±à¼ÍƼö: |
±¾ÎĽ«ÏÈÌÖÂÛһЩͼÏñ´¦Àí£¬È»ºóÔÙ¼ÌÐø½éÉÜ¿ÉÒÔ·½±ãʹÓÃͼÏñ´¦ÀíµÄ²»Í¬Ó¦ÓóÌÐò/³¡¾°£¬Ï£Íû¶ÔÄúµÄѧϰÓÐËù°ïÖú¡£
±¾ÎÄÀ´×ÔÓÚtecdat
£¬ÓÉ»ðÁú¹ûÈí¼þAlice±à¼¡¢ÍƼö¡£ |
|
½éÉÜ
ÔÚ±¾½Ì³ÌÖУ¬ÎÒÃǽ«Ñ§Ï°ÈçºÎʹÓÃPythonÓïÑÔÖ´ÐÐͼÏñ´¦Àí¡£ÎÒÃDz»»á¾ÖÏÞÓÚµ¥¸ö¿â»ò¿ò¼Ü£»µ«ÊÇ£¬ÎÒÃǽ«×ʹÓõÄÊÇOpen
CV¿â¡£ÎÒÃǽ«ÏÈÌÖÂÛһЩͼÏñ´¦Àí£¬È»ºóÔÙ¼ÌÐø½éÉÜ¿ÉÒÔ·½±ãʹÓÃͼÏñ´¦ÀíµÄ²»Í¬Ó¦ÓóÌÐò/³¡¾°¡£
ʲôÊÇͼÏñ´¦Àí£¿
ÖØÒªµÄÊÇÒªÁ˽âͼÏñ´¦ÀíµÄÈ·Çк¬Ò壬ÒÔ¼°ÔÚÉîÈëÁ˽âͼÏñ´¦ÀíµÄ×÷ÓÃ֮ǰ£¬Í¼Ïñ´¦ÀíÔÚ´óͼÖеÄ×÷ÓÃÊÇʲô¡£Í¼Ïñ´¦Àí×î³£±»³ÆÎª¡°Êý×ÖͼÏñ´¦Àí¡±£¬¶ø¾³£Ê¹ÓõÄÁìÓòÊÇ¡°¼ÆËã»úÊÓ¾õ¡±¡£ÇëÎð»ìÏý¡£Í¼Ïñ´¦ÀíËã·¨ºÍ¼ÆËã»úÊÓ¾õ£¨CV£©Ëã·¨¶¼½«Í¼Ïñ×÷ΪÊäÈë¡£µ«ÊÇ£¬ÔÚͼÏñ´¦ÀíÖУ¬Êä³öÒ²ÊÇͼÏñ£¬¶øÔÚ¼ÆËã»úÊÓ¾õÖУ¬Êä³ö¿ÉÄÜÊÇÓйØÍ¼ÏñµÄÄ³Ð©ÌØÕ÷/ÐÅÏ¢¡£
ÎÒÃÇΪʲôÐèÒªËü£¿
ÎÒÃÇÊÕ¼¯»òÉú³ÉµÄÊý¾Ý´ó²¿·ÖÊÇÔʼÊý¾Ý£¬¼´ÓÉÓÚ¶àÖÖ¿ÉÄܵÄÔÒò£¬²»ÊʺÏÖ±½ÓÔÚÓ¦ÓóÌÐòÖÐʹÓá£Òò´Ë£¬ÎÒÃÇÐèÒªÏÈ¶ÔÆä½øÐзÖÎö£¬Ö´ÐбØÒªµÄÔ¤´¦Àí£¬È»ºóÔÙʹÓÃËü¡£
ÀýÈ磬¼ÙÉèÎÒÃÇÕýÔÚ³¢ÊÔ¹¹½¨cat·ÖÀàÆ÷¡£ÎÒÃǵijÌÐò½«Í¼Ïñ×÷ΪÊäÈ룬Ȼºó¸æËßÎÒÃÇͼÏñÊÇ·ñ°üº¬Ã¨¡£½¨Á¢¸Ã·ÖÀàÆ÷µÄµÚÒ»²½ÊÇÊÕ¼¯Êý°ÙÕÅèͼƬ¡£Ò»¸öÆÕ±éµÄÎÊÌâÊÇ£¬ÎÒÃÇץȡµÄËùÓÐͼƬ¶¼²»»á¾ßÓÐÏàͬµÄ³ß´ç/³ß´ç£¬Òò´ËÔÚ½«ËüÃÇÊäÈëÄ£ÐͽøÐÐѵÁ·Ö®Ç°£¬ÎÒÃÇÐèÒª½«ËùÓгߴçµ÷Õû/Ô¤´¦ÀíΪ±ê×¼³ß´ç¡£
ÕâÖ»ÊÇͼÏñ´¦Àí¶ÔÓÚÈκμÆËã»úÊÓ¾õÓ¦Óñز»¿ÉÉÙµÄÖÚ¶àÔÒòÖ®Ò»¡£
ÏȾöÌõ¼þ
ÔÚ¼ÌÐø½øÐÐ֮ǰ£¬ÈÃÎÒÃÇÌÖÂÛÒ»ÏÂÐèÒªÁ˽âµÄÄÚÈÝ£¬ÒÔ±ãÇáËɵØÑ§Ï°±¾½Ì³Ì¡£Ê×ÏÈ£¬ÄúÓ¦¸ÃÕÆÎÕÈκÎÓïÑԵĻù±¾±à³Ì֪ʶ¡£Æä´Î£¬ÄúÓ¦¸ÃÖªµÀʲôÊÇ»úÆ÷ѧϰÒÔ¼°ËüÈçºÎ¹¤×÷µÄ»ù´¡£¬ÒòΪ±¾ÎÄÖÐÎÒÃǽ«Ê¹ÓÃһЩ»úÆ÷ѧϰËã·¨½øÐÐͼÏñ´¦Àí¡£ÁíÍ⣬Èç¹ûÄúÔÚ¼ÌÐøÑ§Ï°±¾½Ì³Ì֮ǰ¶ÔOpen
CVÓÐÈκÎÁ˽â»ò»ù´¡ÖªÊ¶£¬Õ⽫¶ÔÄúÓÐËù°ïÖú¡£µ«Õâ²»ÊDZØÐèµÄ¡£
ΪÁË×ñѱ¾½Ì³Ì£¬ÄúÒ»¶¨ÒªÖªµÀµÄÒ»¼þÊÂÊÇͼÏñÔÚÄÚ´æÖеÄ׼ȷ±íʾ·½Ê½¡£Ã¿¸öͼÏñÓÉÒ»×éÏñËØ±íʾ£¬¼´ÏñËØÖµ¾ØÕó¡£¶ÔÓÚ»Ò¶ÈͼÏñ£¬ÏñËØÖµµÄ·¶Î§ÊÇ0µ½255£¬ËüÃÇ´ú±í¸ÃÏñËØµÄÇ¿¶È¡£ÀýÈ磬Èç¹ûÄú¾ßÓÐ20
x 20³ß´çµÄͼÏñ£¬Ôò½«ÒÔ20x20µÄ¾ØÕó£¨×ܹ²400¸öÏñËØÖµ£©±íʾ¡£
Èç¹ûÒª´¦Àí²ÊɫͼÏñ£¬ÔòÓ¦¸ÃÖªµÀËü½«¾ßÓÐÈý¸öͨµÀ-ºìÉ«£¬ÂÌÉ«ºÍÀ¶É«£¨RGB£©¡£Òò´Ë£¬µ¥¸öͼÏñ½«ÓÐÈý¸öÕâÑùµÄ¾ØÕó¡£
°²×°
×¢Ò⣺ÓÉÓÚÎÒÃǽ«Í¨¹ýPythonʹÓÃOpenCV£¬Òò´ËÒþº¬µÄÒªÇóÊÇÄúµÄ¹¤×÷Õ¾ÉÏÒѾ°²×°ÁËPython£¨°æ±¾3£©¡£
windows
$ pip install
opencv-python |
Æ»¹ûϵͳ
$ brew install
opencv3 --with-contrib --with-python3 |
Linux
$ sudo apt-get
install libopencv-dev python-opencv |
Òª¼ì²é°²×°ÊÇ·ñ³É¹¦£¬ÇëÔÚPython Shell»òÃüÁîÌáʾ·ûÖÐÔËÐÐÒÔÏÂÃüÁ
ÄúÓ¦¸ÃÖªµÀµÄһЩ»ù±¾ÖªÊ¶
ÔÚÎÒÃǼÌÐøÔÚÓ¦ÓóÌÐòÖÐʹÓÃͼÏñ´¦Àí֮ǰ£¬ÖØÒªµÄÊÇÒªÁ˽âÄÄÖÖ²Ù×÷ÊôÓÚ´ËÀ࣬ÒÔ¼°ÈçºÎ½øÐÐÕâЩ²Ù×÷¡£ÕâЩ²Ù×÷ÒÔ¼°ÆäËû²Ù×÷½«ÔÚÒÔºóµÄÓ¦ÓóÌÐòÖÐʹÓá£
¶ÔÓÚ±¾ÎÄ£¬ÎÒÃǽ«Ê¹ÓÃÒÔÏÂͼÏñ£º

×¢Ò⣺ΪÁËÔÚ±¾ÎÄÖÐÏÔʾͼÏñ£¬ÒѶÔͼÏñ½øÐÐÁËËõ·Å£¬µ«ÊÇÎÒÃÇʹÓõÄÔʼ´óСԼΪ1180x786¡£
Äú¿ÉÄÜÒѾעÒ⵽ͼÏñµ±Ç°ÊDzÊÉ«µÄ£¬ÕâÒâζ×ÅËüÓÉÈý¸öÑÕɫͨµÀ±íʾ£¬¼´ºìÉ«£¬ÂÌÉ«ºÍÀ¶É«¡£ÎÒÃǽ«Í¼Ïñת»»Îª»Ò¶ÈͼÏñ£¬²¢Ê¹ÓÃÏÂÃæµÄ´úÂ뽫ͼÏñ·ÖΪµ¥¶ÀµÄͨµÀ¡£
²éÕÒͼÏñϸ½Ú
ÔÚʹÓÃimread()º¯Êý¼ÓÔØÍ¼Ïñºó£¬ÎÒÃÇ¿ÉÒÔ¼ìË÷ÓйØÍ¼ÏñµÄһЩ¼òµ¥ÊôÐÔ£¬ÀýÈçÏñËØÊýºÍ³ß´ç£º
print("Image
Properties")
print("- Number of Pixels: " + str(img.size))
print("- Shape/Dimensions: " + str(img.shape)) |
Êä³ö£º
Image Properties
- Number of Pixels: 2782440
- Shape/Dimensions: (1180, 786, 3) |
½«Í¼Ïñ·Ö³Éµ¥¶ÀµÄͨµÀ
ÏÖÔÚ£¬ÎÒÃǽ«Ê¹ÓÃOpenCV½«Í¼Ïñ·ÖΪºìÉ«£¬ÂÌÉ«ºÍÀ¶É«·ÖÁ¿£¬ÏÔʾËüÃÇ£º
cv2_imshow(red)
# ÏÔʾºìɫͨµÀ
cv2_imshow(blue) #ÏÔʾÀ¶É«Í¨µÀ
cv2_imshow(green) #ÏÔʾÂÌɫͨµÀ
cv2_imshow(img_gs) # ÏÔʾ»ÒÉ«°æ±¾ |
Ϊ¼ò±ãÆð¼û£¬ÎÒÃÇÖ»ÏÔʾ»Ò¶ÈͼÏñ¡£
»Ò¶ÈͼÏñ£º

ͼÏñãÐÖµ
ãÐÖµµÄ¸ÅÄî·Ç³£¼òµ¥¡£ÈçÉÏÃæÔÚͼÏñ±íʾÖÐËùÌÖÂ۵ģ¬ÏñËØÖµ¿ÉÒÔÊÇ0µ½255Ö®¼äµÄÈκÎÖµ¡£¼ÙÉèÎÒÃÇÏ£Íû½«Í¼Ïñת»»Îª¶þ½øÖÆÍ¼Ïñ£¬¼´ÎªÏñËØ·ÖÅä0»ò1µÄÖµ¡£Îª´Ë£¬ÎÒÃÇ¿ÉÒÔÖ´ÐÐãÐÖµ»¯¡£ÀýÈ磬Èç¹ûãÐÖµ£¨T£©ÖµÎª125£¬ÔòËùÓÐÖµ´óÓÚ125µÄÏñËØ½«±»·ÖÅäֵΪ1£¬ËùÓÐֵСÓÚ»òµÈÓÚ¸ÃÖµµÄÏñËØ½«±»·ÖÅäֵΪ0¡£Í¨¹ý´úÂë»ñµÃ¸üºÃµÄÀí½â¡£
ÓÃÓÚãÐÖµµÄͼÏñ£º

import cv2 cv2_imshow(threshold) |
ÈçÄúËù¼û£¬ÔÚÉú³ÉµÄͼÏñÖУ¬ÒѾ½¨Á¢ÁËÁ½¸öÇøÓò£¬¼´ºÚÉ«ÇøÓò£¨ÏñËØÖµ0£©ºÍ°×É«ÇøÓò£¨ÏñËØÖµ1£©¡£ÊÂʵ֤Ã÷£¬ÎÒÃÇÉèÖõÄãÐÖµÕýºÃÔÚͼÏñµÄÖм䣬Õâ¾ÍÊÇΪʲôÔÚ´Ë´¦»®·ÖºÚ°×ÖµµÄÔÒò¡£
Ó¦ÓÃÁìÓò
££1£ºÈ¥³ýͼÏñÖеÄÔëµã
¼ÈÈ»ÄúÒѾ»ù±¾Á˽âÁËʲôÊÇͼÏñ´¦Àí¼°ÆäÓÃ;£¬ÄÇôÈÃÎÒÃǼÌÐøÑ§Ï°ËüµÄÒ»Ð©ÌØ¶¨Ó¦ÓóÌÐò¡£
ÔÚ´ó¶àÊýÇé¿öÏ£¬ÎÒÃÇÊÕ¼¯µÄÔʼÊý¾ÝÖÐÓÐÔëµã£¬¼´Ê¹Í¼ÏñÄÑÒÔ¸ÐÖªµÄ²»Á¼ÌØÕ÷¡£¾¡¹ÜÕâЩͼÏñ¿ÉÒÔÖ±½ÓÓÃÓÚÌØÕ÷ÌáÈ¡£¬µ«ÊÇËã·¨µÄ׼ȷÐÔ»áÊܵ½ºÜ´óÓ°Ïì¡£Õâ¾ÍÊÇΪʲôÔÚ½«Í¼Ïñ´¦Àí´«µÝ¸øË㷨֮ǰ¶ÔÆä½øÐÐͼÏñ´¦ÀíÒÔ»ñµÃ¸üºÃµÄ׼ȷÐÔµÄÔÒò¡£
ÔëÉùÓкܶ಻ͬµÄÀàÐÍ£¬ÀýÈç¸ß˹ÔëÉù£¬ºú½·ÔëÉùµÈ¡£ÎÒÃÇ¿ÉÒÔͨ¹ýÓ¦ÓÃÂ˾µÀ´È¥³ýͼÏñÖеÄÔëÉù£¬»òÕß½«ÔëÉù½µµ½×îµÍ£¬»òÕßÖÁÉÙ½«ÆäÓ°Ïì½µµ½×îµÍ¡£Â˲¨Æ÷Ò²ÓкܶàÑ¡Ôñ£¬Ã¿¸ö¶¼Óв»Í¬µÄÇ¿¶È£¬Òò´Ë¶ÔÓÚÌØ¶¨ÀàÐ͵ÄÔëÉùÀ´ËµÊÇ×î¼ÑÑ¡Ôñ¡£
ΪÁËÕýÈ·Àí½âÕâÒ»µã£¬ÎÒÃǽ«ÔÚÉÏÃæ¿¼ÂǹýµÄõ¹åͼÏñµÄ»Ò¶È°æ±¾ÖÐÌí¼Ó¡°Ñκͺú½·¡±ÔëÉù£¬È»ºó³¢ÊÔʹÓò»Í¬µÄÂ˾µ´ÓàÐÔÓµÄͼÏñÖÐÈ¥³ý¸ÃÔëÉù£¬È»ºó¿´¿´ÄĸöÊÇ×îºÃµÄ-ÊʺÏÄÇÖÖÀàÐÍ¡£
import numpy as np
cv2.imwrite('sp_05.jpg', sp_05) |
ºÃ°É£¬ÎÒÃÇÔÚõ¹åͼÏñÖÐÌí¼ÓÁËÔëµã£¬ÏÖÔÚ¿´ÆðÀ´ÊÇÕâÑù£º
àÐÔÓµÄͼÏñ£º

ÏÖÔÚÈÃÎÒÃÇÔÚÆäÉÏÓ¦Óò»Í¬µÄÂ˲¨Æ÷£¬²¢¼ÇÏÂÎÒÃǵĹ۲ì½á¹û£¬¼´Ã¿¸öÂ˲¨Æ÷½µµÍÔëÉùµÄ³Ì¶È¡£
´øÓÐÈñ»¯Äں˵ÄËãÊõÂ˲¨Æ÷
# ¶ÔÔëÒôͼÏñ½øÐÐÂ˲¨
sharpened_img = cv2.filter2D(sp_05, -1, kernel_sharpening)
cv2_imshow(sharpened_img) |
ͨ¹ý¶Ô´øÓÐÔëÉùµÄͼÏñÓ¦ÓÃËãÊõÂ˲¨Æ÷£¬Éú³ÉµÄͼÏñÈçÏÂËùʾ¡£ÓëÔʼ»Ò¶ÈͼÏñ½øÐбȽϺó£¬ÎÒÃÇ¿ÉÒÔ¿´µ½ËüʹͼÏñÁÁ¶È¹ý¸ß£¬Ò²ÎÞ·¨Í»³öõ¹åÉϵÄÁÁµã¡£Òò´Ë£¬¿ÉÒԵóö½áÂÛ£¬ËãÊõÂ˲¨Æ÷ÎÞ·¨È¥³ýÔëÉù¡£
ËãÊõÂ˲¨Æ÷Êä³ö£º

ÖеãÂ˲¨Æ÷
print("\n\n---Effects
on S&P Noise Image with Probability 0.5---\n\n")
midpoint(sp_05) |
½«ÖеãÂ˾µÓ¦Óõ½ÔëÉùµÄͼÏñÉϵĽá¹ûͼÏñÈçÏÂËùʾ¡£ÓëÔʼ»Ò¶ÈͼÏñ½øÐбȽϺó£¬ÎÒÃÇ¿ÉÒÔ¿´µ½£¬¾ÍÏñÉÏÃæµÄºË·½·¨Ò»Ñù£¬Í¼ÏñÁÁ¶È¹ý¸ß¡£µ«ÊÇ£¬Ëü¿ÉÒÔÍ»³öõ¹åÉϵÄÁÁµã¡£Òò´Ë£¬¿ÉÒÔ˵ËüÊDZÈËãÊõÂ˲¨Æ÷¸üºÃµÄÑ¡Ôñ£¬µ«ÈÔÈ»²»ÄÜÍêÈ«»Ö¸´ÔʼͼÏñ¡£
гг²¨¾ùÖµÂ˲¨Æ÷
×¢Ò⣺¿ÉÒÔÔÚÍøÉÏÇáËÉÕÒµ½ÕâЩ¹ýÂËÆ÷µÄʵÏÖ£¬²¢ÇÒËüÃǵŤ×÷ÔÀí³¬³öÁ˱¾½Ì³ÌµÄ·¶Î§¡£ÎÒÃǽ«´Ó³éÏó/¸ü¸ßµÄ²ã´ÎÀ´Ñо¿Ó¦ÓóÌÐò¡£
\
print("\n\n--- Effects on S&P Noise Image
with Probability 0.5 ---\n\n")
cv2_imshow(contraharmonic_mean(sp_05, (3,3), 0.5)) |
ÏÂÃæÏÔʾÁËÔÚÔëÉù϶ÔͼÏñÓ¦ÓÃContraharmonic Mean Filter ËùµÃµ½µÄͼÏñ¡£ÓëÔʼ»Ò¶ÈͼÏñ½øÐбȽϺó£¬ÎÒÃÇ¿ÉÒÔ¿´µ½ËüÒѸ´ÖÆÁ˼¸ºõÓëÔʼͼÏñÍêÈ«ÏàͬµÄͼÏñ¡£ÆäÇ¿¶È/ÁÁ¶È¼¶±ðÏàͬ£¬²¢ÇÒҲͻ³öÁËõ¹åÉϵÄÁÁµã¡£Òò´Ë£¬ÎÒÃÇ¿ÉÒԵóö½áÂÛ£¬¶Ôг²¨¾ùÖµÂ˲¨Æ÷ÔÚ´¦ÀíÑκͺú½·ÔëÉù·½Ãæ·Ç³£ÓÐЧ¡£
¼ÈÈ»ÎÒÃÇÒѾÕÒµ½ÁË´ÓàÐÔÓµÄͼÏñÖлָ´ÔʼͼÏñµÄ×î¼Ñ¹ýÂËÆ÷£¬ÄÇôÎÒÃÇ¿ÉÒÔ¼ÌÐøÏÂÒ»¸öÓ¦ÓóÌÐòÁË¡£
2£ºÊ¹ÓÃCanny Edge Detector½øÐбßÔµ¼ì²â
µ½Ä¿Ç°ÎªÖ¹£¬ÎÒÃÇÒ»Ö±ÔÚʹÓõÄõ¹åͼÏñ¾ßÓк㶨µÄ±³¾°£¬¼´ºÚÉ«£¬Òò´Ë£¬¶ÔÓÚ¸ÃÓ¦ÓóÌÐò£¬ÎÒÃǽ«Ê¹Óò»Í¬µÄͼÏñÒÔ¸üºÃµØÏÔʾËã·¨µÄ¹¦ÄÜ¡£ÔÒòÊÇÈç¹û±³¾°ºã¶¨£¬Ôò±ßÔµ¼ì²âÈÎÎñ½«±äµÃ·Ç³£¼òµ¥£¬ÎÒÃDz»Ï£ÍûÕâÑù×ö¡£
ÎÒÃÇÔÚ±¾½Ì³ÌµÄÇ°ÃæÌÖÂÛÁËcat·ÖÀàÆ÷£¬ÈÃÎÒÃÇÏòǰ¿´Õâ¸öʾÀý£¬¿´¿´Í¼Ïñ´¦ÀíÈçºÎÔÚÆäÖз¢»Ó²»¿É»òȱµÄ×÷Óá£
ÔÚ·ÖÀàËã·¨ÖУ¬Ê×ÏÈ»áɨÃèͼÏñÖеġ°¶ÔÏó¡±£¬¼´£¬µ±ÄúÊäÈëͼÏñʱ£¬Ëã·¨»áÔÚ¸ÃͼÏñÖÐÕÒµ½ËùÓжÔÏó£¬È»ºó½«ËüÃÇÓëÄúÒª²éÕҵĶÔÏóµÄÌØÕ÷½øÐбȽϡ£Èç¹ûÊÇè·ÖÀàÆ÷£¬Ëü½«¶ÔͼÏñÖÐÕÒµ½µÄËùÓжÔÏóÓëèͼÏñµÄÌØÕ÷½øÐбȽϣ¬Èç¹ûÕÒµ½Æ¥ÅäÏËü½«¸æËßÎÒÃÇÊäÈëͼÏñ°üº¬Ã¨¡£
ÓÉÓÚÎÒÃÇÒÔcat·ÖÀàÆ÷ΪÀý£¬Òò´Ë¹«Æ½µØÊ¹ÓÃcatͼÏñÊǹ«Æ½µÄ¡£ÏÂÃæÊÇÎÒÃǽ«Ê¹ÓõÄͼÏñ£º
ÓÃÓÚ±ßÔµ¼ì²âµÄͼÏñ£º

import cv2
import numpy as np
from matplotlib import pyplot as plt
#ÏÔʾÁ½¸öͼƬ
plt.show() |
±ßÔµ¼ì²âÊä³ö£º

ÈçÄúËù¼û£¬Í¼ÏñÖаüº¬¶ÔÏóµÄ²¿·Ö£¨ÔÚÕâÖÖÇé¿öÏÂÊÇ裩ÒÑͨ¹ý±ßÔµ¼ì²âµãµ½/·Ö¿ªÁË¡£ÏÖÔÚÄú±ØÐëÒªÖªµÀ£¬Ê²Ã´ÊÇCanny
Edge Detector£¬ËüÊÇÈçºÎʵÏֵģ¿ÏÖÔÚÈÃÎÒÃÇÌÖÂÛһϡ£
ÒªÀí½âÉÏÊöÄÚÈÝ£¬ÐèÒªÌÖÂÛÈý¸ö¹Ø¼ü²½Öè¡£Ê×ÏÈ£¬ËüÒÔÓëÎÒÃÇ֮ǰÌÖÂÛµÄÏàËÆ·½Ê½¶ÔͼÏñÖ´ÐнµÔë¡£Æä´Î£¬ËüÔÚÿ¸öÏñËØ´¦Ê¹ÓÃÒ»½×µ¼ÊýÀ´²éÕÒ±ßÔµ¡£Æä±³ºóµÄÂß¼ÊÇ´æÔÚ±ßÔµµÄµã´¦£¬Ç¿¶È»áͻȻ±ä»¯£¬Õâ»áµ¼ÖÂÒ»½×µ¼ÊýµÄÖµ³öÏÖ¼â·å£¬´Ó¶øÊ¹¸ÃÏñËØ³ÉΪ¡°±ßÔµÏñËØ¡±¡£
×îºó£¬ËüÖ´ÐдÅÖÍÃÅÏÞ£»ÉÏÃæÎÒÃÇ˵¹ý£¬±ßÉϵÄÒ»½×µ¼ÊýµÄÖµÓÐÒ»¸ö·åÖµ£¬µ«ÊÇÎÒÃÇûÓÐ˵Ã÷·åÖµÐèÒª¶à¸ß²ÅÄܽ«Æä·ÖÀàΪ±ßÔµ-Õâ³ÆÎªãÐÖµ£¡
ÔÚ±¾½Ì³ÌµÄÇ°Ãæ£¬ÎÒÃÇÌÖÂÛÁ˼òµ¥µÄãÐÖµ»¯¡£´ÅÖÍãÐÖµÊǶԴ˵ĸĽø£¬ËüʹÓÃÁ½¸öãÐÖµ¶ø²»ÊÇÒ»¸ö¡£Æä±³ºóµÄÔÒòÊÇ£¬Èç¹ûãÐֵ̫¸ß£¬ÎÒÃÇ¿ÉÄÜ»á´í¹ýһЩʵ¼Ê±ßÔµ£¨Õ渺ֵ£©£¬¶øÈç¹ûãÐֵ̫µÍ£¬ÎÒÃÇ»áµÃµ½ºÜ¶à¹éÀàΪʵ¼ÊÉϲ»ÊDZßÔµµÄ±ßÔµ£¨¼ÙÕýÖµ£©µÄµã¡££©¡£½«Ò»¸öãÐÖµÉèÖÃΪ¸ß£¬½«Ò»¸öãÐÖµÉèÖÃΪµÍ¡£ËùÓиßÓÚ¡°¸ßãÐÖµ¡±µÄµã¶¼±»±êʶΪ±ßÔµ£¬È»ºóÆÀ¹ÀËùÓиßÓÚµÍãÐÖµµ«µÍÓÚ¸ßãÐÖµµÄµã£»±»±êʶΪ±ßµÄµã¸½½ü»òÓëÖ®ÏàÁڵĵãÒ²±»±êʶΪ±ß£¬ÆäÓಿ·Ö±»¶ªÆú¡£
ÕâЩÊÇCanny Edge DetectorËã·¨ÓÃÓÚʶ±ðͼÏñ±ßÔµµÄ»ù±¾¸ÅÄî/·½·¨¡£
½áÂÛ
ÔÚ±¾ÎÄÖУ¬ÎÒÃÇѧϰÁËÈçºÎÔÚWindows£¬MacOSºÍLinuxµÈ²»Í¬Æ½Ì¨Éϰ²×°OpenCV£¨ÓÃÓÚPythonͼÏñ´¦ÀíµÄ×îÁ÷ÐеĿ⣩£¬ÒÔ¼°ÈçºÎÑéÖ¤°²×°ÊÇ·ñ³É¹¦¡£
ÎÒÃǼÌÐøÌÖÂÛÁËʲôÊÇͼÏñ´¦Àí¼°ÆäÔÚ»úÆ÷ѧϰµÄ¼ÆËã»úÊÓ¾õÁìÓòÖеÄÓÃ;¡£ÎÒÃÇÌÖÂÛÁËһЩ³£¼ûµÄÔëÉùÀàÐÍ£¬ÒÔ¼°ÈçºÎÔÚÓ¦ÓóÌÐòÖÐʹÓÃͼÏñ֮ǰʹÓò»Í¬µÄÂ˾µ½«Æä´ÓͼÏñÖÐÈ¥³ý¡£
´ËÍ⣬ÎÒÃÇÁ˽âÁËͼÏñ´¦ÀíÈçºÎÔÚÖîÈç¡°¶ÔÏó¼ì²â¡±»ò¡°·ÖÀࡱ֮ÀàµÄ¸ß¶ËÓ¦ÓÃÖз¢»Ó²»¿É»òȱµÄ×÷Óᣠ|