Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
Éî¶Èѧϰ»ù´¡£ºÎªÊ²Ã´Éñ¾­ÍøÂçµÄ¸ÐÖª»úÖеÄÉñ¾­ÔªÐèҪƫÖÃÏ
 
×÷Õߣºdeephub
  2338  次浏览      31
 2020-5-28  
 
±à¼­ÍƼö:
±¾ÎÄÖ÷Òª½éÉÜÁËΪʲôҪʹÓÃÆ«ÖÃÏîÄØ£¬´ÓһЩ»ù´¡¸ÅÄî½²Æð£¬ÈçºÎ¶ÔËü·ÖÀà?ÓÐÆ«ÖÃÏîºÍÎÞÆ«ÖÃÏîµÄ½á¹û·Ö±ðÊÇÔõÑùµÄÄØ?
±¾ÎÄÀ´×ÔÓÚÌÚÑ¶ÔÆ£¬ÓÉ»ðÁú¹ûÈí¼þAnna±à¼­¡¢ÍƼö¡£

Éñ¾­ÔªÖв»Ìí¼ÓÆ«ÖÃÏî¿ÉÒÔÂ𣿴ð°¸ÊÇ£¬²»¿ÉÒÔ

ÿ¸öÈ˶¼ÖªµÀÉñ¾­ÍøÂçÖÐµÄÆ«Öã¨bias£©ÊÇʲô£¬¶øÇÒ´ÓÈËÀàʵÏÖµÚÒ»¸ö¸ÐÖªÆ÷¿ªÊ¼£¬Ã¿¸öÈ˶¼ÖªµÀÉñ¾­ÔªÐèÒªÌí¼ÓÆ«ÖÃÏî¡£µ«ÄãÊÇ·ñ¿¼ÂǹýÎÒÃÇΪʲôҪʹÓÃÆ«ÖÃÏîÄØ?¾ÍÎÒ¶øÑÔ£¬Ö±µ½²»¾ÃǰÎÒ²ÅŪÇå³þÕâ¸öÎÊÌâ¡£µ±Ê±ÎÒºÍÒ»¸ö±¾¿ÆÉúÌÖÂÛÁËһЩÉñ¾­ÍøÂçÄ£ÐÍ£¬µ«²»ÖªºÎ¹ÊËý°Ñ¡°Æ«ÖÃÊäÈ롱£¨bias input£©ºÍ¡°Í³¼Æ»ù²î¡±£¨ statistical bias£©¸ã»ìÁË¡£¶ÔÎÒÀ´Ëµ£¬ÏòËý½âÊÍÕâЩ¸ÅÄȻºÜÈÝÒ×£¬µ«ÎÒÈ´ºÜÄѽøÒ»²½µØ¸æËßËýÎÒÃÇΪʲôҪʹÓÃÆ«ÖÃÏî¡£¹ýÁËÒ»¶Îʱ¼ä£¬ÎÒ¾ö¶¨³¢ÊÔд´úÂëÀ´Ñо¿ÕâÒ»ÎÊÌâ¡£

ÈÃÎÒÃÇÏÈ´ÓһЩ¼òµ¥µÄ¸ÅÄʼ¡£

¸ÐÖªÆ÷ÊǶà²ã¸ÐÖªÆ÷(MLP)ºÍÈ˹¤Éñ¾­ÍøÂçµÄǰÉí¡£ÖÚËùÖÜÖª£¬¸ÐÖªÆ÷ÊÇÒ»ÖÖÓÃÓڼලѧϰµÄ·ÂÉúËã·¨¡£Ëü±¾ÖÊÉÏÊÇÒ»¸öÏßÐÔ·ÖÀàÆ÷£¬ÈçͼËùʾ:

Ò»¸ö¼òµ¥µÄ¸ÐÖªÆ÷ʾÒâͼ

ÏÂÃæÈÃÎÒÃÇ¿¼²ìÒ»ÏÂÕâ¸öÄ£Ð͵ÄÊýѧ·½³Ì:

ÔÚÕâÀf(x)´ú±í¼¤»îº¯Êý(ͨ³£ÊÇÒ»¸ö½×Ô¾º¯Êý)¡£bÊÇÆ«ÖÃÏî, pºÍw·Ö±ðÊÇÊäÈëºÍÈ¨ÖØ¡£

Äã¿ÉÄÜ»á×¢Òâµ½ËüÓëÏßÐÔº¯ÊýµÄ±ê×¼ÐÎʽÊÇÏàËÆµÄ¡£Èç¹ûÎÒÃDz»ÊÊÓü¤»îº¯Êý£¬»ò½«¼¤»îº¯ÊýÌæ»»ÎªºãµÈÓ³É䣬ÕâЩ¹«Ê½½«ÊÇÏàͬµÄ(ÔÚÕâÀïΪÁË·½±ãÃèÊö£¬ÎÒÃÇÖ»¿¼Âǵ¥Ò»ÊäÈë)£º

ÔÚÕâÀïÆ«ÖÃÏîµÄÈ¨ÖØÊÇ1

±È½ÏÕâÁ½¸ö¹«Ê½£¬ºÜÃ÷ÏÔÎÒÃÇµÄÆ«ÖÃÏî¾Í¶ÔÓ¦ÁËÏßÐÔº¯ÊýÖеÄb¡£ÏÖÔÚµÄÎÊÌâ¾Íת»¯Îª£¬ÏßÐÔº¯ÊýÖеÄbΪʲôÄÇÃ´ÖØÒª?Èç¹ûÄã¹ýÈ¥¼¸ÄêûÓÐÉϹýÈκÎÏßÐÔ´úÊý¿Î³Ì(¾ÍÏñÎÒÒ»Ñù)£¬¿ÉÄܶÔһЩ¸ÅÄî²»¹»Á˽⡣µ«ÊÇÏÂÃæµÄÄÚÈÝÊǺÜÈÝÒ×Àí½âµÄ:

ÎÒÃǺÜÈÝÒ×¾Í×¢Òâµ½£¬µ±b=0ʱ£¬º¯Êý×ÜÊÇͨ¹ýÔ­µã[0,0]¡£µ±ÎÒÃDZ£³Öa²»±äµÄÇé¿öÏÂÒýÈëbʱ£¬Ðµĺ¯Êý×ÜÊÇÏ໥ƽÐеġ£ÄÇô£¬ÎÒÃÇÄÜ´ÓÖеõ½Ê²Ã´ÐÅÏ¢ÄØ?

ÎÒÃÇ¿ÉÒÔ˵£¬ÏµÊýa¾ö¶¨Á˺¯ÊýµÄ½Ç¶È£¬¶ø·ÖÁ¿b¾ö¶¨Á˺¯ÊýÓëxÖáµÄ½»µã¡£

´ËʱÎÒÏëÄãÒѾ­×¢Òâµ½ÁËһЩÎÊÌ⣬¶Ô°É?Èç¹ûûÓÐb£¬º¯Êý½«»áʧȥºÜ¶àÁé»îÐÔ¡£Ö»²»¹ý¶ÔһЩ·Ö²¼½øÐзÖÀàʱƫÖÃÏî¿ÉÄÜÓÐÓ㬵«²»ÊǶÔËùÓÐÇé¿ö¶¼ÓÐÓá£ÔõÑù²âÊÔËüµÄʵ¼ÊЧ¹ûÄØ?ÈÃÎÒÃÇʹÓÃÒ»¸ö¼òµ¥µÄÀý×Ó:ORº¯Êý¡£ÈÃÎÒÃÇÏÈÀ´¿´¿´ËüµÄ·Ö²¼:

»æÖÆÔڵѿ¨¶û×ø±êϵÖеÄORº¯Êý£º

ÎÒÏëÄãÒѾ­ÏëÃ÷°×ÁËÕâ¸öÎÊÌ⡣ͼÖÐÁ½¸öµã([0,0]ºÍ[1,0])ÊÇÁ½¸ö²»Í¬µÄÀ࣬µ«ÈκÎÒ»Ìõ¹ý[0,0]µÄÖ±Ïß¶¼Ã»Óа취½«ÕâÁ½¸öµã·Ö¿ª¡£ÄÇô¸ÐÖª»úÈçºÎ¶ÔËü·ÖÀàÄØ?ÓÐÆ«ÖÃÏîºÍÎÞÆ«ÖÃÏîµÄ½á¹û·Ö±ðÊÇÔõÑùµÄÄØ?ÈÃÎÒÃÇͨ¹ý±à³Ì£¬¿´¿´½«»á·¢Éúʲô!ÏÂÃæÊÇÓÃPythonʵÏֵĸÐÖªÆ÷Éñ¾­Ôª:

classPerceptron():def__init__ (self, n_input, alpha= 0.01, has_bias=True):
self.has_bias = has_bias
self.bias_weight = random.uniform(-1,1)
self.alpha = alpha
self.weights = []
for i in range(n_input):
self.weights.append(random.uniform (-1,1))defclassify(self, input):
summation = 0if(self.has_bias):
summation += self.bias_weight * 1for i in range(len(self.weights)):
summation += self.weights[i] * input[i]
return self.activation (summation)defactivation(self, value):if(value < 0):
return0else:
return1deftrain(self, input, target):
guess = self.classify(input)
error = target - guess
if(self.has_bias):
self.bias_weight += 1 * error * self.alpha
for i in range(len(self.weights)):
self.weights[i] += input[i] * error * self.alpha

 

ûÓÐÆ«ÖÃÏîµÄ¸ÐÖªÆ÷

Ê×ÏÈ£¬ÈÃÎÒÃÇѵÁ·ÎÞÆ«ÖÃÏîµÄ¸ÐÖªÆ÷¡£ÎÒÃÇÖªµÀ£¬·ÖÀàÆ÷(ÔÚ±¾ÀýÖÐÊÇÎÒÃǵĺ¯Êý)×ÜÊÇͨ¹ý[0,0]µÄ¡£ÕýÈçÎÒÃÇ֮ǰËù˵µÄÄÇÑù£¬·ÖÀàÆ÷ÎÞ·¨·Ö¿ªÕâÁ½Àà¡£ÔÚÕâÖÖÇé¿öϾ¡¹ÜÒ»Ö±ÔÚÏò·ÖÀëÆ½Ãæ±Æ½ü£¬µ«Ëü»¹ÊDz»Äܽ«[0,0]ºÍ[1,0]·Ö¿ª£¬

ÓÐÆ«ÖÃÏîµÄ¸ÐÖªÆ÷

ÏÖÔÚÎÒÃÇÀ´¿´Ò»ÏÂÓÐÆ«ÖÃÏîµÄ¸ÐÖªÆ÷¡£Ê×ÏÈ£¬×¢Òâ·ÖÀàÆ÷µÄÁé»îÐÔ¡£ÈçǰËùÊö£¬ÔÚÕâÖÖÇé¿öϸÐÖªÆ÷¾ßÓиü´óµÄÁé»îÐÔ¡£´ËÍâÎÒÃÇ¿ÉÒÔ×¢Òâµ½£¬ËüÕýÔÚѰÕÒÓëÉÏÒ»¸öʾÀýÏàͬµÄÅбðÆ½Ãæ£¬µ«ÊÇÏÖÔÚËüÄܹ»ÕÒµ½·ÖÀëÊý¾ÝµÄ×î¼ÑλÖá£

ËùÒÔ£¬Æ«ÖÃÏîµÄÖØÒªÐÔÏÖÔÚÒѾ­ºÜÇå³þÁË¡£ÎÒÖªµÀÄãÏÖÔÚ¿ÉÄÜÔÚ˼¿¼¼¤»îº¯Êý£¬ÎÒÃÇÔÚpythonÀý×ÓÖÐʹÓÃÁËÒ»¸ö½×Ô¾º¯Êý×÷Ϊ¼¤»îº¯Êý£¬Èç¹ûÎÒÃÇʹÓÃsigmoid×÷Ϊ¼¤»îº¯Êý£¬ËüµÄЧ¹û¿ÉÄÜ»á¸üºÃ£¿ÏàÐÅÎÒ:²»»áµÄ¡£ÈÃÎÒÃÇ¿´¿´µ±ÎÒÃǽ«sigmoidº¯Êý×÷ΪÏßÐÔº¯ÊýµÄ¼¤»îº¯Êý(¦Ò(f (x)))»á·¢Éúʲô:

ÄãÊÇ·ñ×¢Òâµ½ÕâÀïµÄÀý×ÓºÍÏßÐÔº¯ÊýµÄÀý×ÓºÜÏàËÆ?sigmoidº¯ÊýËäÈ»¸Ä±äÁËÊä³öµÄÐÎ×´£¬µ«ÊÇÎÒÃÇÈÔÈ»Óöµ½Í¬ÑùµÄÎÊÌâ:Èç¹ûûÓÐÆ«ÖÃÏËùÓеĺ¯Êý¶¼»á¾­¹ýÔ­µã¡£µ±ÎÒÃÇÊÔͼÓÃÇúÏß·ÖÀëORº¯ÊýÖÐʱ£¬ËüÈÔÈ»µÃ²»µ½ÂúÒâµÄ½á¹û¡£Èç¹ûÄúÏë³¢ÊÔһϣ¬¿´¿´ËüÊÇÈçºÎ¹¤×÷µÄ£¬ÄúÖ»ÐèÒª¶Ôpython´úÂë×öһЩССµÄÐ޸ġ£

   
2338 ´Îä¯ÀÀ       31
Ïà¹ØÎÄÕÂ

»ùÓÚͼ¾í»ýÍøÂçµÄͼÉî¶Èѧϰ
×Ô¶¯¼ÝÊ»ÖеÄ3DÄ¿±ê¼ì²â
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
ÏîĿʵս£ºÈçºÎ¹¹½¨ÖªÊ¶Í¼Æ×
 
Ïà¹ØÎĵµ

5GÈ˹¤ÖÇÄÜÎïÁªÍøµÄµäÐÍÓ¦ÓÃ
Éî¶ÈѧϰÔÚ×Ô¶¯¼ÝÊ»ÖеÄÓ¦ÓÃ
ͼÉñ¾­ÍøÂçÔÚ½»²æÑ§¿ÆÁìÓòµÄÓ¦ÓÃÑо¿
ÎÞÈË»úϵͳԭÀí
Ïà¹Ø¿Î³Ì

È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ&TensorFlow
»úÆ÷ÈËÈí¼þ¿ª·¢¼¼Êõ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
ͼÏñ´¦ÀíËã·¨·½·¨Óëʵ¼ù
×îл¼Æ»®
DeepSeek´óÄ£ÐÍÓ¦Óÿª·¢ 6-12[ÏÃÃÅ]
È˹¤ÖÇÄÜ.»úÆ÷ѧϰTensorFlow 6-22[Ö±²¥]
»ùÓÚ UML ºÍEA½øÐзÖÎöÉè¼Æ 6-30[±±¾©]
ǶÈëʽÈí¼þ¼Ü¹¹-¸ß¼¶Êµ¼ù 7-9[±±¾©]
Óû§ÌåÑé¡¢Ò×ÓÃÐÔ²âÊÔÓëÆÀ¹À 7-25[Î÷°²]
ͼÊý¾Ý¿âÓë֪ʶͼÆ× 8-23[±±¾©]
 
×îÐÂÎÄÕÂ
¶àÄ¿±ê¸ú×Ù£ºAI²úÆ·¾­ÀíÐèÒªÁ˽âµÄCVͨʶ
Éî¶Èѧϰ¼Ü¹¹
¾í»ýÉñ¾­ÍøÂç֮ǰÏò´«²¥Ëã·¨
´Ó0µ½1´î½¨AIÖÐ̨
¹¤Òµ»úÆ÷ÈË¿ØÖÆÏµÍ³¼Ü¹¹½éÉÜ
×îпγÌ
È˹¤ÖÇÄÜ£¬»úÆ÷ѧϰºÍÉî¶Èѧϰ
È˹¤ÖÇÄÜÓë»úÆ÷ѧϰӦÓÃʵս
È˹¤ÖÇÄÜ-ͼÏñ´¦ÀíºÍʶ±ð
È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ& TensorFlow+Keras¿ò¼Üʵ¼ù
È˹¤ÖÇÄÜ+Python£«´óÊý¾Ý
³É¹¦°¸Àý
ij×ÛºÏÐÔ¿ÆÑлú¹¹ È˹¤ÖÇÄÜÓë»úÆ÷ѧϰӦÓÃ
Ä³ÒøÐÐ È˹¤ÖÇÄÜ+Python+´óÊý¾Ý
±±¾© È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰ& TensorFlow¿ò¼Üʵ¼ù
ijÁìÏÈÊý×ÖµØÍ¼ÌṩÉÌ PythonÊý¾Ý·ÖÎöÓë»úÆ÷ѧϰ
ÖйúÒÆ¶¯ È˹¤ÖÇÄÜ¡¢»úÆ÷ѧϰºÍÉî¶Èѧϰ