Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
ÎÞÈ˼ÝÊ»µÄ»ù±¾Ëã·¨¼°¼òµ¥½éÉÜ
 
×÷ÕߣºÈ˹¤ÖÇÄܵÄÃØÃÜ
  8013  次浏览      27
 2020-6-3  
 
±à¼­ÍƼö:
±¾ÎÄÖ÷ÖØµã½éÉÜÁË×Ô¶¯¼ÝÊ»Ëã·¨³¡¾°Ê¶±ð¡¢Â·¾¶¹æ»®¼°³µÁ¾¿ØÖÆ£¬¸ü¶àÄÚÈÝÇë¿´ÏÂÎÄ¡£
±¾ÎÄÀ´×ÔÓÚÌÚÑ¶ÔÆ£¬ÓÉ»ðÁú¹ûÈí¼þAnna±à¼­¡¢ÍƼö¡£

½éÉÜ

±¾ÎĽ«×Ô¶¯¼ÝÊ»Ëã·¨²¿·Ö·Ö³ÉÒÔÏÂÈý¸ö²¿·Ö£º³¡¾°Ê¶±ð¡¢Â·¾¶¹æ»®¼°³µÁ¾¿ØÖÆ¡£Ã¿Ò»Àà±ð¶¼ÊÇÓɶàÖÖËã·¨×é³ÉµÄ¡£ÀýÈ糡¾°Ê¶±ðÐèÒª¶¨Î»£¬ÎïÌå¼ì²â¼°×·×ÙËã·¨¡£Â·¾¶¹æ»®Í¨³£ÓÉÈÎÎñ¡¢Ô˶¯¹æ»®×é³É£¬³µÁ¾¿ØÖÆÔò¶ÔӦ·¾¶¸úËæ¡£ÏÂͼ1£¬ÏÔʾÁËËã·¨»ù±¾µÄ¿ØÖƼ°Êý¾ÝÁ÷¡£½ÓÏÂÀ´±¾ÎĽ«°´ÕÕÏÂͼÀ´×éÖ¯ÎÄÕ½ṹ£¬Ë³Ðò½éÉÜ×Ô¶¯¼Ýʻƽ̨ÉϵÄÏà¹ØËã·¨¡£

¶¨Î»

¶¨Î»ÊÇ×Ô¶¯¼ÝÊ»ÖÐ×î»ù±¾¼°ÖØÒªµÄÎÊÌâÖ®Ò»¡£ÓÈÆäÊÇÔÚ³ÇÊеÀ·ÉÏ£¬¶¨Î»µÄ¾«È·¶È¾ö¶¨ÁË×Ô¶¯¼ÝÊ»µÄ¿É¿¿ÐÔ¡£Autoware²ÉÓÃNormal Distribution Transform(NDT)Åä×¼Ëã·¨[1]¡£ÎªÁ˽øÒ»²½Ìá¸ß¾«¶È£¬AutowareÓÖ²ÉÓÃÁË[2]Öеķ½·¨£¬²¢ÅäºÏ¸ßÖÊÁ¿µÄ3D Lidar´«¸ÐÆ÷¼°3D¸ß¾«µØÍ¼ÊµÏÖÁËÀåÃ×¼¶µÄ¶¨Î»½á¹û¡£Í¨¹ýÉÏÊéÎÄÏ×£¬±¾ÎIJ²âAutoware²ÉÓÃNDTËã·¨ÓÐÁ½´óÔ­Òò£º

¸ÃËã·¨¿ÉÒÔ±»Ó¦Óõ½3D³¡¾°ÖÐ

¸ÃËã·¨µÄʱ¼ä¸´ÔÓ¶ÈÓëµØÍ¼´óСÎ޹أ¨µãÔÆÖеãµÄ¸öÊý£©

¶¨Î»Ò²Êǹ¹½¨3DµØÍ¼µÄ¹Ø¼üÐÔ¼¼Êõ¡£ÒòΪ3DÀ×´ï´«¸ÐÆ÷ʵʱ²úÉú3DµãÔÆÊý¾Ý£¬Èç¹ûÎÞÈ˳µ¶¨Î»×¼È·µÄ»°£¬ÄÇôÔÚÿ¾­¹ýÒ»´ÎɨÃ裬һ·Ý3DµØÍ¼¾ÍÄܹ»±»´´½¨²¢¸üС£×î½üautowareÓÖÔö¼ÓÁËЩ¶¨Î»·½·¨È磺gnss¡¢icpµÈ¡£

Ä¿±ê¼ì²â

Ò»µ©¶¨Î»µ½ÎÞÈ˳µ£¬ÏÂÒ»²½¾ÍÊǼì²âÎïÌ壬±ÈÈç³µÁ¾¡¢ÐÐÈ˼°½»Í¨ÐźŵÆÀ´±ÜÃâ²úÉú½»Í¨Ê¹ʼ°´¥·¸½»Í¨¹æÔò¡£Autoware¾ùÄÜʵÏÖÉÏÊöÒªÇ󣬵«ÊDZ¾ÎÄÖØµã¹Ø×¢Òƶ¯ÎïÌ壨³µÁ¾¡¢ÐÐÈË£©µÄ¼ì²â¡£Autoware²ÉÓõÄÊÇDeformable Part Models(DPM)Ëã·¨À´Ê¶±ð³µÁ¾¼°ÐÐÈË[3]¡£

DPMËã·¨ÓÉFelzenszwalbÓÚ2008ÄêÌá³ö£¬ÊÇÒ»ÖÖ»ùÓÚ²¿¼þµÄ¼ì²â·½·¨£¬¶ÔÄ¿±êµÄÐαä¾ßÓкÜÇ¿µÄ³°ôÐÔ¡£Ä¿Ç°DPMÒѳÉΪÖÚ¶à·ÖÀà¡¢·Ö¸î¡¢×Ë̬¹À¼ÆµÈËã·¨µÄºËÐIJ¿·Ö£¬Felzenszwalb±¾ÈËÒ²Òò´Ë±»VOCÊÚÓ衱ÖÕÉí³É¾Í½±¡±¡£¸ÃËã·¨Á¬Ðø¼¸Äê»ñµÃVOC¼ì²â¹Ú¾ü¡£ ³ýÁËʹÓÃͼÏñ´¦Àí¼¼Êõ£¬autowareҲʹÓÃÁË»ùÓÚŷʽ¾àÀë¾ÛÀàµÄ¼¼Êõ¶Ô3DµãÔÆÊý¾Ý½øÐзÖÎö²¢¼ì²âÎïÌå¡£µãÔÆ¾ÛÀàÊÇΪÁË»ñµÃÎÞÈ˳µÓëÎïÌåÖ±½ÓµÄ¾ÛÀà¶ø²»ÊÇ·ÖÀ࣬¾àÀëÐÅÏ¢¿ÉÒÔ±»ÓÃ×÷ͼÏñ´¦ÀíÖ®ºóµÄÎïÌå¸ú×Ù¡£ÕâÖÖ¸ù¾Ý¶àÖÖ´«¸ÐÆ÷µÄÊý¾Ý½áºÏµÄ·½·¨±»³Æ×÷´«¸ÐÆ÷Èںϼ¼Êõ¡£ ÆäËûµÄ¹ØÓÚµÀ·¼ì²â¡¢½»Í¨ÐźŵÆÊ¶±ð¾Í»ù±¾ÉÏÊǵ÷ÓõÄopencv¿âÁË¡£

Ä¿±ê¸ú×Ù

ÓÉÓÚÇ°ÃæÌáµ½µÄÎïÌå¼ì²âÊǶÔͼÏñ¼°µãÔÆÊý¾Ýÿһ֡µÄ´¦Àí½á¹û£¬ÎªÁ˽ÓÏÂÀ´ÄÜÔ¤²âÎïÌåµÄ¹ì¼££¨ÈÎÎñ¡¢Ô˶¯¹æ»®ÐèÒª£©£¬ÐèҪЭͬʱ¼äÐòÁÐÉÏÆäËûÖ¡µÄÐÅÏ¢¡£AutowareʹÓÃÁËÁ½ÖÖËã·¨À´½â¾ö×·×ÙÎÊÌâ¡£µÚÒ»¸öÊÇ¿¨¶ûÂüÂ˲¨£¬¸ÃËã·¨ÓÐÒ»¸öÏßÐÔ¼ÙÉèǰÌ᣺ÎÞÈ˳µ±ØÐëµÃÔÈËÙÐÐÊ»[4]¡£¸ÃË㷨ʱ¼ä¸´ÔӶȺܵ͡¢Âú×ãʵʱÐÔÒªÇó¡£µÚ¶þ¸öÊÇÁ£×ÓÂ˲¨£¬¸Ã·½·¨ÊÇΪÁËÃÖ²¹¿¨¶ûÂüÂ˲¨µÄ²»×ãµÄ£¬ÒòΪ¿ÉÒÔÓ¦Óõ½·ÇÏßÐÔ³¡¾°[5]¡£ AutowareÖ÷Òª¸ù¾Ý¾ßÌ司¶¨µÄ³¡¾°À´Ê¹ÓÃÕâÁ½ÖÖËã·¨¡£

ͶӰÓëÖØÍ¶Ó°

AutowareʵÏֵij¡¾°Ê¶±ðÊÇÓÉÉãÏñÍ·¼°À×´ï´«¸ÐÆ÷½áºÏµÄ´«¸ÐÆ÷Èںϼ¼ÊõÖ§³ÖµÄ¡£Í¨¹ýУ׼ÉãÏñÍ·¼°À×´ïÀ´»ñµÃ´«¸ÐÆ÷Èںϼ¼ÊõµÄÍâÀ´²ÎÊý£¬autoware½«3DµãÔÆÐÅϢͶÉ䵽ͼÏñÉÏ´Ó¶ø»ñµÃÁËͼÏñµÄÉî¶ÈÐÅÏ¢²¢½«Ä¿±ê¼ì²âµÄÃܼ¯ÇøÓòÂ˳ý¡£Ä¿±ê¼ì²âµÄ½á¹ûÒ²¿ÉÖØÍ¶Ó°µ½3DµãÔÆÉÏ¡£ÕâÖÖͶӰÓëÖØÍ¶Ó°±È½Ï¼òµ¥£¬Ö»»áÉæ¼°Ð©ÆÕͨµÄͶÉä±ä»»¡£

ÈÎÎñ¹æ»®

Autoware½ö½öÌṩÁËÒ»¸ö»ù±¾µÄÈÎÎñ¹æ»®²ßÂÔ¡£Ôڷǽṹ»¯³¡¾°ÖУ¬±ÈÈç˵ͣ³µ³¡£¬autowareÌṩÁËÒ»¸öA?Ëã·¨ÓÃÀ´Ñ°ÕÒµ½´ïÄ¿µÄµØµÄ×î¶Ì·¾¶[6-7]¡£Ôڽṹ»¯µÄ»·¾³ÖУ¬²ÉÓù²ÐÎʱ¿ÕÕ¤¸ñ·¨[8]¡£

Ô˶¯¹æ»®

AutowareʵÏÖµÄÔ˶¯¹æ»®Êǰë×ÔÖεġ£AutowareʵÏÖÁË»ùÓÚ½»Í¨¹æÔò»úÖÆµÄ×Ô¶¯·ÖÅä·Ï߹켣£¬±ÈÈç˵£º»»µÀ¡¢²¢µÀ¡¢Í¨¹ýµÈ¡£ÔÚ¸ü¸´ÔÓµÄÇ龳ϣ¬ÀýÈçÍ£³µ»ò´Ó²Ù×÷ʧÎóÖлָ´£¬¼ÝʻԱ¿ÉÒÔ¶Ô·¾¶×ö³öÑ¡Ôñ¡£AutowareÌṩµÄÈÎÎñ¹æ»®»ù±¾²ßÂÔÊÇÈç¹ûÔÚѲº½µÀ·ÉÏÐÐÊ»£¬È«³ÌÓÉÉÌÒµ»¯µ¼º½Ó¦ÓÃÀ´½Ó¹Ü³µÁ¾£¬Ò»µ©ÎÞÈ˳µÐèÒª³¬³µ»òÕß¿¿½üÒ»¸öתÍ䷿ڲŹ滮±äµÀÈÎÎñ¡£

·¾¶¸úËæ

·¾¶¸úËæ¾ÍÊÇ¿ØÖÆÎÞÈ˳µÑØ×Åmotion planningÉú³ÉµÄ·¾¶ÐÐÊ»¡£AutowareʹÓÃÁËPure PursuitËã·¨[9]¡£

ÐÔÄÜÐèÇ󼰱ȽÏ

±¾½Ú½«»ã×ÜÏÂÉÏÊöÈÎÎñµÄʱ¼ä¸´ÔÓ¶È¡£ÔÚÅ䱸ÓÐIntel CPUsÓëNvidia GPUsµÄ¼ÆËã»úÉÏ£¬Èç¹ûËÑË÷ÇøÓò±È½Ï´óµÄ»°£¬A?Ëã·¨ºÄʱ×£¬ÐèÒª¼¸ÃëÉõÖÁ¸ü¶à¡£ÕâЩ¶¼ÄÜͨ¹ý²¢ÐмÆËãʹµÃËã·¨ÔËÐиü¿ì£¬µ«ÊÇÕâ²¢²»ÖØÒª£¬ÒòΪA?Ë㷨ͨ³£ÓÃÔÚmission planningÖУ¬¶ÔʵʱÐÔÒªÇ󲻸ߣ¬ÔÚÐèÒªµÄʱºò²Å»áʹÓøÃËã·¨¡£µ«ÊÇÓÐЩÈÎÎñ±ÈÈ磺motion planning¡¢object detection and tracking¶ÔʵʱÐÔµÄÒªÇó¾ÍºÜ¸ß¡£ÏÂÃæÎÒÃÇ»ùÓÚKITTIÊý¾Ý¼¯¿´¿´Ò»Ð©Òµ½çÁìÏÈˮƽµÄ·½·¨£º

Ä¿±ê¼ì²â2D-car

Ö¸±ê˵Ã÷£º

Êý¾Ý£º7481 training images and 7518 test images, 80.256 labeled objects

ÆÀ¼ÛÖ¸±ê£º Easy¡¢Moderate¡¢HardÕâÈý¸öÄÑÒ׳̶ÈÊǸù¾ÝͼƬµÄʶ±ðÄѶÈÀ´»®·ÖµÄ

Ä¿±ê¼ì²â3D-car

Ä¿±ê¼ì²âbird¡¯s eye-car

ÊÓ¾õÀï³Ì¹À¼Æ

Ö¸±ê˵Ã÷£º

Êý¾Ý£ºÓÉ22¸öÁ¢ÌåͼÏñÐòÁÐ×é³É£¬±£´æÎªpng¸ñʽ£ºÎÒÃÇÌṩÁËѵÁ·ÐòÁеÄ11¸öÐòÁУ¨00-10£©ºÍѵÁ·ÐòÁеÄ11¸öÐòÁУ¨11-21£©£¬ÆäÖÐѵÁ·ÐòÁÐÓÐground truth,²âÊÔÐòÁÐûÓС£

Translation,RotationÕâÀï¼ÆËãËùÓиø¶¨³¤¶ÈµÄËùÓпÉÄÜ×ÓÐòÁÐµÄÆ½ÒÆÐýתÎó²î¡£

×·×Ù-car

Ö¸±ê˵Ã÷£º

Êý¾Ý¼¯ÓÉ 21 ѵÁ·ÐòÁÐºÍ 29²âÊÔÐòÁÐ×é³É£¬ËäȻѵÁ·¼¯Öб궨ÁË8ÖÖÀà±ðµÄÄ¿±ê£¬µ«ÊDzâÊÔ½á¹ûÖ»°´ÕÕÐÐÈËÓëÆû³µ¸ú×ÙÀ´´ò·Ö¡£

MOTA:Ä¿±ê¸ú×Ù׼ȷ¶È£¬MOTP:Ä¿±ê¸ú×Ù¾«È·¶È£¬MT:ÔÚÕû¸öÐòÁÐÖг¬¹ý80%µÄÊÓÆµÖ¡±»¸ú×ٵĹ켣Êý£¬ML:ÊÓÆµÖеÍÓÚ20%µÄÊÓÆµÖ¡±»¸ú×ٵĹ켣Êý¡£µÈµÈ

µÀ·¼ì²â-urban

Reference

[1] Biber P, Strasser W. The normal distributions transform: a new approach to laser scan matching[C]// Ieee/rsj International Conference on Intelligent Robots and Systems. IEEE, 2003:2743-2748 vol.3.

[2] Magnusson M, Lilienthal A, Duckett T. Scan registration for autonomous mining vehicles using 3D-NDT[J]. Journal of Field Robotics, 2007, 24(10):803¨C827.

[3] Felzenszwalb P F, Girshick R B, Mcallester D, et al. Object Detection with Discriminatively Trained Part-Based Models[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 47(2):6-7.

[4] Kalman R E. A New Approach to Linear Filtering and Prediction Problems[J]. Journal of Basic Engineering Transactions, 1960, 82:35-45.

[5] Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particule Filters for Online NonLinear/Non-Gaussian Bayesian Tracking[J]. IEEE Transactions on Signal Processing, 2001, 50(2):174-188.

[6] Hart P E, Nilsson N J, Raphael B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths[J]. IEEE Transactions on Systems Science & Cybernetics, 2007, 4(2):100-107.

[7] Pivtoraiko M, Knepper R A, Kelly A. Differentially constrained mobile robot motion planning in state lattices[J]. Journal of Field Robotics, 2009, 26(3):308-333.

[8] Pivtoraiko M, Knepper R A, Kelly A. Differentially constrained mobile robot motion planning in state lattices. Journal of Field Robotics (JFR), 26(3), 308-333[J]. Journal of Field Robotics, 2009, 26(3):308-333.

[9] Coulter R C. Implementation of the Pure Pursuit Path Tracking Algorithm[J]. Implementation of the Pure Pursuit Path Tracking Algorithm, 1992.

 

   
8013 ´Îä¯ÀÀ       27
Ïà¹ØÎÄÕÂ

»ùÓÚͼ¾í»ýÍøÂçµÄͼÉî¶Èѧϰ
×Ô¶¯¼ÝÊ»ÖеÄ3DÄ¿±ê¼ì²â
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
ÏîĿʵս£ºÈçºÎ¹¹½¨ÖªÊ¶Í¼Æ×
 
Ïà¹ØÎĵµ

5GÈ˹¤ÖÇÄÜÎïÁªÍøµÄµäÐÍÓ¦ÓÃ
Éî¶ÈѧϰÔÚ×Ô¶¯¼ÝÊ»ÖеÄÓ¦ÓÃ
ͼÉñ¾­ÍøÂçÔÚ½»²æÑ§¿ÆÁìÓòµÄÓ¦ÓÃÑо¿
ÎÞÈË»úϵͳԭÀí
Ïà¹Ø¿Î³Ì

È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ&TensorFlow
»úÆ÷ÈËÈí¼þ¿ª·¢¼¼Êõ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
ͼÏñ´¦ÀíËã·¨·½·¨Óëʵ¼ù
×îл¼Æ»®
DeepSeekÔÚÈí¼þ²âÊÔÓ¦ÓÃʵ¼ù 4-12[ÔÚÏß]
DeepSeek´óÄ£ÐÍÓ¦Óÿª·¢Êµ¼ù 4-19[ÔÚÏß]
UAF¼Ü¹¹ÌåϵÓëʵ¼ù 4-11[±±¾©]
AIÖÇÄÜ»¯Èí¼þ²âÊÔ·½·¨Óëʵ¼ù 5-23[ÉϺ£]
»ùÓÚ UML ºÍEA½øÐзÖÎöÉè¼Æ 4-26[±±¾©]
ÒµÎñ¼Ü¹¹Éè¼ÆÓ뽨ģ 4-18[±±¾©]
 
×îÐÂÎÄÕÂ
¶àÄ¿±ê¸ú×Ù£ºAI²úÆ·¾­ÀíÐèÒªÁ˽âµÄCVͨʶ
Éî¶Èѧϰ¼Ü¹¹
¾í»ýÉñ¾­ÍøÂç֮ǰÏò´«²¥Ëã·¨
´Ó0µ½1´î½¨AIÖÐ̨
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
×îпγÌ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
È˹¤ÖÇÄÜÓë»úÆ÷ѧϰӦÓÃʵս
È˹¤ÖÇÄÜ-ͼÏñ´¦ÀíºÍʶ±ð
È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ& TensorFlow+Keras¿ò¼Üʵ¼ù
È˹¤ÖÇÄÜ+Python£«´óÊý¾Ý
³É¹¦°¸Àý
ij×ÛºÏÐÔ¿ÆÑлú¹¹ È˹¤ÖÇÄÜÓë»úÆ÷ѧϰӦÓÃ
Ä³ÒøÐÐ È˹¤ÖÇÄÜ+Python+´óÊý¾Ý
±±¾© È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ& TensorFlow¿ò¼Üʵ¼ù
ijÁìÏÈÊý×ÖµØÍ¼ÌṩÉÌ PythonÊý¾Ý·ÖÎöÓë»úÆ÷ѧϰ
ÖйúÒÆ¶¯ È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰºÍÉî¶Èѧϰ