| ±à¼ÍƼö: |
±¾ÎÄÄÚÈݰüÀ¨£ºÒì³£¼ì²âµÄ¼ÛÉÜ£¬Òì³£¼ì²âµÄÓÃÀý£¬¹ÂÁ¢ÉÁÖÊÇʲô£¬ÓùÂÁ¢ÉÁÖ½øÐÐÒì³£¼ì²â£¬ÓÃ
Python ʵÏÖ¡£
±¾ÎÄÑ¡×Ôblog.paperspace£¬ÓÉ»ðÁú¹ûÈí¼þAnna±à¼¡¢ÍƼö¡£ |
|
Òì³£¼ì²â¿´ËÆÊÇ»úÆ÷ѧϰÖÐÒ»¸öÓÐЩÄѶȵÄÎÊÌ⣬µ«²ÉÓúÏÊʵÄËã·¨Ò²¿ÉÒԺܺýâ¾ö¡£±¾ÎĽéÉÜÁ˹ÂÁ¢ÉÁÖ£¨isolation
forest£©Ëã·¨£¬Í¨¹ý½éÉÜÔÀíºÍ´úÂë½ÌÄã¾¾³öÊý¾Ý¼¯ÖеÄÄÇЩÒì³£Öµ¡£
´ÓÒøÐÐÆÛÕ©µ½Ô¤·ÀÐԵĻúÆ÷ά»¤£¬Òì³£¼ì²âÊÇ»úÆ÷ѧϰÖзdz£ÓÐЧÇÒÆÕ±éµÄÓ¦Óá£ÔÚ¸ÃÈÎÎñÖУ¬¹ÂÁ¢ÉÁÖËã·¨ÊǼòµ¥¶øÓÐЧµÄÑ¡Ôñ¡£
Òì³£¼ì²â¼ò½é
ÀëȺֵÊÇÔÚ¸ø¶¨Êý¾Ý¼¯ÖУ¬ÓëÆäËûÊý¾ÝµãÏÔÖø²»Í¬µÄÊý¾Ýµã¡£
Òì³£¼ì²âÊÇÕÒ³öÊý¾ÝÖÐÀëȺֵ£¨ºÍ´ó¶àÊýÊý¾ÝµãÏÔÖø²»Í¬µÄÊý¾Ýµã£©µÄ¹ý³Ì¡£
ÕæÊµÊÀ½çÖеĴóÐÍÊý¾Ý¼¯µÄģʽ¿ÉÄܷdz£¸´ÔÓ£¬ºÜÄÑͨ¹ý²é¿´Êý¾Ý¾Í·¢ÏÖÆäģʽ¡£Õâ¾ÍÊÇΪʲôÒì³£¼ì²âµÄÑо¿ÊÇ»úÆ÷ѧϰÖм«ÆäÖØÒªµÄÓ¦Óá£
±¾ÎÄÒªÓùÂÁ¢ÉÁÖʵÏÖÒì³£¼ì²â¡£ÎÒÃÇÓÐÒ»¸ö¼òµ¥µÄ¹¤×ÊÊý¾Ý¼¯£¬ÆäÖÐһЩ¹¤×ÊÊÇÒì³£µÄ¡£Ä¿±êÊÇÒªÕÒµ½ÕâЩÒì³£Öµ¡£¿ÉÒÔÏëÏó³É£¬¹«Ë¾ÖеÄһЩ¹ÍÔ±ÕõÁËÒ»´ó±Ê²»Í¬Ñ°³£µÄ¾Þ¶îÊÕÈ룬Õâ¿ÉÄÜÒâζ×Å´æÔÚ²»µÀµÂµÄÐÐΪ¡£
ÔÚ¼ÌÐøÊµÏÖ֮ǰ£¬ÏÈÌÖÂÛһЩÒì³£¼ì²âµÄÓÃÀý¡£
Òì³£¼ì²âÓÃÀý
Òì³£¼ì²âÔÚÒµ½çÖÐÓ¦Óù㷺¡£ÏÂÃæ½éÉÜÒ»³¡³£¼ûµÄÓÃÀý£º
ÒøÐУº·¢ÏÖ²»Õý³£µÄ¸ß¶î´æ¿î¡£Ã¿¸öÕË»§³ÖÓÐÈËͨ³£¶¼Óй̶¨µÄ´æ¿îģʽ¡£Èç¹ûÕâ¸öģʽ³öÏÖÁËÒì³£Öµ£¬ÄÇÃ´ÒøÐоÍÒª¼ì²â²¢·ÖÎöÕâÖÖÒì³££¨±ÈÈçÏ´Ç®£©¡£
½ðÈÚ£º·¢ÏÖÆÛÕ©ÐÔ¹ºÂòµÄģʽ¡£Ã¿¸öÈËͨ³£¶¼Óй̶¨µÄ¹ºÂòģʽ¡£Èç¹ûÕâÖÖģʽ³öÏÖÁËÒì³£Öµ£¬ÒøÐÐÐèÒª¼ì²â³öÕâÖÖÒì³££¬´Ó¶ø·ÖÎöÆäDZÔ򵀮ÛÕ©ÐÐΪ¡£
ÎÀÉú±£½¡£º¼ì²âÆÛÕ©ÐÔ±£ÏÕµÄË÷ÅâºÍ¸¶¿î¡£
ÖÆÔìÒµ£º¿ÉÒÔ¼à²â»úÆ÷µÄÒì³£ÐÐΪ£¬´Ó¶ø¿ØÖƳɱ¾¡£Ðí¶à¹«Ë¾³ÖÐø¼àÊÓ×Å»úÆ÷µÄÊäÈëºÍÊä³ö²ÎÊý¡£ÖÚËùÖÜÖª£¬ÔÚ³öÏÖ¹ÊÕÏ֮ǰ£¬»úÆ÷µÄÊäÈë»òÊä³ö²ÎÊý»áÓÐÒì³£¡£´ÓÔ¤·ÀÐÔά»¤µÄ½Ç¶È³ö·¢£¬ÐèÒª¶Ô»úÆ÷½øÐгÖÐø¼à¿Ø¡£
ÍøÂ磺¼ì²âÍøÂçÈëÇÖ¡£ÈκζÔÍ⿪·ÅµÄÍøÂç¶¼ÃæÁÙÕâÑùµÄÍþв¡£¼à¿ØÍøÂçÖеÄÒì³£»î¶¯£¬¿ÉÒÔ¼°Ôç·ÀÖ¹ÈëÇÖ¡£
½Ó×ÅÁ˽âһϻúÆ÷ѧϰÖеĹÂÁ¢ÉÁÖËã·¨¡£
ʲôÊǹÂÁ¢ÉÁÖ
¹ÂÁ¢ÉÁÖÊÇÓÃÓÚÒì³£¼ì²âµÄ»úÆ÷ѧϰËã·¨¡£ÕâÊÇÒ»ÖÖÎ޼ලѧϰËã·¨£¬Í¨¹ý¸ôÀëÊý¾ÝÖеÄÀëȺֵʶ±ðÒì³£¡£
¹ÂÁ¢ÉÁÖÊÇ»ùÓÚ¾ö²ßÊ÷µÄËã·¨¡£´Ó¸ø¶¨µÄÌØÕ÷¼¯ºÏÖÐËæ»úÑ¡ÔñÌØÕ÷£¬È»ºóÔÚÌØÕ÷µÄ×î´óÖµºÍ×îСֵ¼äËæ»úÑ¡ÔñÒ»¸ö·Ö¸îÖµ£¬À´¸ôÀëÀëȺֵ¡£ÕâÖÖÌØÕ÷µÄËæ»ú»®·Ö»áʹÒì³£Êý¾ÝµãÔÚÊ÷ÖÐÉú³ÉµÄ·¾¶¸ü¶Ì£¬´Ó¶ø½«ËüÃÇºÍÆäËûÊý¾Ý·Ö¿ª¡£
Ò»°ã¶øÑÔ£¬Òì³£¼ì²âµÄµÚÒ»²½Êǹ¹Ô졸Õý³£¡¹ÄÚÈÝ£¬È»ºó±¨¸æÈκβ»ÄÜÊÓΪÕý³£µÄÒì³£ÄÚÈÝ¡£µ«¹ÂÁ¢ÉÁÖËã·¨²»Í¬ÓÚÕâÒ»ÔÀí£¬Ê×ÏÈËü²»»á¶¨Ò塸Õý³£¡¹ÐÐΪ£¬¶øÇÒҲûÓмÆËã»ùÓÚµãµÄ¾àÀë¡£
Ò»ÈçÆäÃû£¬¹ÂÁ¢ÉÁÖ²»Í¨¹ýÏÔʽµØ¸ôÀëÒì³££¬Ëü¸ôÀëÁËÊý¾Ý¼¯ÖеÄÒì³£µã¡£
¹ÂÁ¢ÉÁÖµÄÔÀíÊÇ£ºÒì³£ÖµÊÇÉÙÁ¿ÇÒ²»Í¬µÄ¹Û²âÖµ£¬Òò´Ë¸üÒ×ÓÚʶ±ð¡£¹ÂÁ¢ÉÁÖ¼¯³ÉÁ˹ÂÁ¢Ê÷£¬ÔÚ¸ø¶¨µÄÊý¾ÝµãÖиôÀëÒì³£Öµ¡£
¹ÂÁ¢ÉÁÖͨ¹ýËæ»úÑ¡ÔñÌØÕ÷£¬È»ºóËæ»úÑ¡ÔñÌØÕ÷µÄ·Ö¸îÖµ£¬µÝ¹éµØÉú³ÉÊý¾Ý¼¯µÄ·ÖÇø¡£ºÍÊý¾Ý¼¯ÖС¸Õý³£¡¹µÄµãÏà±È£¬Òª¸ôÀëµÄÒì³£ÖµËùÐèµÄËæ»ú·ÖÇø¸üÉÙ£¬Òò´ËÒì³£ÖµÊÇÊ÷Öз¾¶¸ü¶ÌµÄµã£¬Â·¾¶³¤¶ÈÊÇ´Ó¸ù½Úµã¾¹ýµÄ±ßÊý¡£
ÓùÂÁ¢ÉÁÖ£¬²»½ö¿ÉÒÔ¸ü¿ìµØ¼ì²âÒì³££¬»¹ÐèÒª¸üÉÙµÄÄÚ´æ¡£
¹ÂÁ¢ÉÁÖ¸ôÀëÊý¾ÝµãÖеÄÒì³£Öµ£¬¶ø²»ÊÇ·ÖÎöÕý³£µÄÊý¾Ýµã¡£ºÍÆäËûÕý³£µÄÊý¾ÝµãÏà±È£¬Òì³£Êý¾ÝµãµÄÊ÷·¾¶¸ü¶Ì£¬Òò´ËÔÚ¹ÂÁ¢ÉÁÖÖеÄÊ÷²»ÐèҪ̫´óµÄÉî¶È£¬ËùÒÔ¿ÉÒÔÓøüСµÄ
max_depth Öµ£¬´Ó¶ø½µµÍÄÚ´æÐèÇó¡£
ÕâÒ»Ëã·¨Ò²ÊÊÓÃÓÚСÊý¾Ý¼¯¡£
½Ó×ÅÎÒÃǶÔÊý¾Ý×öһЩ̽Ë÷ÐÔ·ÖÎö£¬ÒÔÁË½â¸ø¶¨Êý¾ÝµÄÏà¹ØÐÅÏ¢¡£
̽Ë÷ÐÔÊý¾Ý·ÖÎö
Ïȵ¼ÈëËùÐèµÄ¿â¡£µ¼Èë numpy¡¢pandas¡¢seaborn ºÍ
matplotlib¡£´ËÍ⻹Ҫ´Ó sklearn.ensemble Öе¼Èë¹ÂÁ¢ÉÁÖ£¨IsolationForest£©¡£
import numpy
as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest |
µ¼Èë¿âºó£¬Òª½« csv Êý¾Ý¶ÁȡΪ padas Êý¾Ý¿ò£¬¼ì²éǰʮÐÐÊý¾Ý¡£
±¾ÎÄËùÓÃÊý¾ÝÊDz»Í¬Ö°ÒµµÄÈ˵ÄÄêн£¨ÃÀÔª£©¡£Êý¾ÝÖÐÓÐһЩÒì³£Öµ£¨±ÈÈ繤×ÊÌ«¸ß»òÌ«µÍ£©£¬Ä¿±êÊǼì²âÕâЩÒì³£Öµ¡£
df = pd.read_csv('salary.csv')
df.head(10) |

Êý¾Ý¼¯±íÍ·¡£
ΪÁ˸üºÃµØÁ˽âÊý¾Ý£¬½«¹¤×ÊÊý¾Ý»æÖƳÉСÌáÇÙͼ£¬ÈçÏÂͼËùʾ¡£Ð¡ÌáÇÙͼÊÇÒ»ÖÖ»æÖÆÊýÖµÊý¾ÝµÄ·½·¨¡£
ͨ³££¬Ð¡ÌáÇÙͼ°üº¬ÏäͼÖÐËùÓÐÊý¾Ý¡ª¡ªÖÐλÊýµÄ±ê¼ÇºÍËÄ·Öλ¾àµÄ¿ò»ò±ê¼Ç£¬Èç¹ûÑù±¾ÊýÁ¿²»Ì«´ó£¬Í¼ÖпÉÄÜ»¹°üÀ¨ËùÓÐÑù±¾µã¡£

¹¤×ʵÄСÌáÇÙͼ¡£
ΪÁ˸üºÃµØÁ˽âÀëȺֵ£¬¿ÉÄÜ»¹»á²é¿´Ïäͼ¡£Ïäͼһ°ãÒ²³ÆÎªÏäÏßͼ¡£ÏäͼÖеÄÏä×ÓÏÔʾÁËÊý¾Ý¼¯µÄËÄ·ÖλÊý£¬Ïß±íʾʣÓàµÄ·Ö²¼¡£Ïß²»±íʾȷ¶¨ÎªÀëȺֵµÄµã¡£
ÎÒÃÇͨ¹ý interquartile range, µÄº¯Êý¼ì²âÀëȺֵ¡£ÔÚͳ¼ÆÊý¾ÝÖУ¬interquartile
range£¬£¨Ò²³ÆÎª midspread »ò middle 50%£©ÊǶÈÁ¿Í³¼ÆÑ§·ÖÉ¢¶ÈµÄÖ¸±ê£¬µÈÓÚµÚ
75% ¸öÊýºÍµÚ 25% ¸öÊýµÄ²î¡£

¹¤×ʵÄÏäͼ£¬Ö¸Ê¾ÁËÓÒ²àµÄÁ½¸öÀëȺֵ¡£
Íê³ÉÊý¾ÝµÄ̽Ë÷ÐÔ·ÖÎöºó£¬¾Í¿ÉÒÔ¶¨Òå²¢ÄâºÏÄ£ÐÍÁË¡£
¶¨Òå¼°ÄâºÏÄ£ÐÍ
ÎÒÃÇÒª´´½¨Ò»¸öÄ£ÐͱäÁ¿£¬²¢ÊµÀý»¯ IsolationForest£¨¹ÂÁ¢ÉÁÖ£©Àà¡£½«ÕâËĸö²ÎÊýµÄÖµ´«µÝµ½¹ÂÁ¢ÉÁÖ·½·¨ÖУ¬ÈçÏÂËùʾ¡£
ÆÀ¹ÀÆ÷ÊýÁ¿£ºn_estimators ±íʾ¼¯³ÉµÄ»ùÆÀ¹ÀÆ÷»òÊ÷µÄÊýÁ¿£¬¼´¹ÂÁ¢ÉÁÖÖÐÊ÷µÄÊýÁ¿¡£ÕâÊÇÒ»¸ö¿Éµ÷µÄÕûÊý²ÎÊý£¬Ä¬ÈÏÖµÊÇ
100£»
×î´óÑù±¾£ºmax_samples ÊÇѵÁ·Ã¿¸ö»ùÆÀ¹ÀÆ÷µÄÑù±¾µÄÊýÁ¿¡£Èç¹û max_samples ±ÈÑù±¾Á¿¸ü´ó£¬ÄÇô»áÓÃËùÓÃÑù±¾ÑµÁ·ËùÓÐÊ÷¡£max_samples
µÄĬÈÏÖµÊÇ¡ºauto¡»¡£Èç¹ûֵΪ¡ºauto¡»µÄ»°£¬ÄÇô max_samples=min(256, n_samples)£»
Êý¾ÝÎÛȾÎÊÌ⣺Ëã·¨¶ÔÕâ¸ö²ÎÊý·Ç³£Ãô¸Ð£¬ËüÖ¸µÄÊÇÊý¾Ý¼¯ÖÐÀëȺֵµÄÆÚÍû±ÈÀý£¬¸ù¾ÝÑù±¾µÃ·ÖÄâºÏ¶¨ÒåãÐֵʱʹÓá£Ä¬ÈÏÖµÊÇ¡ºauto¡»¡£Èç¹ûÈ¡¡ºauto¡»Öµ£¬Ôò¸ù¾Ý¹ÂÁ¢ÉÁÖµÄÔʼÂÛÎ͍ÒåãÐÖµ£»
×î´óÌØÕ÷£ºËùÓлùÆÀ¹ÀÆ÷¶¼²»ÊÇÓÃÊý¾Ý¼¯ÖÐËùÓÐÌØÕ÷ѵÁ·µÄ¡£ÕâÊÇ´ÓËùÓÐÌØÕ÷ÖÐÌá³öµÄ¡¢ÓÃÓÚѵÁ·Ã¿¸ö»ùÆÀ¹ÀÆ÷»òÊ÷µÄÌØÕ÷ÊýÁ¿¡£¸Ã²ÎÊýµÄĬÈÏÖµÊÇ
1¡£
model=IsolationForest(n_estimators=50,
max_samples='auto', contamination=float(0.1),max_features=1.0)
model.fit(df[['salary']]) |

¹ÂÁ¢ÉÁÖÄ£ÐÍѵÁ·Êä³ö¡£
Êý¾ÝѵÁ·Ä£ÐÍÁË£¬ÕâÊÇÓà fit() ·½·¨ÊµÏֵġ£Õâ¸ö·½·¨Òª´«ÈëÒ»¸ö²ÎÊý¡ª¡ªÊ¹ÓõÄÊý¾Ý£¨ÔÚ±¾ÀýÖУ¬ÊÇÊý¾Ý¼¯ÖеŤ×ÊÁУ©¡£
ÕýȷѵÁ·Ä£Ðͺ󣬽«»áÊä³ö¹ÂÁ¢ÉÁÖʵÀý£¨ÈçͼËùʾ£©¡£ÏÖÔÚ¿ÉÒÔÌí¼Ó·ÖÊýºÍÊý¾Ý¼¯µÄÒì³£ÁÐÁË¡£
Ìí¼Ó·ÖÊýºÍÒì³£ÁÐ
ÔÚ¶¨ÒåºÍÄâºÏÍêÄ£Ðͺó£¬ÕÒµ½·ÖÊýºÍÒì³£ÁС£¶ÔѵÁ·ºóµÄÄ£Ð͵÷Óà decision_function()£¬²¢´«È빤×Ê×÷Ϊ²ÎÊý£¬ÕÒ³ö·ÖÊýÁеÄÖµ¡£
ÀàËÆµÄ£¬¿ÉÒÔ¶ÔѵÁ·ºóµÄÄ£Ð͵÷Óà predict() º¯Êý£¬²¢´«È빤×Ê×÷Ϊ²ÎÊý£¬ÕÒµ½Òì³£ÁеÄÖµ¡£
½«ÕâÁ½ÁÐÌí¼Óµ½Êý¾Ý¿ò df ÖС£Ìí¼ÓÍêÕâÁ½Áк󣬲鿴Êý¾Ý¿ò¡£ÈçÎÒÃÇËùÁÏ£¬Êý¾Ý¿òÏÖÔÚÓÐÈýÁУº¹¤×Ê¡¢·ÖÊýºÍÒì³£Öµ¡£·ÖÊýÁÐÖеĸºÖµºÍÒì³£ÁÐÖеÄ
-1 ±íʾ³öÏÖÒì³£¡£Òì³£ÁÐÖÐµÄ 1 ±íʾÕý³£Êý¾Ý¡£
Õâ¸öËã·¨¸øÑµÁ·¼¯ÖеÄÿ¸öÊý¾Ýµã¶¼·ÖÅäÁËÒì³£·ÖÊý¡£¿ÉÒÔ¶¨ÒåãÐÖµ£¬¸ù¾ÝÒì³£·ÖÊý£¬Èç¹û·ÖÊý¸ßÓÚÔ¤¶¨ÒåµÄãÐÖµ£¬¾Í¿ÉÒÔ½«Õâ¸öÊý¾Ýµã±ê¼ÇΪÒì³£¡£
df['scores']=model.decision_function(df[['salary']])
df['anomaly']=model.predict(df[['salary']])
df.head(20) |

¸øÊý¾ÝµÄÿһÐÐÖж¼Ìí¼ÓÁË·ÖÊýºÍÒì³£Öµºó£¬¾Í¿ÉÒÔ´òÓ¡Ô¤²âµÄÒì³£ÁË¡£
´òÓ¡Òì³£
ΪÁË´òÓ¡Êý¾ÝÖÐÔ¤²âµÃµ½µÄÒì³££¬ÔÚÌí¼Ó·ÖÊýÁкÍÒì³£ÁкóÒª·ÖÎöÊý¾Ý¡£ÈçǰÎÄËùÊö£¬Ô¤²âµÄÒì³£ÔÚÔ¤²âÁÐÖеÄֵΪ
-1£¬·ÖÊýΪ¸ºÊý¡£¸ù¾ÝÕâÒ»ÐÅÏ¢£¬½«Ô¤²âµÄÒì³££¨±¾ÀýÖÐÊÇÁ½¸öÊý¾Ýµã£©´òÓ¡ÈçÏ¡£
anomaly=df.loc[df['anomaly']==-1]
anomaly_index=list(anomaly.index)
print(anomaly) |
Òì³£Êä³ö¡£
×¢Ò⣬ÕâÑù²»½öÄÜ´òÓ¡Òì³£Öµ£¬»¹ÄÜ´òÓ¡Òì³£ÖµÔÚÊý¾Ý¼¯ÖеÄË÷Òý£¬Õâ¶ÔÓÚ½øÒ»²½´¦ÀíÊǺÜÓÐÓõġ£
ÆÀ¹ÀÄ£ÐÍ
ΪÁËÆÀ¹ÀÄ£ÐÍ£¬½«ãÐÖµÉèÖÃΪ¹¤×Ê>99999 µÄΪÀëȺֵ¡£ÓÃÒÔÏ´úÂëÕÒ³öÊý¾ÝÖдæÔÚµÄÀëȺֵ£º
outliers_counter
= len(df[df['salary'] > 99999])
outliers_counter |
¼ÆËãÄ£ÐÍÕÒµ½µÄÀëȺֵÊýÁ¿³ýÒÔÊý¾ÝÖеÄÀëȺֵÊýÁ¿£¬µÃµ½Ä£Ð͵Ä׼ȷÂÊ¡£
| print("Accuracy
percentage:", 100*list(df['anomaly']).count(-1)/(outliers_counter)) |
׼ȷÂÊ£º100%
βע
±¾½Ì³ÌÄÚÈݰüÀ¨£ºÊ²Ã´ÊÇÀëȺֵÒÔ¼°ÈçºÎÓùÂÁ¢ÉÁÖËã·¨¼ì²âÀëȺֵ¡£»¹ÌÖÂÛÁËÕë¶Ô¸ÃÎÊÌâµÄ²»Í¬µÄ̽Ë÷ÐÔÊý¾Ý·ÖÎöͼ£¬±ÈÈçСÌáÇÙͼºÍÏäͼ¡£
¡¢ |