±à¼ÍƼö: |
±¾ÎÄÖ÷ÖØµã½éÉÜÁË×Ô¶¯¼ÝÊ»Ëã·¨³¡¾°Ê¶±ð¡¢Â·¾¶¹æ»®¼°³µÁ¾¿ØÖÆ£¬¸ü¶àÄÚÈÝÇë¿´ÏÂÎÄ¡£
±¾ÎÄÀ´×ÔÓÚÌÚÑ¶ÔÆ£¬ÓÉ»ðÁú¹ûÈí¼þAnna±à¼¡¢ÍƼö¡£
|
|
½éÉÜ
±¾ÎĽ«×Ô¶¯¼ÝÊ»Ëã·¨²¿·Ö·Ö³ÉÒÔÏÂÈý¸ö²¿·Ö£º³¡¾°Ê¶±ð¡¢Â·¾¶¹æ»®¼°³µÁ¾¿ØÖÆ¡£Ã¿Ò»Àà±ð¶¼ÊÇÓɶàÖÖËã·¨×é³ÉµÄ¡£ÀýÈ糡¾°Ê¶±ðÐèÒª¶¨Î»£¬ÎïÌå¼ì²â¼°×·×ÙËã·¨¡£Â·¾¶¹æ»®Í¨³£ÓÉÈÎÎñ¡¢Ô˶¯¹æ»®×é³É£¬³µÁ¾¿ØÖÆÔò¶ÔӦ·¾¶¸úËæ¡£ÏÂͼ1£¬ÏÔʾÁËËã·¨»ù±¾µÄ¿ØÖƼ°Êý¾ÝÁ÷¡£½ÓÏÂÀ´±¾ÎĽ«°´ÕÕÏÂͼÀ´×éÖ¯ÎÄÕ½ṹ£¬Ë³Ðò½éÉÜ×Ô¶¯¼Ýʻƽ̨ÉϵÄÏà¹ØËã·¨¡£

¶¨Î»
¶¨Î»ÊÇ×Ô¶¯¼ÝÊ»ÖÐ×î»ù±¾¼°ÖØÒªµÄÎÊÌâÖ®Ò»¡£ÓÈÆäÊÇÔÚ³ÇÊеÀ·ÉÏ£¬¶¨Î»µÄ¾«È·¶È¾ö¶¨ÁË×Ô¶¯¼ÝÊ»µÄ¿É¿¿ÐÔ¡£Autoware²ÉÓÃNormal
Distribution Transform(NDT)Åä×¼Ëã·¨[1]¡£ÎªÁ˽øÒ»²½Ìá¸ß¾«¶È£¬AutowareÓÖ²ÉÓÃÁË[2]Öеķ½·¨£¬²¢ÅäºÏ¸ßÖÊÁ¿µÄ3D
Lidar´«¸ÐÆ÷¼°3D¸ß¾«µØÍ¼ÊµÏÖÁËÀåÃ×¼¶µÄ¶¨Î»½á¹û¡£Í¨¹ýÉÏÊéÎÄÏ×£¬±¾ÎIJ²âAutoware²ÉÓÃNDTËã·¨ÓÐÁ½´óÔÒò£º
¸ÃËã·¨¿ÉÒÔ±»Ó¦Óõ½3D³¡¾°ÖÐ
¸ÃËã·¨µÄʱ¼ä¸´ÔÓ¶ÈÓëµØÍ¼´óСÎ޹أ¨µãÔÆÖеãµÄ¸öÊý£©
¶¨Î»Ò²Êǹ¹½¨3DµØÍ¼µÄ¹Ø¼üÐÔ¼¼Êõ¡£ÒòΪ3DÀ×´ï´«¸ÐÆ÷ʵʱ²úÉú3DµãÔÆÊý¾Ý£¬Èç¹ûÎÞÈ˳µ¶¨Î»×¼È·µÄ»°£¬ÄÇôÔÚÿ¾¹ýÒ»´ÎɨÃ裬һ·Ý3DµØÍ¼¾ÍÄܹ»±»´´½¨²¢¸üС£×î½üautowareÓÖÔö¼ÓÁËЩ¶¨Î»·½·¨È磺gnss¡¢icpµÈ¡£

Ä¿±ê¼ì²â
Ò»µ©¶¨Î»µ½ÎÞÈ˳µ£¬ÏÂÒ»²½¾ÍÊǼì²âÎïÌ壬±ÈÈç³µÁ¾¡¢ÐÐÈ˼°½»Í¨ÐźŵÆÀ´±ÜÃâ²úÉú½»Í¨Ê¹ʼ°´¥·¸½»Í¨¹æÔò¡£Autoware¾ùÄÜʵÏÖÉÏÊöÒªÇ󣬵«ÊDZ¾ÎÄÖØµã¹Ø×¢Òƶ¯ÎïÌ壨³µÁ¾¡¢ÐÐÈË£©µÄ¼ì²â¡£Autoware²ÉÓõÄÊÇDeformable
Part Models(DPM)Ëã·¨À´Ê¶±ð³µÁ¾¼°ÐÐÈË[3]¡£
DPMËã·¨ÓÉFelzenszwalbÓÚ2008ÄêÌá³ö£¬ÊÇÒ»ÖÖ»ùÓÚ²¿¼þµÄ¼ì²â·½·¨£¬¶ÔÄ¿±êµÄÐαä¾ßÓкÜÇ¿µÄ³°ôÐÔ¡£Ä¿Ç°DPMÒѳÉΪÖÚ¶à·ÖÀà¡¢·Ö¸î¡¢×Ë̬¹À¼ÆµÈËã·¨µÄºËÐIJ¿·Ö£¬Felzenszwalb±¾ÈËÒ²Òò´Ë±»VOCÊÚÓ衱ÖÕÉí³É¾Í½±¡±¡£¸ÃËã·¨Á¬Ðø¼¸Äê»ñµÃVOC¼ì²â¹Ú¾ü¡£
³ýÁËʹÓÃͼÏñ´¦Àí¼¼Êõ£¬autowareҲʹÓÃÁË»ùÓÚŷʽ¾àÀë¾ÛÀàµÄ¼¼Êõ¶Ô3DµãÔÆÊý¾Ý½øÐзÖÎö²¢¼ì²âÎïÌå¡£µãÔÆ¾ÛÀàÊÇΪÁË»ñµÃÎÞÈ˳µÓëÎïÌåÖ±½ÓµÄ¾ÛÀà¶ø²»ÊÇ·ÖÀ࣬¾àÀëÐÅÏ¢¿ÉÒÔ±»ÓÃ×÷ͼÏñ´¦ÀíÖ®ºóµÄÎïÌå¸ú×Ù¡£ÕâÖÖ¸ù¾Ý¶àÖÖ´«¸ÐÆ÷µÄÊý¾Ý½áºÏµÄ·½·¨±»³Æ×÷´«¸ÐÆ÷Èںϼ¼Êõ¡£
ÆäËûµÄ¹ØÓÚµÀ·¼ì²â¡¢½»Í¨ÐźŵÆÊ¶±ð¾Í»ù±¾ÉÏÊǵ÷ÓõÄopencv¿âÁË¡£
Ä¿±ê¸ú×Ù
ÓÉÓÚÇ°ÃæÌáµ½µÄÎïÌå¼ì²âÊǶÔͼÏñ¼°µãÔÆÊý¾Ýÿһ֡µÄ´¦Àí½á¹û£¬ÎªÁ˽ÓÏÂÀ´ÄÜÔ¤²âÎïÌåµÄ¹ì¼££¨ÈÎÎñ¡¢Ô˶¯¹æ»®ÐèÒª£©£¬ÐèÒªÐͬʱ¼äÐòÁÐÉÏÆäËûÖ¡µÄÐÅÏ¢¡£AutowareʹÓÃÁËÁ½ÖÖËã·¨À´½â¾ö×·×ÙÎÊÌâ¡£µÚÒ»¸öÊÇ¿¨¶ûÂüÂ˲¨£¬¸ÃËã·¨ÓÐÒ»¸öÏßÐÔ¼ÙÉèǰÌ᣺ÎÞÈ˳µ±ØÐëµÃÔÈËÙÐÐÊ»[4]¡£¸ÃË㷨ʱ¼ä¸´ÔӶȺܵ͡¢Âú×ãʵʱÐÔÒªÇó¡£µÚ¶þ¸öÊÇÁ£×ÓÂ˲¨£¬¸Ã·½·¨ÊÇΪÁËÃÖ²¹¿¨¶ûÂüÂ˲¨µÄ²»×ãµÄ£¬ÒòΪ¿ÉÒÔÓ¦Óõ½·ÇÏßÐÔ³¡¾°[5]¡£
AutowareÖ÷Òª¸ù¾Ý¾ßÌ司¶¨µÄ³¡¾°À´Ê¹ÓÃÕâÁ½ÖÖËã·¨¡£
ͶӰÓëÖØÍ¶Ó°
AutowareʵÏֵij¡¾°Ê¶±ðÊÇÓÉÉãÏñÍ·¼°À×´ï´«¸ÐÆ÷½áºÏµÄ´«¸ÐÆ÷Èںϼ¼ÊõÖ§³ÖµÄ¡£Í¨¹ýУ׼ÉãÏñÍ·¼°À×´ïÀ´»ñµÃ´«¸ÐÆ÷Èںϼ¼ÊõµÄÍâÀ´²ÎÊý£¬autoware½«3DµãÔÆÐÅϢͶÉ䵽ͼÏñÉÏ´Ó¶ø»ñµÃÁËͼÏñµÄÉî¶ÈÐÅÏ¢²¢½«Ä¿±ê¼ì²âµÄÃܼ¯ÇøÓòÂ˳ý¡£Ä¿±ê¼ì²âµÄ½á¹ûÒ²¿ÉÖØÍ¶Ó°µ½3DµãÔÆÉÏ¡£ÕâÖÖͶӰÓëÖØÍ¶Ó°±È½Ï¼òµ¥£¬Ö»»áÉæ¼°Ð©ÆÕͨµÄͶÉä±ä»»¡£
ÈÎÎñ¹æ»®
Autoware½ö½öÌṩÁËÒ»¸ö»ù±¾µÄÈÎÎñ¹æ»®²ßÂÔ¡£Ôڷǽṹ»¯³¡¾°ÖУ¬±ÈÈç˵ͣ³µ³¡£¬autowareÌṩÁËÒ»¸öA?Ëã·¨ÓÃÀ´Ñ°ÕÒµ½´ïÄ¿µÄµØµÄ×î¶Ì·¾¶[6-7]¡£Ôڽṹ»¯µÄ»·¾³ÖУ¬²ÉÓù²ÐÎʱ¿ÕÕ¤¸ñ·¨[8]¡£
Ô˶¯¹æ»®
AutowareʵÏÖµÄÔ˶¯¹æ»®Êǰë×ÔÖεġ£AutowareʵÏÖÁË»ùÓÚ½»Í¨¹æÔò»úÖÆµÄ×Ô¶¯·ÖÅä·Ï߹켣£¬±ÈÈç˵£º»»µÀ¡¢²¢µÀ¡¢Í¨¹ýµÈ¡£ÔÚ¸ü¸´ÔÓµÄÇ龳ϣ¬ÀýÈçÍ£³µ»ò´Ó²Ù×÷ʧÎóÖлָ´£¬¼ÝʻԱ¿ÉÒÔ¶Ô·¾¶×ö³öÑ¡Ôñ¡£AutowareÌṩµÄÈÎÎñ¹æ»®»ù±¾²ßÂÔÊÇÈç¹ûÔÚѲº½µÀ·ÉÏÐÐÊ»£¬È«³ÌÓÉÉÌÒµ»¯µ¼º½Ó¦ÓÃÀ´½Ó¹Ü³µÁ¾£¬Ò»µ©ÎÞÈ˳µÐèÒª³¬³µ»òÕß¿¿½üÒ»¸öתÍ䷿ڲŹ滮±äµÀÈÎÎñ¡£
·¾¶¸úËæ
·¾¶¸úËæ¾ÍÊÇ¿ØÖÆÎÞÈ˳µÑØ×Åmotion planningÉú³ÉµÄ·¾¶ÐÐÊ»¡£AutowareʹÓÃÁËPure
PursuitËã·¨[9]¡£
ÐÔÄÜÐèÇ󼰱ȽÏ
±¾½Ú½«»ã×ÜÏÂÉÏÊöÈÎÎñµÄʱ¼ä¸´ÔÓ¶È¡£ÔÚÅ䱸ÓÐIntel CPUsÓëNvidia GPUsµÄ¼ÆËã»úÉÏ£¬Èç¹ûËÑË÷ÇøÓò±È½Ï´óµÄ»°£¬A?Ëã·¨ºÄʱ×£¬ÐèÒª¼¸ÃëÉõÖÁ¸ü¶à¡£ÕâЩ¶¼ÄÜͨ¹ý²¢ÐмÆËãʹµÃËã·¨ÔËÐиü¿ì£¬µ«ÊÇÕâ²¢²»ÖØÒª£¬ÒòΪA?Ë㷨ͨ³£ÓÃÔÚmission
planningÖУ¬¶ÔʵʱÐÔÒªÇ󲻸ߣ¬ÔÚÐèÒªµÄʱºò²Å»áʹÓøÃËã·¨¡£µ«ÊÇÓÐЩÈÎÎñ±ÈÈ磺motion planning¡¢object
detection and tracking¶ÔʵʱÐÔµÄÒªÇó¾ÍºÜ¸ß¡£ÏÂÃæÎÒÃÇ»ùÓÚKITTIÊý¾Ý¼¯¿´¿´Ò»Ð©Òµ½çÁìÏÈˮƽµÄ·½·¨£º
Ä¿±ê¼ì²â2D-car
Ö¸±ê˵Ã÷£º
Êý¾Ý£º7481 training images and 7518 test images, 80.256
labeled objects
ÆÀ¼ÛÖ¸±ê£º Easy¡¢Moderate¡¢HardÕâÈý¸öÄÑÒ׳̶ÈÊǸù¾ÝͼƬµÄʶ±ðÄѶÈÀ´»®·ÖµÄ

Ä¿±ê¼ì²â3D-car

Ä¿±ê¼ì²âbird¡¯s eye-car

ÊÓ¾õÀï³Ì¹À¼Æ
Ö¸±ê˵Ã÷£º
Êý¾Ý£ºÓÉ22¸öÁ¢ÌåͼÏñÐòÁÐ×é³É£¬±£´æÎªpng¸ñʽ£ºÎÒÃÇÌṩÁËѵÁ·ÐòÁеÄ11¸öÐòÁУ¨00-10£©ºÍѵÁ·ÐòÁеÄ11¸öÐòÁУ¨11-21£©£¬ÆäÖÐѵÁ·ÐòÁÐÓÐground
truth,²âÊÔÐòÁÐûÓС£
Translation,RotationÕâÀï¼ÆËãËùÓиø¶¨³¤¶ÈµÄËùÓпÉÄÜ×ÓÐòÁÐµÄÆ½ÒÆÐýתÎó²î¡£

×·×Ù-car
Ö¸±ê˵Ã÷£º
Êý¾Ý¼¯ÓÉ 21 ѵÁ·ÐòÁÐºÍ 29²âÊÔÐòÁÐ×é³É£¬ËäȻѵÁ·¼¯Öб궨ÁË8ÖÖÀà±ðµÄÄ¿±ê£¬µ«ÊDzâÊÔ½á¹ûÖ»°´ÕÕÐÐÈËÓëÆû³µ¸ú×ÙÀ´´ò·Ö¡£
MOTA:Ä¿±ê¸ú×Ù׼ȷ¶È£¬MOTP:Ä¿±ê¸ú×Ù¾«È·¶È£¬MT:ÔÚÕû¸öÐòÁÐÖг¬¹ý80%µÄÊÓÆµÖ¡±»¸ú×ٵĹ켣Êý£¬ML:ÊÓÆµÖеÍÓÚ20%µÄÊÓÆµÖ¡±»¸ú×ٵĹ켣Êý¡£µÈµÈ

µÀ·¼ì²â-urban

Reference
[1] Biber P, Strasser W. The normal distributions
transform: a new approach to laser scan matching[C]//
Ieee/rsj International Conference on Intelligent Robots
and Systems. IEEE, 2003:2743-2748 vol.3.
[2] Magnusson M, Lilienthal A, Duckett T. Scan registration
for autonomous mining vehicles using 3D-NDT[J]. Journal
of Field Robotics, 2007, 24(10):803¨C827.
[3] Felzenszwalb P F, Girshick R B, Mcallester D,
et al. Object Detection with Discriminatively Trained
Part-Based Models[J]. IEEE Transactions on Pattern
Analysis & Machine Intelligence, 2014, 47(2):6-7.
[4] Kalman R E. A New Approach to Linear Filtering
and Prediction Problems[J]. Journal of Basic Engineering
Transactions, 1960, 82:35-45.
[5] Arulampalam M S, Maskell S, Gordon N, et al.
A Tutorial on Particule Filters for Online NonLinear/Non-Gaussian
Bayesian Tracking[J]. IEEE Transactions on Signal
Processing, 2001, 50(2):174-188.
[6] Hart P E, Nilsson N J, Raphael B. A Formal Basis
for the Heuristic Determination of Minimum Cost Paths[J].
IEEE Transactions on Systems Science & Cybernetics,
2007, 4(2):100-107.
[7] Pivtoraiko M, Knepper R A, Kelly A. Differentially
constrained mobile robot motion planning in state
lattices[J]. Journal of Field Robotics, 2009, 26(3):308-333.
[8] Pivtoraiko M, Knepper R A, Kelly A. Differentially
constrained mobile robot motion planning in state
lattices. Journal of Field Robotics (JFR), 26(3),
308-333[J]. Journal of Field Robotics, 2009, 26(3):308-333.
[9] Coulter R C. Implementation of the Pure Pursuit
Path Tracking Algorithm[J]. Implementation of the
Pure Pursuit Path Tracking Algorithm, 1992.
|