÈçºÎ½â¾öµÍ×ÊÔ´ºÍ¸´ÔÓÑù±¾ÏµÄʵÌå¹ØÏµ³éÈ¡£¿ÈçºÎÓ¦ÓÃͼÉñ¾ÍøÂ磿
²Êµ°£º°Ù¶È2020¹ØÏµ³éÈ¡±ÈÈüµÄbaseline¿ÉÒÔ²ÉÈ¡ÄÄЩ·½·¨£¿
ʵÌå¹ØÏµ³éÈ¡£¨Entity and Relation Extraction£¬ERE£©ÊÇÐÅÏ¢³éÈ¡µÄ¹Ø¼üÈÎÎñÖ®Ò»¡£EREÊǼ¶ÁªÈÎÎñ£¬·ÖΪÁ½¸ö×ÓÈÎÎñ£ºÊµÌå³éÈ¡ºÍ¹ØÏµ³éÈ¡£¬ÈçºÎ¸üºÃ´¦ÀíÕâÖÖÀàËÆµÄ¼¶ÁªÈÎÎñÊÇNLPµÄÒ»¸öÈȵãÑо¿·½Ïò¡£

±¾ÎĽṹ
Q1£ºÓëÁªºÏ³éÈ¡¶Ô±È£¬Pipeline·½·¨ÓÐÄÄЩȱµã£¿
Pipeline·½·¨Ö¸ÏȳéȡʵÌå¡¢ÔÙ³éÈ¡¹ØÏµ¡£Ïà±ÈÓÚ´«Í³µÄPipeline·½·¨£¬ÁªºÏ³éÈ¡ÄÜ»ñµÃ¸üºÃµÄÐÔÄÜ¡£ËäÈ»Pipeline·½·¨Ò×ÓÚʵÏÖ£¬ÕâÁ½¸ö³éȡģÐ͵ÄÁé»îÐԸߣ¬ÊµÌåÄ£Ðͺ͹ØÏµÄ£ÐÍ¿ÉÒÔʹÓöÀÁ¢µÄÊý¾Ý¼¯£¬²¢²»ÐèҪͬʱ±êעʵÌåºÍ¹ØÏµµÄÊý¾Ý¼¯¡£µ«´æÔÚÒÔÏÂȱµã£º
Îó²î»ýÀÛ£ºÊµÌå³éÈ¡µÄ´íÎó»áÓ°ÏìÏÂÒ»²½¹ØÏµ³éÈ¡µÄÐÔÄÜ¡£
ʵÌåÈßÓࣺÓÉÓÚÏȶԳéÈ¡µÄʵÌå½øÐÐÁ½Á½Åä¶Ô£¬È»ºóÔÙ½øÐйØÏµ·ÖÀ࣬ûÓйØÏµµÄºòѡʵÌå¶ÔËù´øÀ´µÄÈßÓàÐÅÏ¢£¬»áÌáÉý´íÎóÂÊ¡¢Ôö¼Ó¼ÆË㸴ÔÓ¶È¡£
½»»¥È±Ê§£ººöÂÔÁËÕâÁ½¸öÈÎÎñÖ®¼äµÄÄÚÔÚÁªÏµºÍÒÀÀµ¹ØÏµ¡£
£¨»ùÓÚ¹²Ïí²ÎÊýµÄÁªºÏ³éÈ¡·½·¨ÈÔÈ»´æÔÚѵÁ·ºÍÍÆ¶ÏʱµÄgap£¬ÍƶÏʱÈÔÈ»´æÔÚÎó²î»ýÀÛÎÊÌ⣬¿ÉÒÔ˵ֻÊÇ»º½âÁËÎó²î»ýÀÛÎÊÌâ¡££©
Q2£ºNER³ýÁËLSTM+CRF£¬»¹ÓÐÄÄЩ½âÂ뷽ʽ£¿ÈçºÎ½â¾öǶÌ×ʵÌåÎÊÌ⣿
ËäÈ»NERÊÇÒ»¸ö±È½Ï³£¼ûµÄNLPÈÎÎñ£¬Í¨³£²ÉÓÃLSTM+CRF´¦ÀíһЩ¼òµ¥NERÈÎÎñ¡£NER»¹´æÔÚǶÌ×ʵÌåÎÊÌ⣨ʵÌåÖØµþÎÊÌ⣩£¬È硸¡¶Ò¶Ê¥ÌÕÉ¢ÎÄÑ¡¼¯¡·¡¹Öлá³öÏÖÁ½¸öʵÌ塸ҶʥÌÕ¡¹ºÍ¡¸Ò¶Ê¥ÌÕÉ¢ÎÄÑ¡¼¯¡¹·Ö±ð´ú±í¡¸×÷Õß¡¹ºÍ¡¸×÷Æ·¡¹Á½¸öʵÌå¡£¶ø´«Í³×ö·¨ÓÉÓÚÿһ¸ötokenÖ»ÄÜÊôÓÚÒ»ÖÖTag£¬ÎÞ·¨½â¾öÕâÀàÎÊÌâ¡£±ÊÕß³¢ÊÔͨ¹ý¹éÄɼ¸ÖÖ³£¼û²¢Ò×ÓÚÀí½âµÄ
ʵÌå³éÈ¡½âÂ뷽ʽ À´»Ø´ðÕâ¸öÎÊÌâ¡£
1¡¢ÐòÁбê×¢£ºSoftMaxºÍCRF
±¾ÖÊÉÏÊÇtoken-level µÄ¶à·ÖÀàÎÊÌ⣬ͨ³£²ÉÓÃCNNs/RNNs/BERT+CRF´¦ÀíÕâÀàÎÊÌâ¡£ÓëSoftMaxÏà±È£¬CRF½øÁ˱êÇ©Ô¼Êø¡£¶ÔÕâÀà·½·¨µÄ¸Ä½ø£¬½éÉÜ2ƪ±È½ÏÓмÛÖµµÄ¹¤×÷£º
Õë¶ÔCRF½âÂëÂýµÄÎÊÌ⣬LAN[1]Ìá³öÁËÒ»ÖÖÖð²ã¸Ä½øµÄ»ùÓÚ±êǩעÒâÁ¦»úÖÆµÄÍøÂ磬ÔÚ±£Ö¤Ð§¹ûµÄǰÌáϱÈ
CRF ½âÂëËٶȸü¿ì¡£ÎÄÖÐÒ²·¢ÏÖBiLSTM-CRFÔÚ¸´ÔÓÀà±ðÇé¿öÏÂÏà±ÈBiLSTM-softmax²¢Ã»ÓÐÏÔÖøÓÅÊÆ¡£
ÓÉÓڷִʱ߽ç´íÎó»áµ¼ÖÂʵÌå³éÈ¡´íÎ󣬻ùÓÚLatticeLSTM[2]+CRFµÄ·½·¨¿ÉÒýÈë´Ê»ãÐÅÏ¢²¢±ÜÃâ·Ö´Ê´íÎ󣨴ʻã±ß½çͨ³£ÎªÊµÌå±ß½ç£¬¸ù¾Ý´óÁ¿ÓïÁϹ¹½¨´Êµä£¬Èôµ±Ç°×Ö·ûÓë֮ǰ×Ö·û¹¹³É´Ê»ã£¬Ôò´ÓÕâЩ´Ê»ãÖÐÌáÈ¡ÐÅÏ¢£¬ÁªºÏ¸üмÇÒä״̬£©¡£
µ«ÓÉÓÚÕâÖÖÐòÁбê×¢²ÉÈ¡BILOU±ê×¢¿ò¼Ü£¬Ã¿Ò»¸ötokenÖ»ÄÜÊôÓÚÒ»ÖÖ£¬²»Äܽâ¾öÖØµþʵÌåÎÊÌ⣬ÈçͼËùʾ¡£

»ùÓÚBILOU±ê×¢¿ò¼Ü£¬±ÊÕß³¢ÊÔ¸ø³öÁË2ÖָĽø·½·¨È¥½â¾öʵÌåÖØµþÎÊÌ⣺
¸Ä½ø·½·¨1£º²ÉÈ¡token-level µÄ¶àlabel·ÖÀ࣬½«SoftMaxÌæ»»ÎªSigmoid£¬ÈçͼËùʾ¡£µ±È»ÕâÖÖ·½Ê½¿ÉÄܻᵼÖÂlabelÖ®¼äÒÀÀµ¹ØÏµµÄȱʧ£¬¿É²ÉÈ¡ºó´¦Àí¹æÔò½øÐÐÔ¼Êø¡£

¸Ä½ø·½·¨2£ºÒÀÈ»²ÉÓÃCRF£¬µ«ÉèÖöà¸ö±êÇ©²ã£¬¶ÔÓÚÿһ¸ötoken¸ø³öÆäËùÓеÄlabel£¬È»ºó½«ËùÓбêÇ©²ãºÏ²¢¡£ÏÔÈ»Õâ¿ÉÄÜ»áÔö¼ÓlabelÊýÁ¿[3]£¬µ¼ÖÂlabel²»Æ½ºâÎÊÌâ¡£»ùÓÚÕâÖÖ·½Ê½£¬ÎÄÏ×[4]Ò²²ÉÈ¡ÏÈÑéͼµÄ·½Ê½È¥½â¾öÖØµþʵÌåÎÊÌâ¡£

2¡¢Span³éÈ¡£ºÖ¸ÕëÍøÂç
Ö¸ÕëÍøÂ磨PointerNet£©×îÔçÓ¦ÓÃÓÚMRCÖУ¬¶øMRCÖÐͨ³£¸ù¾Ý1¸öquestion´ÓpassageÖгéÈ¡1¸ö´ð°¸Æ¬¶Î£¬×ª»¯Îª2¸önÔªSoftMax·ÖÀàÔ¤²âÍ·Ö¸ÕëºÍβָÕë¡£¶ÔÓÚNER¿ÉÄÜ»á´æÔÚ¶à¸öʵÌåSpan£¬Òò´ËÐèҪת»¯Îªn¸ö2ÔªSigmoid·ÖÀàÔ¤²âÍ·Ö¸ÕëºÍβָÕë¡£
½«Ö¸ÕëÍøÂçÓ¦ÓÃÓÚNERÖУ¬¿ÉÒÔ²ÉÈ¡ÒÔÏÂÁ½ÖÖ·½Ê½£º
µÚÒ»ÖÖ£ºMRC-QA+µ¥²ãÖ¸ÕëÍøÂç¡£ÔÚShannonAIµÄÎÄÕÂÖÐ[5]£¬¹¹½¨queryÎÊÌâÖ¸´úËùÒª³éÈ¡µÄʵÌåÀàÐÍ£¬Í¬Ê±Ò²ÒýÈëÁËÏÈÑéÓïÒå֪ʶ¡£ÈçͼËùʾ£¬ÓÉÓÚ¹¹½¨queryÎÊÌâÒѾָ´úÁËʵÌåÀàÐÍ£¬ËùÒÔʹÓõ¥²ãÖ¸ÕëÍøÂç¼´¿É£»³ýÁËʹÓÃÖ¸ÕëÍøÂçÔ¤²âʵÌ忪ʼλÖᢽáÊøÎ»ÖÃÍ⣬»¹»ùÓÚ¿ªÊ¼ºÍ½áÊøÎ»ÖöԹ¹³ÉµÄËùÓÐʵÌåSpanÔ¤²âʵÌå¸ÅÂÊ[6]¡£´ËÍ⣬ÕâÖÖ·½·¨Ò²ÊʺÏÓÚ¸ø¶¨Ê¼þÀàÐÍϵÄʼþÖ÷Ìå³éÈ¡£¬¿ÉÒÔ½«Ê¼þÀàÐ͵±×÷query£¬Ò²¿ÉÒÔ½«µ¥²ãÖ¸ÕëÍøÂçÌæ»»ÎªCRF¡£

µÚ¶þÖÖ£º¶à²ãlabelÖ¸ÕëÍøÂç¡£ÓÉÓÚֻʹÓõ¥²ãÖ¸ÕëÍøÂçʱ£¬ÎÞ·¨³éÈ¡¶àÀàÐ͵ÄʵÌ壬ÎÒÃÇ¿ÉÒÔ¹¹½¨¶à²ãÖ¸ÕëÍøÂ磬ÿһ²ã¶¼¶ÔÓ¦Ò»¸öʵÌåÀàÐÍ¡£

ÐèҪעÒâµÄÊÇ£º
1£©MRC-QA»áÒýÈëquery½øÐÐʵÌåÀàÐͱàÂ룬Õâ»áµ¼ÖÂÐèÒª¶ÔÔ¸Îı¾Öظ´±àÂëÊäÈ룬ÒÔ¹¹Ô첻ͬµÄʵÌåÀàÐÍquery£¬Õâ»áÌáÉý¼ÆËãÁ¿¡£
2£©±ÊÕßÔÚʵ¼ùÖз¢ÏÖ£¬n¸ö2ÔªSigmoid·ÖÀàµÄÖ¸ÕëÍøÂ磬»áµ¼ÖÂÑù±¾Tag¿Õ¼äÏ¡Ê裬ͬʱÊÕÁ²ËÙ¶È»á½ÏÂý£¬ÌرðÊǶÔÓÚʵÌåspan³¤¶È½Ï³¤µÄÇé¿ö¡£
3¡¢Æ¬¶ÎÅÅÁÐ+·ÖÀà
ÉÏÊöÐòÁбê×¢ºÍSpan³éÈ¡µÄ·½·¨¶¼ÊÇÍ£ÁôÔÚtoken-level½øÐÐNER£¬¼ä½ÓÈ¥ÌáÈ¡span-levelµÄÌØÕ÷¡£¶ø»ùÓÚÆ¬¶ÎÅÅÁеķ½Ê½[7]£¬ÏÔʾµÄÌáÈ¡ËùÓпÉÄܵᬶÎÅÅÁУ¬ÓÉÓÚÑ¡ÔñµÄÿһ¸öƬ¶Î¶¼ÊǶÀÁ¢µÄ£¬Òò´Ë¿ÉÒÔÖ±½ÓÌáÈ¡span-levelµÄÌØÕ÷È¥½â¾öÖØµþʵÌåÎÊÌâ¡£
¶ÔÓÚº¬T¸ötokenµÄÎı¾£¬ÀíÂÛÉϹ²ÓÐ [¹«Ê½] ÖÖÆ¬¶ÎÅÅÁС£Èç¹ûÎı¾¹ý³¤£¬»á²úÉú´óÁ¿µÄ¸ºÑù±¾£¬ÔÚʵ¼ÊÖÐÐèÒªÏÞÖÆspan³¤¶È²¢ºÏÀíÏ÷¼õ¸ºÑù±¾¡£

ÐèҪעÒâµÄÊÇ£º
ʵÌåspanµÄ±àÂë±íʾ£ºÔÚspan·¶Î§ÄÚ²ÉȡעÒâÁ¦»úÖÆÓë»ùÓÚÔʼÊäÈëµÄLSTM±àÂë½øÐн»»¥¡£È»ºóËùÓеÄʵÌåspan±íʾ²¢ÐеÄιÈëSoftMax½øÐÐʵÌå·ÖÀà¡£
ÕâÖÖÆ¬¶ÎÅÅÁеķ½Ê½¶ÔÓÚ³¤Îı¾¸´ÔÓ¶ÈÊǽϸߵġ£
4¡¢Seq2Seq£º
ACL2019µÄһƪpaperÖвÉÈ¡Seq2Seq·½·¨[3]£¬encoder²¿·ÖÊäÈëµÄÔÎÄtokens£¬¶ødecoder²¿·Ö²ÉÈ¡hard
attention·½Ê½one-by-oneÔ¤²âµ±Ç°tokenËùÓпÉÄܵÄtag label£¬Ö±ÖÁÊä³ö<eow>
(end of word) label£¬È»ºóתÈëÏÂÒ»¸ötokenÔÙ½øÐнâÂë¡£
Q3£ºPipelineÖеĹØÏµ·ÖÀàÓÐÄÄЩ³£Ó÷½·¨£¿ÈçºÎÓ¦ÓÃÈõ¼à¶½ºÍԤѵÁ·»úÖÆ£¿Ôõô½â¾ö¸ß¸´ÔÓ¶ÈÎÊÌâ¡¢½øÐÐone-pass¹ØÏµ·ÖÀࣿ
£¨×¢£ºPipeline·½·¨ÖУ¬¹ØÏµ³éȡͨ³£×ª»¯ÎªÒ»¸ö·ÖÀàÎÊÌ⣬±ÊÕßÕâÀï³ÆÖ®Îª¡¸¹ØÏµ·ÖÀࡹ£©
1¡¢Ä£°åÆ¥Å䣺ÊǹØÏµ·ÖÀàÖÐ×î³£¼ûµÄ·½·¨£¬Ê¹ÓÃÒ»¸öÄ£°å¿â¶ÔÊäÈëÎı¾Á½¸ö¸ø¶¨ÊµÌå½øÐÐÉÏÏÂÎÄÆ¥Å䣬Èç¹ûÂú×ãÄ£°å¶ÔÓ¦¹ØÏµ£¬Ôò×÷ΪʵÌå¶ÔÖ®¼äµÄ¹ØÏµ¡£³£¼ûµÄÄ£°åÆ¥Åä·½·¨Ö÷Òª°üÀ¨£º
È˹¤Ä£°å£ºÖ÷ÒªÓÃÓÚÅжÏʵÌå¼äÊÇ·ñ´æÔÚÉÏÏÂλ¹ØÏµ¡£ÉÏÏÂλ¹ØÏµµÄ×ÔÈ»ÓïÑÔ±í´ï·½Ê½Ïà¶ÔÓÐÏÞ£¬²ÉÓÃÈ˹¤Ä£°å¾Í¿ÉÒԺܺÃÍê³É¹ØÏµ·ÖÀà¡£µ«¶ÔÓÚ×ÔÈ»ÓïÑÔ±í´ïÐÎʽ·Ç³£¶àµÄ¹ØÏµÀàÐͶøÑÔ£¬Õâ¾ÍÐèÒª²Éȡͳ¼ÆÄ£°å¡£
ͳ¼ÆÄ£°å£ºÎÞÐëÈ˹¤¹¹½¨£¬Ö÷Òª»ùÓÚËÑË÷ÒýÇæ½øÐÐͳ¼ÆÄ£°å³éÈ¡¡£¾ßÌ嵨£¬½«ÒÑ֪ʵÌå¶Ô×÷Ϊ²éѯÓï¾ä£¬×¥È¡ËÑË÷ÒýÇæ·µ»ØµÄǰn¸ö½á¹ûÎĵµ²¢±£Áô°üº¬¸ÃʵÌå¶ÔµÄ¾ä×Ó¼¯ºÏ£¬Ñ°ÕÒ°üº¬ÊµÌå¶ÔµÄ××Ö´®×÷Ϊͳ¼ÆÄ£°å£¬±£ÁôÖÃÐŶȽϸߵÄÄ£°åÓÃÓÚ¹ØÏµ·ÖÀà¡£
»ùÓÚÄ£°åÆ¥ÅäµÄ¹ØÏµ·ÖÀ๹½¨¼òµ¥¡¢ÊÊÓÃÓÚС¹æÄ£Ìض¨ÁìÓò£¬µ«ÕÙ»ØÂʵ͡¢¿ÉÒÆÖ²ÐԲµ±Óöµ½ÁíÒ»¸öÁìÓòµÄ¹ØÏµ·ÖÀàÐèÒªÖØÐ¹¹½¨Ä£°å¡£
2¡¢°ë¼à¶½Ñ§Ï°
bootstrapping£¨×Ô¾Ù£©£ºÀûÓÃÉÙÁ¿µÄʵÀý×÷Ϊ³õʼÖÖ×Ó¼¯ºÏ£¬È»ºóÔÚÖÖ×Ó¼¯ºÏÉÏѧϰ»ñµÃ¹ØÏµ³éÈ¡µÄÄ£°å£¬ÔÙÀûÓÃÄ£°å³éÈ¡¸ü¶àµÄʵÀý£¬¼ÓÈëÖÖ×Ó¼¯ºÏÖв¢²»¶Ïµü´ú¡£
bootstrapping±È½Ï³£¼ûµÄ·½·¨ÓÐDIPREºÍSnowball¡£ºÍDIPREÏà±È£¬Snowballͨ¹ý¶Ô»ñµÃµÄÄ£°åpattern½øÐÐÖÃÐŶȼÆË㣬һ¶¨³Ì¶ÈÉÏ¿ÉÒÔ±£Ö¤³éÈ¡½á¹ûÖÊÁ¿¡£
bootstrappingµÄÓŵ㹹½¨³É±¾µÍ£¬Êʺϴó¹æÄ£µÄ¹ØÏµÈÎÎñ²¢ÇҾ߱¸·¢ÏÖйØÏµµÄÄÜÁ¦£¬µ«Ò²´æÔÚ¶Ô³õʼÖÖ×Ó½ÏΪÃô¸Ð¡¢´æÔÚÓïÒåÆ¯ÒÆ¡¢×¼È·ÂʵÈÎÊÌâ¡£
Ô¶³Ì¼à¶½£ºÆäÖ÷ÒªµÄ»ù±¾¼ÙÉèÊÇ£¬Èç¹ûÒ»¸öʵÌå¶ÔÂú×ãij¸ö¸ø¶¨¹ØÏµ£¬ÄÇôͬʱ°üº¬¸ÃʵÌå¶ÔµÄËùÓоä×Ó£¨¹¹³ÉÒ»¸öBag£©¶¼¿ÉÄÜÔÚ²ûÊö¸Ã¹ØÏµ¡£¿ÉÒÔ¿´³ö£¬¸Ã¼ÙÉèÊÇÒ»¸ö·Ç³£Ç¿µÄ¼ÙÉ裬ʵ¼ÊÉϺܶà°üº¬¸ÃʵÌå¶ÔµÄ¾ä×Ó²¢²»´ú±í´ËÖÖ¹ØÏµ£¬»áÒýÈë´óÁ¿ÔëÉù¡£ÎªÁË»º½âÕâÒ»ÎÊÌ⣬Ö÷Òª²ÉÈ¡¡¸¶àʾÀýѧϰ¡¹¡¢¡¸Ç¿»¯Ñ§Ï°¡¹ºÍ¡¸Ô¤ÑµÁ·»úÖÆ¡¹£º
£¨1£©¶àʾÀýѧϰ£ºÖ÷Òª»ùÓÚBagµÄÌØÕ÷½øÐйØÏµ·ÖÀ࣬Ö÷Òª´ú±íÎÄÏ×°üÀ¨PCNN[8]¡¢Selective
Attention over Instances[9]¡¢Multi-label CNNs[10]¡¢APCNNs[11]£¬ÆäÖÐBagµÄ±íʾÖ÷Òª·½Ê½ºÍ³Ø»¯·½Ê½Îª£º

ÒÔAPCNNsΪÀý£¬²ÉÈ¡PCNNÄ£ÐÍ[8]ÌáÈ¡µ¥Ò»¾ä×ÓµÄÌØÕ÷ÏòÁ¿£¬×îºóͨ¹ýattention¼ÓȨµÃµ½Bag¼¶±ðµÄÌØÕ÷£¬¹ØÏµ·ÖÀàÊÇ»ùÓÚBagÌØÕ÷½øÐе쬶øÔʼµÄPCNNÄ£ÐÍֻѡÔñBagÖÐʹµÃÄ£ÐÍÔ¤²âµÃ·Ö×î¸ßµÄ¾ä×ÓÓÃÓÚÄ£ÐͲÎÊýµÄ¸üУ¬Õâ»áËðʧºÜ¶àÐÅÏ¢¡£

APCNNs
£¨2£©Ç¿»¯Ñ§Ï°£ºÔÚ²ÉÓöàʾÀýѧϰ²ßÂÔʱ£¬¿ÉÄÜ»á³öÏÖÕû¸öBag°üº¬´óÁ¿ÔëÉùµÄÇé¿ö¡£»ùÓÚÇ¿»¯Ñ§Ï°µÄCNN+RL[12]±È¾ä×Ó¼¶±ðºÍBag¼¶±ðµÄ¹ØÏµ·ÖÀàÄ£ÐÍÈ¡µÃ¸üºÃЧ¹û¡£
Ä£ÐÍÖ÷ÒªÓÉÑùÀýÑ¡ÔñÆ÷ºÍ¹ØÏµ·ÖÀàÆ÷¹¹³É¡£ÑùÀýÑ¡ÔñÆ÷¸ºÔð´ÓÑùÀýÖÐÑ¡Ôñ¸ßÖÊÁ¿µÄ¾ä×Ó£¬²Éȡǿ»¯Ñ§Ï°·½Ê½ÔÚ¿¼Âǵ±Ç°¾ä×ÓµÄÑ¡Ôñ״̬ÏÂÑ¡ÔñÑùÀý£»¹ØÏµ·ÖÀàÆ÷ÏòÑùÀýÑ¡ÔñÆ÷·´À¡£¬¸Ä½øÑ¡Ôñ²ßÂÔ¡£

CNN+RL
£¨3£©Ô¤ÑµÁ·»úÖÆ£º²ÉÈ¡¡°Matching the Blank[13]¡±·½·¨£¬Ê×´ÎÔÚԤѵÁ·¹ý³ÌÖÐÒýÈë¹ØÏµ·ÖÀàÄ¿±ê£¬µ«ÈÔÈ»ÊÇ×ԼලµÄ£¬Ã»ÓÐÒýÈë֪ʶ¿âºÍ¶îÍâµÄÈ˹¤±ê×¢£¬½«ÊµÌåmetionÌæ»»Îª¡¸BLANK¡¹±êʶ·û¡£
¸Ã·½·¨ÈÏΪ°üº¬ÏàͬʵÌå¶ÔµÄ¾ä×Ó¶ÔΪÕýÑù±¾£¬¶øÊµÌå¶Ô²»Ò»ÑùµÄ¾ä×Ó¶ÔΪ¸ºÑù±¾¡£Èçͼ£¬ [¹«Ê½] ºÍ[¹«Ê½]¹¹³ÉÕýÑù±¾£¬[¹«Ê½]
ºÍ[¹«Ê½]¹¹³É [¹«Ê½]ºÍ[¹«Ê½]¹¹¸ºÑù±¾¡£
²»Í¬ÓÚ´«Í³µÄÔ¶³Ì¼à¶½£¬¸Ã·½·¨ÑµÁ·Öв»Ê¹ÓùØÏµ±êÇ©£¬²ÉÓöþÔª·ÖÀàÆ÷¶Ô¾ä×Ó¶Ô½øÐÐÏàËÆ¶È¼ÆË㡣ԤѵÁ·µÄËðʧ°üº¬2²¿·Ö£ºMLM
loss ºÍ ¶þÔª½»²æìعØÏµËðʧ¡£
ÔÚFewRelÊý¾Ý¼¯ÉÏ£¬²»½øÐÐÈκÎtuning¾ÍÒѾ³¬¹ýÁËÓмලµÄ½á¹û¡£

3¡¢¼à¶½Ñ§Ï°£ºÖ÷Òª·ÖΪ»ùÓÚÌØÕ÷¡¢ºËº¯Êý¡¢Éî¶ÈѧϰÈýÖÖ·½·¨£»»ùÓÚÌØÕ÷µÄ·½·¨ÐèÒª¶¨ÒåÌØÕ÷¼¯ºÏ£¬ºËº¯Êý²»ÐèÒª¶¨ÒåÌØÕ÷¼¯ºÏ¡¢ÔÚ¸ßά¿Õ¼ä½øÐмÆËã¡£±ÊÕßÖ÷Òª½éÉÜ»ùÓÚÉî¶ÈѧϰµÄ·½·¨¡£
¹ýÈ¥µÄ¼¸ÄêÖУ¬ºÜ¶à»ùÓÚÉî¶ÈѧϰµÄÓмල¹ØÏµ·ÖÀà±»Ìá³ö£¬´óÖ¶¼²ÉÓÃCNN¡¢RNN¡¢ÒÀ´æ¾ä·¨Ê÷¡¢BERTµÄ·½·¨£¬ÓÉÓÚÕâЩ·½·¨´ó¶¼ºÜÈÝÒ×Àí½â£¬±ÊÕßÕâÀï²»ÔÙ׸Êö£¬Ö»Ñ¡Ôñ½éÉÜ3ƪ±È½ÏÐÂÓ±µÄÎÄÏ×½øÐнéÉÜ¡£
3-1 Matching the Blanks: Distributional Similarity
for Relation Learning[13]

ÕâÆªÎÄÏ×À´×ÔGoogleAI£¬»ùÓÚBERT£¬¹²²ÉÓÃ6ÖÖ²»Í¬½á¹¹À´½øÐÐʵÌåpairµÄpooling£¬È»ºó½«pooling½øÐйØÏµ·ÖÀà»ò¹ØÏµÏàËÆ¶È¼ÆË㣬ÏÔʾ(f)Ч¹û×îºÃ¡£
±ê×¼ÊäÈë+¡¸CLS¡¹Êä³ö£»
±ê×¼ÊäÈë+mention poolingÊä³ö£»
position embedding ÊäÈë+mention poolingÊä³ö£»
entity markersÊäÈë+¡¸CLS¡¹Êä³ö£»
entity markersÊäÈë+ mention poolingÊä³ö£»
entity markersÊäÈë+ entity start Êä³ö£»
3-2 Extracting Multiple-Relations in One-Pass with
Pre-Trained Transformers[14]
Pipeline·½·¨ÏµĹØÏµ·ÖÀ࣬ͬһ¸ö¾ä×Ó»áÓжà¸ö²»Í¬µÄʵÌå¶Ô£¬¹ýÈ¥µÄһЩ·½·¨¹¹Ôì¶à¸ö£¨¾ä×Ó£¬entity1£¬entity2£©½øÐжà´Î¹ØÏµ·ÖÀ࣬±¾ÖÊÉÏÊÇÒ»¸ömulti
passÎÊÌ⣬ͬһ¸ö¾ä×Ó»á½øÐÐÖØ¸´±àÂ룬ºÄ·Ñ¼ÆËã×ÊÔ´¡£

±¾ÎĽ«¶à´Î¹ØÏµ³éȡת»¯Îªone passÎÊÌ⣬½«¾ä×ÓÒ»´ÎÊäÈë½øÐжà¸ö¹ØÏµ·ÖÀà¡£ÔÚBERT¶¥²ã¶Ô²»Í¬µÄʵÌå¶Ô½øÐв»Í¬µÄ¹ØÏµÔ¤²â¡£
±¾ÎĽ«»¹±àÂë´ÊºÍʵÌåÖ®¼äµÄÏà¶Ô¾àÀë¼ÆËãEntity-Aware Self-Attention¡£ÈçÏÂͼËùʾ£¬
[¹«Ê½] ´ú±íʵÌå [¹«Ê½] µ½token [¹«Ê½]¼äÏà¶Ô¾àÀëµÄembedding¡£

3-3 Simultaneously Self-Attending
to All Mentions for Full-Abstract Biological Relation
Extraction[15]
ÓëÉÏÆªÎÄÏ×[14]ÀàËÆ£¬ÕâÆªÎÄÏ×µÄÒÀ¾É²ÉÓÃone-pass¶ÔËùÓÐʵÌåmention½øÐйØÏµ·ÖÀ࣬ͬʱ´ÓËùÓÐʵÌåmentionÖж¨Î»¹ØÏµ¡£
²»Í¬µÄµØ·½ÊÇ´Ó¾ä×Ó¼¶±ðÍØÕ¹µ½Îĵµ¼¶±ð£¬Í¬Ê±ÒýÈëNER¸¨Öú½øÐжàÈÎÎñѧϰ£¬´ËÍ⣬ʵÌåÐÅÏ¢ÔÚ½øÐÐmention
pooling²Å¸ø¶¨£¬¶ø²»ÊÇÊäÈëʱ¾Í¸ø³ö £»½øÐйØÏµ·ÖÀàʱ²ÉÓÃBi-affine·½·¨(sigmoid)£¬¶ø²»ÊDzÉÓÃSoftmax¡£¾ßÌ嵨£º
Bi-affine Pairwise Scores£º²ÉÓÃTransformer±àÂ룬¶Ôÿ¸ötokenͨ¹ýÁ½¸ö¶ÀÁ¢MLP½øÐÐÈýÔª×éÖеÄheadºÍtail±íÕ÷£¬È»ºóBi-affineͨ¹ý¼ÆËãÿ¸öÈýÔª×éµÄµÃ·Ö£º

²ÉÓÃLogSumExp¼ÆËãµÃ·Ö£º 
¼ÆËãlossʱ£¬¸ø¶¨E¸öʵÌå¶ÔÐÅÏ¢ÔÙ½øÐмÆË㣺 

Q4£ºÊ²Ã´ÊǹØÏµÖصþ&¸´ÔÓ¹ØÏµÎÊÌ⣿

a£ºÕý³£¹ØÏµÎÊÌâ
b£º¹ØÏµÖصþÎÊÌ⣬һ¶Ô¶à¡£Èç¡°ÕÅѧÓÑÑݳª¹ý¡¶ÎDZ𡷡¶ÔÚÄãÉí±ß¡·¡±ÖУ¬´æÔÚ2ÖÖ¹ØÏµ£º¡¸ÕÅѧÓÑ-¸èÊÖ-ÎDZ𡹺͡¸ÕÅѧÓÑ-¸èÊÖ-ÔÚÄãÉí±ß¡¹
c£º¹ØÏµÖØÐÂÎÊÌ⣬һ¶ÔʵÌå´æÔÚ¶àÖÖ¹ØÏµ¡£Èç¡°ÖܽÜÂ××÷Çú²¢Ñݳª¡¶ÆßÀïÏã¡·¡±ÖУ¬´æÔÚ2ÖÖ¹ØÏµ£º¡¸ÖܽÜÂ×-¸èÊÖ-ÆßÀïÏ㡹ºÍ¡¸ÖܽÜÂ×-×÷Çú-ÆßÀïÏ㡹
d£º¸´ÔÓ¹ØÏµÎÊÌ⣬ÓÉʵÌåÖØµþµ¼Ö¡£Èç¡¶Ò¶Ê¥ÌÕÉ¢ÎÄÑ¡¼¯¡·ÖУ¬Ò¶Ê¥ÌÕ-×÷Æ·-Ò¶Ê¥ÌÕÉ¢ÎÄÑ¡¼¯£»
e£º¸´ÔÓ¹ØÏµÎÊÌ⣬¹ØÏµ½»²æµ¼Ö¡£Èç¡°ÕÅѧÓÑ¡¢ÖܽÜÂ×·Ö±ðÑݳª¹ý¡¶ÎDZ𡷡¶ÆßÀïÏã¡·¡±£¬¡¸ÕÅѧÓÑ-¸èÊÖ-ÎDZ𡹺͡¸ÖܽÜÂ×-¸èÊÖ-ÆßÀïÏ㡹
Q5£ºÁªºÏ³éÈ¡ÄѵãÔÚÄÄÀÁªºÏ³éÈ¡×ÜÌåÉÏÓÐÄÄЩ·½·¨£¿¸÷ÓÐÄÄЩȱµã£¿
¹ËÃû˼Ò壬ÁªºÏÄ£Ð;ÍÊÇÒ»¸öÄ£ÐÍ£¬½«Á½¸ö×ÓÄ£ÐÍͳһ½¨Ä£¡£¸ù¾ÝQ1£¬ÁªºÏ³éÈ¡¿ÉÒÔ½øÒ»²½ÀûÓÃÁ½¸öÈÎÎñÖ®¼äµÄDZÔÚÐÅÏ¢£¬ÒÔ»º½â´íÎó´«²¥µÄȱµã£¨×¢Òâ??Ö»ÊÇ»º½â£¬Ã»ÓдӸù±¾ÉϽâ¾ö£©¡£
ÁªºÏ³éÈ¡µÄÄѵãÊÇÈçºÎ¼ÓǿʵÌåÄ£Ðͺ͹ØÏµÄ£ÐÍÖ®¼äµÄ½»»¥£¬±ÈÈçʵÌåÄ£Ðͺ͹ØÏµÄ£Ð͵ÄÊä³öÖ®¼ä´æÔÚ×ÅÒ»¶¨µÄÔ¼Êø£¬ÔÚ½¨Ä£µÄʱºò¿¼Âǵ½´ËÀàÔ¼Êø½«ÓÐÖúÓÚÁªºÏÄ£Ð͵ÄÐÔÄÜ¡£
ÏÖÓÐÁªºÏ³éȡģÐÍ×ÜÌåÉÏÓÐÁ½´óÀà[16]£º
1¡¢¹²Ïí²ÎÊýµÄÁªºÏ³éȡģÐÍ
ͨ¹ý¹²Ïí²ÎÊý£¨¹²ÏíÊäÈëÌØÕ÷»òÕßÄÚ²¿Òþ²ã״̬£©ÊµÏÖÁªºÏ£¬´ËÖÖ·½·¨¶Ô×ÓÄ£ÐÍûÓÐÏÞÖÆ£¬µ«ÊÇÓÉÓÚʹÓöÀÁ¢µÄ½âÂëËã·¨£¬µ¼ÖÂʵÌåÄ£Ðͺ͹ØÏµÄ£ÐÍÖ®¼ä½»»¥²»Ç¿¡£
¾ø´óÊýÎÄÏ×»¹ÊÇ»ùÓÚ²ÎÊý¹²Ïí½øÐÐÁªºÏ³éÈ¡µÄ£¬ÕâÀàµÄ´ú±íÎÄÏ×ÓУº
2¡¢ÁªºÏ½âÂëµÄÁªºÏ³éȡģÐÍ
ΪÁ˼ÓǿʵÌåÄ£Ðͺ͹ØÏµÄ£Ð͵Ľ»»¥£¬¸´ÔÓµÄÁªºÏ½âÂëËã·¨±»Ìá³öÀ´£¬±ÈÈçÕûÊýÏßÐԹ滮µÈ¡£ÕâÖÖÇé¿öÏÂÐèÒª¶Ô×ÓÄ£ÐÍÌØÕ÷µÄ·á¸»ÐÔÒÔ¼°ÁªºÏ½âÂëµÄ¾«È·ÐÔÖ®¼ä×öȨºâ[16]£º
Ò»·½ÃæÈç¹ûÉè¼Æ¾«È·µÄÁªºÏ½âÂëËã·¨£¬ÍùÍùÐèÒª¶ÔÌØÕ÷½øÐÐÏÞÖÆ£¬ÀýÈçÓÃÌõ¼þËæ»ú³¡½¨Ä££¬Ê¹ÓÃÎ¬ÌØ±È½âÂëËã·¨¿ÉÒԵõ½È«¾Ö×îÓŽ⣬µ«ÊÇÍùÍùÐèÒªÏÞÖÆÌØÕ÷µÄ½×Êý¡£
ÁíÒ»·½ÃæÈç¹ûʹÓýüËÆ½âÂëËã·¨£¬±ÈÈç¼¯ÊøËÑË÷£¬ÔÚÌØÕ÷·½Ãæ¿ÉÒÔ³éÈ¡ÈÎÒâ½×µÄÌØÕ÷£¬µ«ÊǽâÂëµÃµ½µÄ½á¹ûÊDz»¾«È·µÄ¡£
Òò´Ë£¬ÐèÒªÒ»¸öËã·¨¿ÉÒÔÔÚ²»Ó°Ïì×ÓÄ£ÐÍÌØÕ÷·á¸»ÐÔµÄÌõ¼þϼÓÇ¿×ÓÄ£ÐÍÖ®¼äµÄ½»»¥¡£
´ËÍ⣬ºÜ¶à·½·¨ÔÙ½øÐÐʵÌå³éȡʱ²¢Ã»ÓÐÖ±½ÓÓõ½¹ØÏµµÄÐÅÏ¢£¬È»¶øÕâÖÖÐÅÏ¢ÊǺÜÖØÒªµÄ¡£ÐèÒªÒ»¸ö·½·¨¿ÉÒÔͬʱ¿¼ÂÇÒ»¸ö¾ä×ÓÖÐËùÓÐʵÌ塢ʵÌåÓë¹ØÏµ¡¢¹ØÏµÓë¹ØÏµÖ®¼äµÄ½»»¥¡£
Q6£º½éÉÜ»ùÓÚ¹²Ïí²ÎÊýµÄÁªºÏ³éÈ¡·½·¨£¿
ÔÚÁªºÏ³éÈ¡ÖеÄʵÌåºÍ¹ØÏµ³éÈ¡µÄ½âÂ뷽ʽÓëQ2ÖеÄʵÌå³éÈ¡µÄ½âÂ뷽ʽ»ù±¾Ò»Ö£¬Ö÷Òª°üÀ¨£ºÐòÁбê×¢CRF/SoftMax¡¢Ö¸ÕëÍøÂç¡¢·ÖÀàSoftMax¡¢Seq2SeqµÈ¡£»ùÓÚ¹²Ïí²ÎÊýµÄÁªºÏ³éÈ¡£¬ÊµÌå³éÈ¡loss»áÓë¹ØÏµ³éÈ¡lossÏà¼Ó¡£
ÓÉÓںܶàµÄÏà¹ØÎÄÏ×ʵÓÃÐÔ²»¸ß£¬ÎÒÃÇÖ»½éÉÜÆäÖо߱¸´ú±íÐÔºÍÒ×ÓÚÓ¦ÓõªÎÄÏ×£¬Ê×ÏȹéÄÉÈçÏ£º

6-1 ÒÀ´æ½á¹¹Ê÷£ºEnd-to-End Relation Extraction using LSTMs
on Sequences and Tree Structures[17]

ÁªºÏ³éȡ˳Ðò£ºÏȳéȡʵÌ壬ÔÙ½øÐйØÏµ·ÖÀà
ʵÌå³éÈ¡£º²ÉÓÃBILOU±ê×¢£¬SoftMax½âÂ룻
¹ØÏµ³éÈ¡£ºÕë¶ÔʵÌå³éÈ¡³öµÄʵÌå¶Ô£¬ÔÚµ±Ç°¾ä×Ó¶ÔÓ¦µÄÒÀ´æ¾ä·¨Ê÷ÖÐÕÒµ½Äܹ»¸²¸Ç¸ÃʵÌå¶ÔµÄ×îСÒÀ´æ¾ä·¨Ê÷£¬²¢²ÉÓÃTreeLSTMÉú³É¸Ã×ÓÊ÷¶ÔÓ¦µÄÏòÁ¿±íʾ£¬×îºó£¬¸ù¾Ý×ÓÊ÷¸ù½Úµã¶ÔÓ¦µÄTreeLSTMÏòÁ¿½øÐÐSoftMax¹ØÏµ·ÖÀà¡£
´æÔÚÎÊÌ⣺
ʵÌå³éȡδʹÓÃCRF½âÂ룬ûÓнâ¾ö±êÇ©ÒÀÀµÎÊÌâ¡£
¹ØÏµ³éÈ¡ÈÔÈ»»áÔì³ÉʵÌåÈßÓ࣬»áÌáÉý´íÎóÂÊ¡¢Ôö¼Ó¼ÆË㸴ÔÓ¶È
ʹÓþ䷨ÒÀ´æÊ÷£¬Ö»Õë¶Ô¾ä×Ó¼¶±ð²¢ÇÒÖ»ÊÊÓÃÓÚÒ×ÓÚÒÀ´æ½âÎöµÄÓïÑÔ¡£
²»Äܽâ¾öÍêÕûµÄ¹ØÏµÖصþÎÊÌ⣬±¾ÖÊÉÏÊÇʵÌåÖØµþÎÊÌâûÓнâ¾ö¡£
6-2 Ö¸ÕëÍøÂ磬Going out on a limb: Joint Extraction of
Entity Mentions and Relations without Dependency Trees[18]

ÍøÂç½á¹¹Í¼ºÍ±ê×¢¿ò¼Ü
ÁªºÏ³éȡ˳Ðò£ºÊ¶±ðʵÌåµÄͬʱ½øÐйØÏµ³éÈ¡£¬²»ÔÙ²ÉÈ¡ÒÀ´æÊ÷¡£
ʵÌå³éÈ¡£º²ÉÓÃBILOU±ê×¢£¬SoftMax½âÂ룻½âÂëʱÀûÓÃǰһ²½µÄlabel embeddingÐÅÏ¢¡£
¹ØÏµ³éÈ¡£º²ÉȡָÕëÍøÂç½âÂ룬ָÕëÍøÂçʵ¼ÊÉÏÓÐR²ã£¨RΪ¹ØÏµ×ÜÊý£©¡£¶Ôµ±Ç°ÊµÌå²éѯÔÚÆäλÖÃǰµÄËùÓÐʵÌ壨Ïòǰ²éѯ£©£¬²¢¼ÆËã×¢ÒâÁ¦µÃ·Ö£º

´æÔÚÎÊÌ⣺
Ö»Ïòǰ²éѯheadʵÌ壬»á´æÔÚ¶ÔtailʵÌåµÄÒÅ©£»
ÔÚ¹ØÏµÖ¸ÕëÍøÂçµÄgold±êÇ©ÖУ¬¶ÔÓÚʵÌåspanÖÐÿһ¸ötokenƽ¾ù·ÖÅä1/N¸ÅÂÊ£¬Ã»Óгä·ÖÀûÓÃʵÌå±ß½çÐÅÏ¢£¬Õâ»áµ¼ÖÂ×¢ÒâÁ¦·ÖÉ¢¡£
6-3 Copy»úÖÆ+seq2seq£ºExtracting Relational Facts by
an End-to-End Neural Model with Copy Mechanism[19]

ÁªºÏ³éȡ˳Ðò£º²ÉÓÃSeq2Seq¿ò¼Ü£¬ÒÀ´Î³éÈ¡¹ØÏµ¡¢headʵÌå¡¢tailʵÌå¡£
Encoder±àÂ룺
Decoder±àÂ룺
Ϊdecoder²¿·Ötʱ¿ÌµÄÊäÈ룬, Ö÷ÒªÓÐÁ½²¿·Ö×é³É:
Ϊattention vector£¬ÎªÇ°Ò»²½µÄcopy entity
»òÕß relation embedding£»
¹ØÏµÔ¤²â£º½«Ö±½ÓιÈëSoftMax½øÐУ»
headʵÌåÔ¤²â£¨Copy the First Entity£©£º
ÔÚµ±Ç°½âÂë²½£¬´Ón¸ötokenÖÐÑ¡ÔñÒ»¸ö×÷ΪʵÌ壺
Ϊÿһ¸ötokenµÄ±àÂ룬¼ÓÈ뵱ǰ½âÂëµÄÊä³ö£»
¸ù¾Ý ´Ón¸ötokenÖÐÑ¡Ôñ×î´ó¸ÅÂʵÄtoken×÷ΪʵÌ壻
tailʵÌåÔ¤²â£¨Copy the Second Entity£©
ÓëheadʵÌåÔ¤²âÀàËÆ£¬Ö»ÊÇÐèÒªmaskÉÏÒ»²½Ô¤²âµÄheadʵÌ壨token£©
´æÔÚÎÊÌ⣺
Ö»¿¼ÂÇtokenά¶ÈµÄʵÌ壬¶ªÊ§Á˶à¸ötoken¹¹³ÉµÄʵÌ壬ÕâÊÇÒ»¸öÃ÷ÏÔbug£»
6-4 ¶àÍ·Ñ¡Ôñ»úÖÆ+sigmoid£ºJoint entity recognition and relation
extraction as a multi-head selection problem[20]

ÍøÂç½á¹¹
±¾ÆªÎÄÏ×Ó¦ÓýÏΪ¹ã·º£¬Óë3-3µÄÎÄÏ×[15]Ê®·ÖÀàËÆ£¬Ö»ÊDz»ÔÙÌṩʵÌåÐÅÏ¢¡¢ÐèÒª¶ÔʵÌå½øÐÐÔ¤²â¡£
ÁªºÏ³éȡ˳Ðò£ºÏȳéȡʵÌ壬ÔÙÀûÓÃʵÌå±ß½çÐÅÏ¢½øÐйØÏµ³éÈ¡¡£
ʵÌå³éÈ¡£º²ÉÓÃBILOU±ê×¢£¬CRF½âÂ룻
¹ØÏµ³éÈ¡£º²ÉÓÃsigmoid½øÐжàÍ·Ñ¡Ôñ£¬ÓëÎÄÏ×[15]µÄ×ö·¨ÀàËÆ¡£
¶ÔÓÚº¬n¸ötokenµÄ¾ä×Ó£¬¿ÉÄܹ¹³ÉµÄ¹ØÏµ×éºÏ¹²ÓÐ [¹«Ê½] ¸ö£¬ÆäÖÐrΪ¹ØÏµ×ÜÊý£¬¼´µ±Ç°token»áÓжà¸öÍ·µÄ¹ØÏµ×éºÏ£º

¸Ã·½·¨²¢Ã»ÓÐÏñÎÄÏ×[15]·Ö±ð¹¹½¨headºÍtailʵÌå±àÂ룬¶øÊÇÖ±½Óͨ¹ýtokenµÄ±àÂë±íʾ½øÈësigmoid
layerÖ±½Ó¹¹½¨¡¸¶àÍ·Ñ¡Ôñ¡¹¡£
ÒýÈëʵÌåʶ±ðºóµÄentity label embedding½øÐйØÏµ³éÈ¡£¬ÑµÁ·Ê±²ÉÓÃgold label£¬ÍƶÏʱ²ÉÓÃpredict
label¡£
ÔÚÈýÔª×éͳһ½âÂëʱ£¬ÐèÒªÀûÓÃʵÌå±ß½çÐÅÏ¢×齨ÈýÔª×飬ÒòΪ¶àÍ·Ñ¡Ôñ»úÖÆÖ»ÄÜÖªµÀtokenºÍtokenÖ®¼äµÄ¹ØÏµ£¬µ«²¢²»ÖªµÀtokenÁ¥ÊôµÄʵÌåÀà±ð¡£
´æÔÚÎÊÌ⣺
entity label embeddingÔÚѵÁ·ºÍÍÆ¶Ïʱ´æÔÚgap£¬ÎÄÏ×[21]Ìá³öÁËSoft Label
Embedding £¬²¢ÒýÈëÁËBERT¡£
³°ô·º»¯ÎÊÌ⣺Ô×÷ÕßÔÚÎÄÏ×[22]ÒýÈëÁ˶Կ¹ÑµÁ·»úÖÆ£¨Èç½ñ¿´À´£¬ÕâÖÖ¶Ô¿¹ÑµÁ·»úÖÆ±È½Ï¼òµ¥ÁË£©
6-5 SPOÎÊÌâ+Ö¸ÕëÍøÂ磬Joint Extraction of Entities and Relations
Based on a Novel Decomposition Strategy [23]

ÁªºÏ³éȡ˳Ðò£ºÊÇÒ»¸öspoÎÊÌ⣬ÏȳéȡʵÌ壨Ö÷Ìåsubject£¬¼ò³Æs£©£¬ÔÙ³éÈ¡¹ØÏµ£¨¹ØÏµpredicate¼°Æä¶ÔÓ¦µÄ¿ÍÌåobject£¬¼ò³Æpo£©¡£
ÈçÉÏͼËùʾ£¬Ö÷Ìå³éÈ¡°üº¬¡¸Trump¡¹ºÍ¡¸Queens¡¹£¬È»ºó»ùÓÚÒѳéÈ¡µÄÖ÷ÌåÔÙ½øÐÐpo³éÈ¡¡£ÀýÈç¶ÔÓÚ¡¸Trump¡¹£¬Æä¶ÔÓ¦µÄ¹ØÏµ°üº¬¡¸PO¡¹-¡¸United
States¡¹ºÍ¡¸BI¡¹-¡¸Queens¡¹£»¿ÉÒÔ¿´³ö¡¸Queens¡¹¼È¿ÉÒÔ×÷Ϊsubject£¬Ò²¿ÉÒÔÊÇobject¡£

ÍøÂç½á¹¹Í¼
Ö÷Ì壨s£©³éÈ¡£º²ÉÓÃÖ¸ÕëÍøÂç½øÐнâÂë¡£
¹ØÏµºÍ¿ÍÌ壨po£©³éÈ¡£ºÍ¬Ñù²ÉÓÃÖ¸ÕëÍøÂç½øÐнâÂ룬µ«ÊÂʵÉϲÉÓõÄÊÇQ2ÖÐÌáµ½µÄ¶à²ãlabelÖ¸ÕëÍøÂ磬¼´Ã¿Ò»²ãÊÇÒ»¸ö¹ØÏµlabel¶ÔÓ¦µÄÖ¸ÕëÍøÂ磨ÓÃÀ´³éÈ¡object£©¡£
ÔÚ¶Ôµ±Ç°µÄsubject³éÈ¡¶ÔÓ¦µÄpoʱ£¬²ÉÈ¡¶àÖÖ·½Ê½¼ÓÇ¿Á˶Ե±Ç°subjectµÄʵÌå¸ÐÖª·½Ê½£¬Èçsentence
pooling ¡¢entity pooling¡¢relative position embeddingµÈ£»ÔÚ¶ÔobjectµÄend
pos ½âÂëʱҲÒýÈëstart posµÄ±àÂëÐÅÏ¢¡£
´æÔÚÎÊÌ⣺
ÔÚѵÁ·Ê±£¬subjectµÄÑ¡ÔñÊÇËæ»úµÄ£¬²¢Ã»Óн«ËùÓÐsubjectͳһ½øÐÐpo³éÈ¡£»Ã»Óгä·ÖÀûÓÃÐÅÏ¢£¬¿ÉÄÜÔì³ÉÐÅÏ¢Ëðʧ£¬Òò´ËÐèÒªÑÓ³¤epochѵÁ·¡£
6-6 ¶àÂÖ¶Ô»°+Ç¿»¯Ñ§Ï° £ºEntity-Relation Extraction as Multi-Turn
Question Answering[24]

¶àÂÖ¶Ô»°Éè¼Æ-ʵÌå¹ØÏµ³éÈ¡
ÁªºÏ³éȡ˳Ðò£º»ùÓÚÈ˹¤Éè¼ÆµÄQAÄ£°å£¬ÏÈÌáȡʵÌ壬ÔÙ³éÈ¡¹ØÏµ¡£
ÎÄÏ×Ö¸³öͨ³£µÄÈýÔª×éÐÎʽ´æÔÚÎÊÌ⣬²¢²»Äܳä·Ö·´Ó¦Îı¾±³ºóµÄ½á¹¹»¯ÐÅÏ¢[25]£ºÈçÉÏͼµÄ½á¹¹»¯±í¸ñ£¬TIMEÐèÒªÒÀÀµPosition£¬PositionÐèÒªÒÀÀµCorp£¨¹«Ë¾£©¡£½øÐд«Í³µÄÈýÔª×é³éÈ¡¿ÉÄܵ¼ÖÂÒÀÀµ¹ØÏµµÄ¼ä¶Ï£¬Òò´ËÕâÖÖ¶àÂÖQA·½Ê½[25]£º
Äܹ»ºÜºÃµØ²¶×½²ã¼¶»¯µÄÒÀÀµ¹ØÏµ¡£
ÎÊÌâÄܹ»±àÂëÖØÒªµÄÏÈÑé¹ØÏµÐÅÏ¢£¬¶ÔʵÌå/¹ØÏµ³éÈ¡ÓÐËù°ïÖú¡£
ÎÊ´ð¿ò¼ÜÊÇÒ»ÖÖºÜ×ÔÈ»µÄ·½·¨À´Í¬Ê±ÌáȡʵÌåºÍ¹ØÏµ¡£
½«ÁªºÏ³éȡתΪһÖÖ¶ÔÂÖÎÊ´ðÈÎÎñ[25]£º¶ÔÿÖÖʵÌåºÍÿÖÖ¹ØÏµ¶¼ÓÃÎÊ´ðÄ£°å½øÐп̻£¬´Ó¶øÕâЩʵÌåºÍ¹ØÏµ¿ÉÒÔͨ¹ý»Ø´ðÕâЩģ°å»¯µÄÎÊÌâÀ´½øÐгéÈ¡£¬²ÉÈ¡BIES±êעʵÌ壬MRC+CRF½øÐнâÂ루ÓëÎÄÏ×[5]Ò»ÂöÏà³Ð£¬Ö»ÊDz»ÔÙʹÓÃÖ¸ÕëÍøÂ磬¶øÊÇCRF£©¡£
Ç¿»¯Ñ§Ï°£º
±ÊÕßÔÚÇ°ÃæÒѾָ³ö£¬»ùÓÚ¹²Ïí²ÎÊýµÄÁªºÏѧϰÈÔÈ»²»ÄÜÍêÈ«±ÜÃâÔÚÍÆ¶ÏʱµÄÎó²î»ýÀÛ£¬ÕâÆªÎÄÏײÉÓÃÇ¿»¯Ñ§Ï°»úÖÆ½øÐÐÓÅ»¯¡£
ÔÚ¶àÂÖQAÖÐ[25]£¬Action¾ÍÊÇÑ¡ÔñÒ»¸öÎı¾¶Î£¬Policy¾ÍÊÇÑ¡Ôñ¸ÃÎı¾¶ÎµÄ¸ÅÂÊ¡£¶ÔÓÚReward£¬Ê¹ÓÃÕýÈ·³éÈ¡µÄÈýÔª×éµÄÊýÁ¿×÷Ϊ½±Àø£¬Ê¹ÓÃREINFORCEË㷨ѰÕÒ×îÓŽ⡣
´æÔÚÎÊÌ⣺
Ò²ÐíÕë¶ÔÈýÔª×éÐÎʽ²»ÄÜÌåÏÖÎı¾½á¹¹»¯ÐÅÏ¢µÄÈÎÎñÊÇÓÐÒ»¶¨±ØÒªÐԵģ¬Èç¹ØÏµÒÀÀµÎÊÌâ¡£µ«¶ÔÓÚͨ³£µÄÈýÔª×éÈÎÎñ£¬ÒýÈëquestionÐèÒª¶ÔÔʼÎı¾½øÐжà´Î±àÂë²ÅÄܳéȡʵÌåºÍ¹ØÏµ£¬¼ÆË㸴ÔӶȽϸߡ£
6-7 Ƭ¶ÎÅÅÁУº Span-Level Model for Relation Extraction[7]
ÁªºÏ³éȡ˳Ðò£ºÆ¬¶ÎÅÅÁгéȡʵÌ壬ȻºóÌáȡʵÌå¶Ô½øÐйØÏµ·ÖÀࣻ
½«Æ¬¶ÎÅÅÁз½Ê½Éú³ÉµÄºòѡʵÌåspan£¬½øÐÐʵÌåÀàÐÍSoftMax·ÖÀࣻ¶ÔÓÚºòѡʵÌåspan²»ÎªNoneµÄʵÌåspan×é³ÉʵÌåpair½øÐйØÏµSoftMax·ÖÀࣻ
±ÊÕßÔÚǰÎĽéÉÜʵÌåÖØµþÎÊÌâʱ£¬ÒѾ½éÉÜÁËÕâÖÖ»ùÓÚÆ¬¶ÎÅÅÁеķ½Ê½£¬»ùÓÚÆ¬¶ÎÅÅÁеķ½Ê½[7]£¬ÏÔʾµÄÌáÈ¡ËùÓпÉÄܵᬶÎÅÅÁУ¬ÓÉÓÚÑ¡ÔñµÄÿһ¸öƬ¶Î¶¼ÊǶÀÁ¢µÄ£¬Òò´Ë¿ÉÒÔÖ±½ÓÌáÈ¡span-levelµÄÌØÕ÷È¥½â¾öÖØµþʵÌåÎÊÌâ¡£
ʵÌåspanµÄ±àÂë±íʾ£ºÔÚspan·¶Î§ÄÚ²ÉȡעÒâÁ¦»úÖÆÓë»ùÓÚÔʼÊäÈëµÄLSTM±àÂë½øÐн»»¥¡£
´æÔÚÎÊÌ⣺
¶ÔÓÚº¬T¸ötokenµÄÎı¾£¬ÀíÂÛÉϹ²ÓÐ [¹«Ê½] ÖÖÆ¬¶ÎÅÅÁУ¬¼ÆË㸴ÔӶȼ«¸ß¡£Èç¹ûÎı¾¹ý³¤£¬»á²úÉú´óÁ¿µÄ¸ºÑù±¾£¬ÔÚʵ¼ÊÖÐÐèÒªÏÞÖÆspan³¤¶È²¢ºÏÀíÏ÷¼õ¸ºÑù±¾¡£
½øÐйØÏµÅжÏʱ£¬Ò²»áÔì³ÉʵÌåÈßÓ࣬Ìá¸ß´íÎóÂÊ¡£
6-8 Ƭ¶ÎÅÅÁУºSpERT£ºSpan-based Joint Entity and Relation
Extraction with Transformer Pre-training [26]

SpERT
ÁªºÏ³éȡ˳Ðò£ºÔÚÊä³ö¶Ë½øÐÐÆ¬¶ÎÅÅÁнøÐÐʵÌå·ÖÀ࣬Ȼºó½øÐйØÏµ·ÖÀà¡£
Óë6-7[7]ÀàËÆ£¬µ«²ÉÈ¡BERT±àÂë±íʾ£¬ÔÚBERT×îºóÊä³öµÄhidden²ã¸ù¾ÝºòÑ¡µÄʵÌåspan½øÐÐʵÌå·ÖÀ࣬¹ýÂËʵÌåÀàÐÍΪNoneµÄƬ¶ÎÈ»ºó½øÐйØÏµ·ÖÀà¡£
½øÐйØÏµ·ÖÀàʱ£¬Èں϶àÖÖÌØÕ÷×éºÏ£º°üº¬ÊµÌåspanµÄpooling£¬ÊµÌåspan³¤¶È£¬ÊµÌåpairÖ®¼ätokenµÄpooling£»
´æÔÚÎÊÌ⣺
ËäÈ»»º½âÁËÆ¬¶ÎÅÅÁеĸ߸´ÔÓ¶ÈÎÊÌ⣬µ«¹ØÏµ·ÖÀàÈÔÓÐʵÌåÈßÓàÎÊÌâ¡£
Q7£º½éÉÜ»ùÓÚÁªºÏ½âÂëµÄÁªºÏ³éÈ¡·½·¨£¿
ÔÚQ6ÖеĻùÓÚ¹²Ïí²ÎÊýµÄÁªºÏ³éÈ¡µÄ·½·¨ÖУ¬²¢Ã»ÓÐÏÔʽµØ¿Ì»Á½¸öÈÎÎñÖ®¼äµÄ½»»¥£¬Í¬ÑùѵÁ·ºÍÍÆ¶ÏÈÔÈ»´æÔÚgap¡£
ΪÁ˼ÓÇ¿Á½¸ö×ÓÄ£ÐÍÖ®¼äµÄ½»»¥£¬Ò»Ð©ÁªºÏ½âÂëËã·¨±»Ìá³ö[16]£ºÎÄÏ×[27]Ìá³öʹÓÃÕûÊýÏßÐԹ滮£¨ILP£©¶ÔʵÌåÄ£Ðͺ͹ØÏµÄ£Ð͵ÄÔ¤²â½á¹û½øÐÐÇ¿ÖÆÔ¼Êø¡£ÎÄÏ×[28]ÀûÓÃÌõ¼þËæ»ú³¡£¨CRF£©Í¬Ê±½¨Ä£ÊµÌåºÍ¹ØÏµÄ£ÐÍ£¬²¢Í¨¹ýÎ¬ÌØ±È½âÂëËã·¨µÃµ½ÊµÌåºÍ¹ØÏµµÄÊä³ö½á¹û¡£ÎÄÏ×
[29]½«ÊµÌå¹ØÏµ³éÈ¡¿´ÎªÒ»¸ö½á¹¹»¯Ô¤²âÎÊÌ⣬²ÉÓýṹ»¯¸ÐÖª»úËã·¨£¬Éè¼ÆÁËÈ«¾ÖÌØÕ÷£¬²¢Ê¹Óü¯ÊøËÑË÷½øÐнüËÆÁªºÏ½âÂë¡£ÎÄÏ×[30]Ìá³öʹÓÃÈ«¾Ö¹éÒ»»¯£¨Global
Normalization£©½âÂëËã·¨¡£ÎÄÏ× [31] Õë¶ÔʵÌå¹ØÏµ³éÈ¡Éè¼ÆÁËÒ»Ì××ªÒÆÏµÍ³£¨Transition
System£©£¬´Ó¶øÊµÏÖÁªºÏʵÌå¹ØÏµ³éÈ¡¡£ÓÉÓÚÆª·ùÏÞÖÆ£¬¶ÔÉÏÊöÎÄÏ׸ÐÐËȤµÄ¶ÁÕß¿ÉÒÔÏêϸ²Î¿¼ÔÎÄ¡£
ÏÂÃæ±ÊÕß½éÉÜ3ÖÖÒ×ÓÚÓ¦ÓõÄͳһʵÌåºÍ¹ØÏµ±ê×¢¿ò¼ÜµÄÁªºÏ½âÂë·½·¨¡£
7-1 Joint extraction of entities and relations based
on a novel tagging scheme[32]

×ÜÌå±ê×¢¿ò¼Ü£º
ͳһÁËʵÌåºÍ¹ØÏµ±ê×¢¿ò¼Ü£¬Ö±½ÓÒÔ¹ØÏµ±êÇ©½øÐÐBIOES±ê×¢¡£headʵÌåÐòºÅΪ1£¬tailʵÌåÐòºÅΪ2£»
´æÔÚÎÊÌ⣺
²»ÄܹØÏµÖصþÎÊÌ⣬±ÈÈçÒ»¸öʵÌå´æÔÚÓÚ¶àÖÖ¹ØÏµÖеÄÇé¿ö¡£ÕâÊÇÒ»¸öÖÂÃüµÄbug¡£
7-2 Joint Extraction of Entities and Overlapping Relations
Using Position-Attentive Sequence Labeling [33]

×ÜÌå±ê×¢¿ò¼Ü£ºÈçÉÏͼËùʾ£¬¶ÔÓÚº¬n¸ötokenµÄ¾ä×Ó£¬¹²ÓÐn¸ö²»Í¬±ê×¢¿ò¼Ü¡£Ò²¾ÍÊǶÔÓÚÿһ¸öλÖõÄtoken¶¼½øÐÐÒ»´Î±ê×¢£¬ÎÞÂÛʵÌ廹ÊǹØÏµ¶¼²ÉÓÃBIES±ê×¢¡£
µ±p=5Ö¸ÏòµÚ5¸ötoken¡¸Trump¡¹Ê±£¬Æä¶ÔÓ¦µÄʵÌåΪ¡¸PER¡¹£¬´Ëʱp=5¶ÔÓ¦µÄ±êǩʵÌåÓС¸United
States¡¹¡¢¡¸Queens¡¹¡¢¡¸New York City ¡¹£¬·Ö±ð¶ÔÓ¦¹ØÏµ¡¸President
of¡¹¡¢¡¸ Born in¡¹¡¢¡¸Born in¡¹.
±¾ÖÊÉϽ«ÊµÌåºÍ¹ØÏµÈÚºÏΪһÌ壬¹²Í¬²ÉÓÃBIES±ê×¢£¬ÓÃCRF½âÂë¡£

ʵÌå¹ØÏµÌáȡʱ£¬¶Ôµ±Ç°Ö¸ÏòλÖõÄʵÌå²ÉÓÃposition attention
»úÖÆ½øÐÐʶ±ð¶ÔÓ¦µÄ¹ØÏµÊµÌ壬¸Ã»úÖÆÈÚºÏÁË position-aware ºÍ context-aware
±íʾ£ºÎªµ±Ç°Ö¸Ê¾µÄtokenλÖñàÂ룬 [¹«Ê½] ΪÉÏÏÂÎıàÂ룬 Ϊµ±Ç°½âÂëλÖõıàÂë¡£

´æÔÚÎÊÌ⣺¶ÔÒ»¸ö¾ä×Ó½øÐÐÁËn´ÎÖØ¸´±àÂ룬¸´ÔӶȸߣ¬
7-3 Joint extraction of entities and relations based
on a novel tagging scheme[34]

×ÜÌå±ê×¢¿ò¼Ü£ºÕâ¸ö·½·¨À´×ÔPaddlePaddle/Research£¬Ò²ÊǰٶÈ2020¹ØÏµ³éÈ¡µÄbaseline·½·¨£¬Í¬ÑùÒ²ÊÇͳһÁËʵÌåºÍ¹ØÏµµÄSPO±ê×¢¿ò¼Ü¡££¨SPOÎÊÌâ¿É²Î¿¼Ç°ÎĵÄ6-5£©
ʹÓ÷½·¨µÄÊÇtoken level µÄ¶àlabel·ÖÀ࣬¼´Ã¿Ò»¸ötoken¶ÔÓ¦¶à¸ölabel¡£
±ê×¢¿ò¼ÜÊ®·ÖÇÉÃÈçÉÏͼʾÀýÖÐÐγɵÄ2¸öspoÈýÔª×飬¡¸ÍõÑ©´¿-ÅäÒô-Ççö©¡¹ºÍ¡¸ÍõÑ©´¿-ÅäÒô-ºìÂ¥ÃΡ¹£¬´æÔÚÁ½¸ö¹ØÏµ¡¸ÅäÒô-ÈËÎºÍ¡¸ÅäÒô-×÷Æ·¡¹£¬¶àlabel±êÇ©¾ÍÒÔ¹ØÏµ±êÇ©½¨Á¢£º
¼ÙÉèÒ»¹²´æÔÚR¸ö¹ØÏµ£¬ÄÇlabelÒ»¹²Îª£¨2*R+2¸ö£©£¬Èç¹ûÊÇsubjectÖеĵÚÒ»¸ötoken£¬Ôò±ê¼ÇΪ¡¸B-S-¹ØÏµÃû³Æ¡¹£»Èç¹ûÊÇobjectÖеĵÚÒ»¸ötoken£¬Ôò±ê¼ÇΪ¡¸B-O-¹ØÏµÃû³Æ¡¹£»ÆäÓàµÄʵÌåtoken±ê¼ÇΪ¡¸I¡¹£¬²»Á¥ÊôÓÚʵÌåµÄtoken±ê¼ÇΪ¡¸O¡¹£»
Èç¶ÔÓÚsubjectÍõÑ©´¿ÖУ¬¡¸Íõ¡¹Á¥ÊôÓÚÁ½¸ö¡¸B-S-ÅäÒô-×÷Æ·¡¹ºÍ¡¸B-S-ÅäÒô-ÈËÎ£»ÆäÓàµÄ¡¸Ñ©¡¹¡¸´¿¡¹Óá¸I¡¹À´±ê×¢£»
Èç¶ÔÓÚobjectºìÂ¥ÃÎÖС¸ºì¡¹Á¥ÊôÓÚ¡¸B-O-ÅäÒô-×÷Æ·¡¹£»ÆäÓàµÄ¡¸Â¥¡¹¡¸ÃΡ¹Óá¸I¡¹À´±ê×¢£»
Èç¶ÔÓÚobjectÇçö©ÖС¸Ç硹Á¥ÊôÓÚ¡¸B-O-ÅäÒô-ÈËÎ£»ÆäÓàµÄ¡¸ö©¡¹Óá¸I¡¹À´±ê×¢£»
´æÔÚÎÊÌ⣺
ÉÏÊö±ê×¢¿ò¼Ü»¹ÊÇÎÞ·¨Ö±½Ó½â¾öһЩ°üº¬ÊµÌåÖØµþµÄ¹ØÏµ³éÈ¡£¿
È磺¡¶Ò¶Ê¥ÌÕÉ¢ÎÄÑ¡¼¯¡·ÖУ¬Ò¶Ê¥ÌÕ-×÷Æ·-Ò¶Ê¥ÌÕÉ¢ÎÄÑ¡¼¯£»
ÉÏÊö±ê×¢¿ò¼ÜÒ²ÎÞ·¨Ö±½Ó½â¾öÒ»¸ö¾ä×ÓÖеĶàÖØÍ¬Àà¹ØÏµ£º
È磬¡®ÕÅѧÓÑ¡¶ÎDZð¡·ÖܽÜÂס¶¾Õ»¨Ì¨¡·Áº¾²Èã¡¶ÎDZ𡷡¯µÈ£¬ÐèÒª¼ÓÈëºó´¦ÀíÂß¼¡£
×ܽ᣺ÉÏÊöͳһʵÌåºÍ¹ØÏµ±ê×¢¿ò¼ÜËäÈ»²»ÄÜÍêÈ«½â¾ö¹ØÏµÖصþµÈÎÊÌ⣬µ«ÔÚÌØ¶¨³¡¾°Ï£¬ÒýÈëһЩºó´¦Àí¹æÔò½øÐÐÔ¼Êø£¬ÕâÖÖ·½Ê½¼òµ¥Ã÷ÁË¡¢Ò×ÓÚµü´úά»¤¡£
Q8£ºÊµÌå¹ØÏµ³éÈ¡µÄÇ°ÑØ¼¼ÊõºÍÌôÕ½ÓÐÄÄЩ£¿ÈçºÎ½â¾öµÍ×ÊÔ´ºÍ¸´ÔÓÑù±¾ÏµÄʵÌå¹ØÏµ³éÈ¡£¿ÈçºÎÓ¦ÓÃͼÉñ¾ÍøÂ磿
ÔÚǰÎÄÖУ¬±ÊÕßÐðÊöÁËpipelineºÍÁªºÏ³éÈ¡ÖеÄһЩʵÌå¹ØÏµ³éÈ¡·½·¨£¬ÆäÖÐÃæÁÙµÄÌôÕ½£¬±ÊÕß³õ²½×ܽáÈçϲ¢¸ø³öÒ»µã½¨Ò飺
1¡¢¶ÔÓÚpipeline·½·¨ÖеÄNERÀ´Ëµ£º
ËäÈ»ºÜ¶à·½·¨ÒѾºÜÆÕ¼°£¬µ«¸üÐèÒª¹Ø×¢¸´ÔÓ³¡¾°ÏµÄʵÌåÖØµþÎÊÌ⣻´ËÍ⣬¶ÔÓÚNERÎÊÌâÆäʵӦÓúܹ㣬ÔںܶàÐÔÄÜÃô¸ÐµÄ³¡¾°Ï£¬Ê¹ÓÃÉî¶ÈѧϰµÄ·½·¨Ëƺõ²»ÄÜÂú×ãÒªÇó£¬Õâʱ¾ÍÐèÒªÎÒÃDzÉÈ¡¡¸´Êµä+¹æÔò¡¹µÄ·½·¨£¬ÀýÈ磺
¶ÔÓÚÒ½ÁƳ¡¾°ÖеĺܶàʵÌåÆçÒåÐÔ²¢²»Ç¿£¬¶ÔÉÏÏÂÎÄÒ²²»¹»Ãô¸Ð£¬Õâʱ¹¹½¨³öÒ»¸öÕë¶ÔÄ¿±êʵÌåµÄ´Ê±í¸üΪÓÐЧ¡£
¶ÔÓÚͨÓÃÁìÓòÖÐÆçÒåÐÔµÄʵÌ壬ÊÇ·ñ¿ÉÒÔ²ÉÓöàÖÖ·Ö´Ê·½Ê½ºÍ¾ä·¨·ÖÎöµÈÈںϵķ½·¨È¥Ñ°ÕÒʵÌå±ß½çÄØ£¿Õâ¶¼ÖµµÃÎÒÃǽøÒ»²½³¢ÊÔ¡£
´ËÍ⣬ӦÓýâ¾öNERµÄ·½·¨ÊÇ·ñ¿ÉÒÔ½â¾öһЩʼþ¶ÎÂäÇиîÎÊÌ⣬·½±ãÎÒÃǽ«¸´ÔÓÈÎÎñ½øÐвð½â¡£
2¡¢¶ÔÓÚpipeline·½·¨ÖеĹØÏµ·ÖÀàÀ´Ëµ£º
Ê×ÒªÎÊÌâÊÇÔõô½µµÍ¼ÆË㸴ÔÓ¶È£¬¹ØÏµ·ÖÀàʱ²»ÔÙ¶Ô¾ä×ÓÖØ¸´±àÂ룬¶øÊÇone-pass¡£
ÔÚµÍ×ÊÔ´³¡¾°Ï£¬²ÉȡԶ³Ì¼à¶½µÄ·½·¨È·Êµ¿ÉÒÔ×Ô¶¯½øÐÐÓïÁϹ¹½¨£¬µ«ÆäÖÐÕë¶ÔÑù±¾ÔëÒôµÄ½µÔë·½·¨ÊÇ·ñ»¹ÓÐÌáÉý¿Õ¼ä£¿½µÔë·½·¨ÄÜ·ñ×öµ½ÓëÄ£ÐÍÎ޹أ¬ÊÇ·ñ¿ÉÒÔ½è¼øÍ¼Ïñ·ÖÀàÖкÜÓÐЧµÄÖÃÐÅѧϰ[35]ÄØ£¿
´ËÍ⣬ԤѵÁ·ÓïÑÔÄ£ÐÍÈç´Ë»ð±¬£¬Õë¶Ô¹ØÏµ·ÖÀàÈÎÎñ£¬ÄÜ·ñÔÚԤѵÁ·½×¶ÎÒýÈë¸üÓÐЧµÄ¹ØÏµ·ÖÀàµÄÄ¿±êÄØ£¿ÈçǰÎÄÌáµ½µÄÎÄÏ×[13]¡£
3¡¢¶ÔÓÚÁªºÏ³éÈ¡ÈÎÎñÀ´Ëµ£º
ÄѵãÊÇÈçºÎ¼ÓǿʵÌåÄ£Ðͺ͹ØÏµÄ£ÐÍÖ®¼äµÄ½»»¥£¬Ôõô¶ÔÐèÒª¶Ô×ÓÄ£ÐÍÌØÕ÷µÄ·á¸»ÐÔÒÔ¼°ÁªºÏ½âÂëµÄ¾«È·ÐÔÖ®¼ä×öȨºâ£¿
´ËÍ⣬ºÜ¶à·½·¨ÔÙ½øÐÐʵÌå³éȡʱ²¢Ã»ÓÐÖ±½ÓÓõ½¹ØÏµµÄÐÅÏ¢£¬È»¶øÕâÖÖÐÅÏ¢ÊǺÜÖØÒªµÄ¡£ÐèÒªÒ»¸ö·½·¨¿ÉÒÔͬʱ¿¼ÂÇÒ»¸ö¾ä×ÓÖÐËùÓÐʵÌ塢ʵÌåÓë¹ØÏµ¡¢¹ØÏµÓë¹ØÏµÖ®¼äµÄ½»»¥¡£
ÒýÈëͼÉñ¾ÍøÂçÊÇ·ñÄܹ»½â¾ö¹ØÏµÓë¹ØÏµÖ®¼äµÄ½»»¥ÄØ£¿ÓÉÓÚÆª·ùÔÒò£¬±¾ÎIJ»ÔÙ׸Êö¡£¸ÐÐËȤµÄ¶ÁÕß¿ÉÒԲο¼ACL2019ÖеÄϵÁÐÎÄÏ×[36][37][38][39]¡£
4¡¢¶ÔÓÚµÍ×ÊÔ´ÎÊÌâºÍ¸´ÔÓÑù±¾ÎÊÌâÀ´Ëµ£º
ÔÚÁõÖªÔ¶ÀÏʦµÄ¡¶ÖªÊ¶Í¼Æ×´ÓÄÄÀïÀ´£ºÊµÌå¹ØÏµ³éÈ¡µÄÏÖ×´ÓëδÀ´¡·[40]Ò»ÎÄÖУ¬ÏêϸÐðÊöÁËÕâ·½ÃæµÄÎÊÌ⣺
¶ÔÓÚÉٴιØÏµÑ§Ï°ÎÊÌ⣺ËûÃÇÌá³öÁËFewRel 2.0[41]£¬ÔÚÔ°æÊý¾Ý¼¯FewRelµÄ»ù´¡ÉÏÔö¼ÓÁËÒÔÏÂÁ½´óÌôÕ½£ºÁìÓòÇ¨ÒÆ£¨domain
adaptation£©ºÍ¡°ÒÔÉ϶¼²»ÊÇ¡±¼ì²â£¨none-of-the-above detection£©¡£
¶ÔÓÚÎĵµ¼¶±ðµÄ¹ØÏµ³éÈ¡ÎÊÌ⣺Ìá³öÁËDocREDÊý¾Ý¼¯[42]£¬ÊÇÒ»¸ö´ó¹æÄ£µÄÈ˹¤±ê×¢µÄÎĵµ¼¶¹ØÏµ³éÈ¡Êý¾Ý¼¯£¬Îĵµ¼¶¹ØÏµ³éÈ¡ÈÎÎñÒªÇóÄ£Ð;ßÓÐÇ¿´óµÄģʽʶ±ð¡¢Âß¼ÍÆÀí¡¢Ö¸´úÍÆÀíºÍ³£Ê¶ÍÆÀíÄÜÁ¦[40]¡£ |