Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
»úÆ÷ѧϰʵս֮AdaBoostËã·¨
 
  2767  次浏览      27
 2019-3-13 
 
±à¼­ÍƼö:
±¾ÎÄÀ´×ÔÓÚcnblogs£¬Ö÷Òª½²½âÁËbagging·½·¨ÒÔ¼°AdaBoostµÄÁ÷³Ì£¬AdaBoostË㷨ʵÏÖµÈÏà¹ØÄÚÈÝ¡£

Ò»£¬ÒýÑÔ

Ç°Ãæ¼¸ÕµĽéÉÜÁ˼¸ÖÖ·ÖÀàËã·¨£¬µ±È»¸÷ÓÐÓÅȱ¡£Èç¹û½«ÕâЩ²»Í¬µÄ·ÖÀàÆ÷×éºÏÆðÀ´£¬¾Í¹¹³ÉÁËÎÒÃǽñÌìÒª½éÉܵɷ½·¨»òÕß˵ԪËã·¨¡£¼¯³É·½·¨ÓжàÖÖÐÎʽ£º¿ÉÒÔʹ¶àÖÖËã·¨µÄ¼¯³É£¬Ò²¿ÉÒÔÊÇÒ»ÖÖËã·¨ÔÚ²»Í¬ÉèÖÃÏµļ¯³É£¬»¹¿ÉÒÔ½«Êý¾Ý¼¯µÄ²»Í¬²¿·Ö·ÖÅ䲻ͬµÄ·ÖÀàÆ÷£¬ÔÙ½«ÕâЩ·ÖÀàÆ÷½øÐм¯³É¡£

adaBoost·ÖÀàÆ÷¾ÍÊÇÒ»ÖÖÔªËã·¨·ÖÀàÆ÷£¬adaBoost·ÖÀàÆ÷ÀûÓÃͬһÖÖ»ù·ÖÀàÆ÷£¨Èõ·ÖÀàÆ÷£©£¬»ùÓÚ·ÖÀàÆ÷µÄ´íÎóÂÊ·ÖÅ䲻ͬµÄÈ¨ÖØ²ÎÊý£¬×îºóÀÛ¼Ó¼ÓȨµÄÔ¤²â½á¹û×÷ΪÊä³ö¡£

1 bagging·½·¨

ÔÚ½éÉÜadaBoost֮ǰ£¬ÎÒÃÇÊ×ÏÈ´óÖ½éÉÜÒ»ÖÖ»ùÓÚÊý¾ÝËæ»úÖØ³éÑùµÄ·ÖÀàÆ÷¹¹½¨·½·¨£¬¼´bagging£¨bootstrap aggregating£©·½·¨£¬ÆäÊÇ´ÓԭʼÊý¾Ý¼¯Ñ¡Ôñs´ÎºóµÃµ½s¸öÐÂÊý¾Ý¼¯µÄÒ»ÖÖ¼¼Êõ¡£ÐèҪ˵Ã÷µÄÊÇ£¬ÐÂÊý¾Ý¼¯ºÍÔ­Êý¾Ý¼¯µÄ´óСÏàµÈ¡£Ã¿¸öÊý¾Ý¼¯¶¼ÊÇͨ¹ýÔÚԭʼÊý¾Ý¼¯ÉÏÏȺóËæ»úÑ¡ÔñÒ»¸öÑù±¾À´½øÐÐÌæ»»µÃµ½µÄеÄÊý¾Ý¼¯£¨¼´ÏÈËæ»úÑ¡ÔñÒ»¸öÑù±¾£¬È»ºóËæ»úÑ¡ÔñÁíÍâÒ»¸öÑù±¾Ì滻֮ǰµÄÑù±¾£©£¬²¢ÇÒÕâÀïµÄÌæ»»¿ÉÒÔ¶à´ÎÑ¡ÔñͬһÑù±¾£¬Ò²¾ÍÊÇ˵ijЩÑù±¾¿ÉÄܶà´Î³öÏÖ£¬¶øÁíÍâÓÐһЩÑù±¾ÔÚм¯ºÏÖв»ÔÙ³öÏÖ¡£

s¸öÊý¾Ý¼¯×¼±¸ºÃÖ®ºó£¬½«Ä³¸öѧϰËã·¨·Ö±ð×÷ÓÃÓÚÿ¸öÊý¾Ý¼¯¾ÍµÃµ½s¸ö·ÖÀàÆ÷¡£µ±Òª¶ÔеÄÊý¾Ý½øÐзÖÀàʱ£¬¾ÍÓ¦ÓÃÕâs¸ö·ÖÀàÆ÷½øÐзÖÀ࣬×îºó¸ù¾Ý¶àÊý±í¾öµÄÔ­ÔòÈ·¶¨³ö×îºóµÄ·ÖÀà½á¹û¡£

2 boosting·½·¨

boosting·½·¨¾ÍÊÇÎÒÃDZ¾ÎÄÒª½²µ½µÄ·ÖÀàËã·¨£¬ÆäÓëÉÏÃæÌáµ½µÄbaggingºÜÀàËÆ£¬¶¼ÊDzÉÓÃͬһÖÖ»ù·ÖÀàÆ÷µÄ×éºÏ·½·¨¡£¶øÓëbagging²»Í¬µÄÊÇ£¬boostingÊǼ¯ÖйØ×¢·ÖÀàÆ÷´í·ÖµÄÄÇЩÊý¾ÝÀ´»ñµÃеķÖÀàÆ÷

´ËÍ⣬baggingÖзÖÀàÆ÷È¨ÖØÏàµÈ£¬¶øboostingÖзÖÀàÆ÷µÄȨֵ²¢²»ÏàµÈ£¬·ÖÀàÆ÷µÄ´íÎóÂÊÔ½µÍ£¬ÄÇôÆä¶ÔÓ¦µÄÈ¨ÖØÒ²¾ÍÔ½´ó£¬Ô½ÈÝÒ×¶ÔÔ¤²â½á¹û²úÉúÓ°Ïì¡£boostingÓÐÐí¶à°æ±¾£¬¶ø½ñÌìÒª½éÉܵÄÊDZȽÏÁ÷ÐеÄAdaBoost¡£

¶þ£¬AdaBoost

AdaBoostµÄÒ»°ãÁ÷³ÌÈçÏÂËùʾ£º

£¨1£©ÊÕ¼¯Êý¾Ý

£¨2£©×¼±¸Êý¾Ý£ºÒÀÀµÓÚËùÓõĻù·ÖÀàÆ÷µÄÀàÐÍ£¬ÕâÀïµÄÊǵ¥²ã¾ö²ßÊ÷£¬¼´Ê÷×®£¬¸ÃÀàÐ;ö²ßÊ÷¿ÉÒÔ´¦ÀíÈκÎÀàÐ͵ÄÊý¾Ý¡£

£¨3£©·ÖÎöÊý¾Ý

£¨4£©ÑµÁ·Ëã·¨£ºÀûÓÃÌṩµÄÊý¾Ý¼¯ÑµÁ··ÖÀàÆ÷

£¨5£©²âÊÔËã·¨£ºÀûÓÃÌṩµÄ²âÊÔÊý¾Ý¼¯¼ÆËã·ÖÀàµÄ´íÎóÂÊ

£¨6£©Ê¹ÓÃËã·¨£ºËã·¨µÄÏà¹ØÍÆ¹ã£¬Âú×ãʵ¼ÊµÄÐèÒª

½ÓÏÂÀ´£¬¾ßÌå²ûÊöadaBoost·ÖÀàËã·¨

1 ѵÁ·Ëã·¨£º»ùÓÚ´íÎóÌáÉý·ÖÀàÆ÷µÄÐÔÄÜ

ÉÏÃæËùÊöµÄ»ù·ÖÀàÆ÷£¬»òÕß˵Èõ·ÖÀàÆ÷£¬Òâζ×Å·ÖÀàÆ÷µÄÐÔÄܲ»»áÌ«ºÃ£¬¿ÉÄÜÒª±ÈËæ»ú²Â²âÒªºÃһЩ£¬Ò»°ã¶øÑÔ£¬ÔÚ¶þÀà·ÖÀàÇé¿öÏ£¬Èõ·ÖÀàÆ÷µÄ·ÖÀà´íÎóÂÊ´ïµ½ÉõÖÁ³¬¹ý50%£¬ÏÔȻҲֻÊDZÈËæ»ú²Â²âÂԺᣵ«ÊÇ£¬Ç¿·ÖÀàÆ÷µÄ·ÖÀà´íÎóÂÊÏà¶Ô¶øÑÔ¾ÍҪСºÜ¶à£¬adaBoostËã·¨¾ÍÊÇÒ×ÓÚÕâЩÈõ·ÖÀàÆ÷µÄ×éºÏ×îÖÕÀ´Íê³É·ÖÀàÔ¤²âµÄ¡£

adaBoostµÄÔËÐйý³Ì£ºÑµÁ·Êý¾ÝµÄÿһ¸öÑù±¾£¬²¢¸³ÓèÆäÒ»¸öÈ¨ÖØ£¬ÕâЩȨֵ¹¹³ÉÈ¨ÖØÏòÁ¿D£¬Î¬¶ÈµÈÓÚÊý¾Ý¼¯Ñù±¾¸öÊý¡£¿ªÊ¼Ê±£¬ÕâÐ©È¨ÖØ¶¼ÊÇÏàµÈµÄ£¬Ê×ÏÈÔÚѵÁ·Êý¾Ý¼¯ÉÏѵÁ·³öÒ»¸öÈõ·ÖÀàÆ÷²¢¼ÆËã¸Ã·ÖÀàÆ÷µÄ´íÎóÂÊ£¬È»ºóÔÚͬһÊý¾Ý¼¯ÉÏÔÙ´ÎѵÁ·Èõ·ÖÀàÆ÷£¬µ«ÊÇÔÚµÚ¶þ´ÎѵÁ·Ê±£¬½«»á¸ù¾Ý·ÖÀàÆ÷µÄ´íÎóÂÊ£¬¶ÔÊý¾Ý¼¯ÖÐÑù±¾µÄ¸÷¸öÈ¨ÖØ½øÐе÷Õû£¬·ÖÀàÕýÈ·µÄÑù±¾µÄÈ¨ÖØ½µµÍ£¬¶ø·ÖÀà´íµÄÑù±¾È¨ÖØÔòÉÏÉý£¬µ«ÕâÐ©È¨ÖØµÄ×ܺͱ£³Ö²»±äΪ1.

²¢ÇÒ£¬×îÖյķÖÀàÆ÷»á»ùÓÚÕâЩѵÁ·µÄÈõ·ÖÀàÆ÷µÄ·ÖÀà´íÎóÂÊ£¬·ÖÅ䲻ͬµÄ¾ö¶¨ÏµÊýalpha£¬´íÎóÂʵ͵ķÖÀàÆ÷»ñµÃ¸ü¸ßµÄ¾ö¶¨ÏµÊý£¬´Ó¶øÔÚ¶ÔÊý¾Ý½øÐÐÔ¤²âʱÆð¹Ø¼ü×÷Óá£alphaµÄ¼ÆËã¸ù¾Ý´íÎóÂʵÃÀ´£º

alpha=0.5*ln(1-¦Å/max(¦Å,1e-16))

ÆäÖУ¬¦Å=ΪÕýÈ··ÖÀàµÄÑù±¾ÊýÄ¿/Ñù±¾×ÜÊý£¬max(¦Å,1e-16)ÊÇΪÁË·ÀÖ¹´íÎóÂÊΪ¶øÔì³É·ÖĸΪ0µÄÇé¿ö·¢Éú

¼ÆËã³öalphaÖ®ºó£¬¾Í¿ÉÒÔ¶ÔÈ¨ÖØÏòÁ¿½øÐиüÐÂÁË£¬Ê¹µÃ·ÖÀà´íÎóµÄÑù±¾»ñµÃ¸ü¸ßµÄÈ¨ÖØ£¬¶ø·ÖÀàÕýÈ·µÄÑù±¾»ñµÃ¸üµÍµÄÈ¨ÖØ¡£DµÄ¼ÆË㹫ʽÈçÏ£º

Èç¹ûij¸öÑù±¾±»ÕýÈ··ÖÀ࣬ÄÇÃ´È¨ÖØ¸üÐÂΪ£º

D(m+1,i)=D(m,i)*exp(-alpha)/sum(D)

Èç¹ûij¸öÑù±¾±»´íÎó·ÖÀ࣬ÄÇÃ´È¨ÖØ¸üÐÂΪ£º

D(m+1,i)=D(m,i)*exp(alpha)/sum(D)

ÆäÖУ¬mΪµü´úµÄ´ÎÊý£¬¼´ÑµÁ·µÄµÚm¸ö·ÖÀàÆ÷£¬iÎªÈ¨ÖØÏòÁ¿µÄµÚi¸ö·ÖÁ¿£¬i<=Êý¾Ý¼¯Ñù±¾ÊýÁ¿

µ±ÎÒÃǸüÐÂÍê¸÷¸öÑù±¾µÄÈ¨ÖØÖ®ºó£¬¾Í¿ÉÒÔ½øÐÐÏÂÒ»´ÎµÄµü´úѵÁ·¡£adaBoostËã·¨»á²»¶ÏÖØ¸´ÑµÁ·ºÍµ÷ÕûÈ¨ÖØ£¬Ö±ÖÁ´ïµ½µü´ú´ÎÊý£¬»òÕßѵÁ·´íÎóÂÊΪ0¡£

2 »ùÓÚµ¥²ã¾ö²ßÊ÷¹¹½¨Èõ·ÖÀàÆ÷

µ¥²ã¾ö²ßÊ÷ÊÇÒ»ÖÖ¼òµ¥µÄ¾ö²ßÊ÷£¬Ò²³ÆÎª¾ö²ßÊ÷×®¡£µ¥²ã¾ö²ßÊ÷¿ÉÒÔ¿´×öÊÇÓÉÒ»¸ö¸ù½ÚµãÖ±½ÓÁ¬½ÓÁ½¸öÒ¶½áµãµÄ¼òµ¥¾ö²ßÊ÷£¬±ÈÈçx>v»òx<v£¬¾Í¿ÉÒÔ¿´×öÊÇÒ»¸ö¼òµ¥¾ö²ßÊ÷¡£

ΪÁ˸üºÃµÄÑÝʾadaBoostµÄѵÁ·¹ý³Ì£¬ÎÒÃÇÊ×ÏȽ¨Á¢Ò»¸ö¼òµ¥µÄÊý¾Ý¼¯£¬²¢½«ÆäתΪÎÒÃÇÏëÒªµÄÊý¾Ý¸ñʽ£¬´úÂëÈçÏ£º

#»ñÈ¡Êý¾Ý¼¯
def loadSimpData():
dataMat=matrix([[1. ,2.1],
[2. ,1.1],
[1.3,1. ],
[1. ,1. ],
[2. ,1. ]])
classLabels=[1.0,1.0,-1.0,-1.0,1.0]
return dataMat,classLabels

½ÓÏÂÀ´£¬ÎÒÃǾÍҪͨ¹ýÉÏÊöÊý¾Ý¼¯À´Ñ°ÕÒ×î¼ÑµÄµ¥²ã¾ö²ßÊ÷£¬×î¼Ñµ¥²ã¾ö²ßÊ÷ÊǾßÓÐ×îµÍ·ÖÀà´íÎóÂʵĵ¥²ã¾ö²ßÊ÷£¬Î±´úÂëÈçÏ£º

#¹¹½¨µ¥²ã·ÖÀàÆ÷
#µ¥²ã·ÖÀàÆ÷ÊÇ»ùÓÚ×îС¼ÓȨ·ÖÀà´íÎóÂʵÄÊ÷×®
#α´úÂë
#½«×îС´íÎóÂÊminErrorÉèΪ+¡Þ
#¶ÔÊý¾Ý¼¯ÖеÄÿ¸öÌØÕ÷(µÚÒ»²ãÌØÕ÷)£º
#¶Ôÿ¸ö²½³¤(µÚ¶þ²ãÌØÕ÷)£º
#¶Ôÿ¸ö²»µÈºÅ(µÚÈý²ãÌØÕ÷)£º
#½¨Á¢Ò»¿Åµ¥²ã¾ö²ßÊ÷²¢ÀûÓüÓȨÊý¾Ý¼¯¶ÔËü½øÐвâÊÔ
#Èç¹û´íÎóÂʵÍÓÚminError£¬Ôò½«µ±Ç°µ¥²ã¾ö²ßÊ÷ÉèΪ×î¼Ñµ¥²ã¾ö²ßÊ÷
#·µ»Ø×î¼Ñµ¥²ã¾ö²ßÊ÷

½ÓÏÂÀ´¿´µ¥²ã¾ö²ßÊ÷µÄÉú³Éº¯Êý´úÂ룺

#µ¥²ã¾ö²ßÊ÷µÄãÐÖµ¹ýÂ˺¯Êý
def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):
#¶ÔÊý¾Ý¼¯Ã¿Ò»Áеĸ÷¸öÌØÕ÷½øÐÐãÐÖµ¹ýÂË
retArray=ones((shape(dataMatrix)[0],1))
#ãÐÖµµÄģʽ£¬½«Ð¡ÓÚijһãÐÖµµÄÌØÕ÷¹éÀàΪ-1
if threshIneq=='lt':
retArray[dataMatrix[:,dimen]<=threshVal]=-1.0
#½«´óÓÚijһãÐÖµµÄÌØÕ÷¹éÀàΪ-1
else:
retArray[dataMatrix[:,dimen]>threshVal]=-1.0

def buildStump(dataArr,classLabels,D):
#½«Êý¾Ý¼¯ºÍ±êÇ©ÁбíתΪ¾ØÕóÐÎʽ
dataMatrix=mat(dataArr);labelMat=mat(classLabels).T
m,n=shape(dataMatrix)
#²½³¤»òÇø¼ä×ÜÊý ×îÓžö²ßÊ÷ÐÅÏ¢ ×îÓŵ¥²ã¾ö²ßÊ÷Ô¤²â½á¹û
numSteps=10.0;bestStump={};bestClasEst=mat(zeros((m,1)))
#×îС´íÎóÂʳõʼ»¯Îª+¡Þ
minError=inf
#±éÀúÿһÁеÄÌØÕ÷Öµ
for i in range(n):
#ÕÒ³öÁÐÖÐÌØÕ÷ÖµµÄ×îСֵºÍ×î´óÖµ
rangeMin=dataMatrix[:,i].min();rangeMax=
dataMatrix[:,i].max()
#ÇóÈ¡²½³¤´óС»òÕßËµÇø¼ä¼ä¸ô
stepSize=(rangeMax-rangeMin)/numSteps
#±éÀú¸÷¸ö²½³¤Çø¼ä
for j in range(-1,int(numSteps)+1):
#Á½ÖÖãÐÖµ¹ýÂËģʽ
for inequal in ['lt','gt']:
#ãÐÖµ¼ÆË㹫ʽ£º×îСֵ+j(-1<=j<=numSteps+1)*²½³¤
threshVal=(rangeMin+float(j)*stepSize)
#Ñ¡¶¨ãÐÖµºó£¬µ÷ÓÃãÐÖµ¹ýÂ˺¯Êý·ÖÀàÔ¤²â
predictedVals=\
stumpClassify(dataMatrix,i,threshVal,'inequal')
#³õʼ»¯´íÎóÏòÁ¿
errArr=mat(ones((m,1)))
#½«´íÎóÏòÁ¿ÖзÖÀàÕýÈ·ÏîÖÃ0
errArr[predictedVals==labelMat]=0
#¼ÆËã"¼ÓȨ"µÄ´íÎóÂÊ
weigthedError=D.T*errArr
#´òÓ¡Ïà¹ØÐÅÏ¢£¬¿ÉÊ¡ÂÔ
#print("split: dim %d, thresh %.2f,thresh inequal:\
# %s, the weighted error is %.3f",
# %(i,threshVal,inequal,weigthedError))
#Èç¹ûµ±Ç°´íÎóÂÊСÓÚµ±Ç°×îС´íÎóÂÊ£¬½«µ±Ç°´íÎóÂÊ×÷Ϊ×îС´íÎóÂÊ
#´æ´¢Ïà¹ØÐÅÏ¢
if weigthedError<minError:
minError=weigthedError
bestClasEst=predictedVals.copy()
bestStump['dim']=i
bestStump['thresh']='threshVal'
bestStump['ineq']=inequal
#·µ»Ø×î¼Ñµ¥²ã¾ö²ßÊ÷Ïà¹ØÐÅÏ¢µÄ×ֵ䣬×îС´íÎóÂÊ£¬¾ö²ßÊ÷Ô¤²âÊä³ö½á¹û
return bestStump,minError,bestClasEst

ÐèҪ˵Ã÷µÄÊÇ£¬ÉÏÃæµÄ´úÂë°üº¬Á½¸öº¯Êý£¬µÚÒ»¸öº¯ÊýÊÇ·ÖÀàÆ÷µÄãÐÖµ¹ýÂ˺¯Êý£¬¼´É趨ijһãÐÖµ£¬·²Êdz¬¹ý¸ÃãÐÖµµÄ½á¹û±»¹éΪһÀ࣬СÓÚãÐÖµµÄ½á¹û¶¼±»·ÖΪÁíÍâÒ»À࣬ÕâÀïµÄÁ½ÀàÒÀȻͬSVMÒ»Ñù£¬²ÉÓÃ+1ºÍ-1×÷ΪÀà±ð¡£

µÚ¶þ¸öº¯Êý£¬¾ÍÊǽ¨Á¢µ¥²ã¾ö²ßÊ÷µÄ¾ßÌå´úÂ룬»ùÓÚÑù±¾ÖµµÄ¸÷¸öÌØÕ÷¼°ÌØÕ÷ÖµµÄ´óС£¬É趨ºÏÊʵIJ½³¤£¬»ñµÃ²»Í¬µÄãÐÖµ£¬È»ºóÒÔ´ËãÐÖµ×÷Ϊ¸ù½áµã£¬¶ÔÊý¾Ý¼¯Ñù±¾½øÐзÖÀ࣬²¢¼ÆËã´íÎóÂÊ£¬ÐèÒªÖ¸³öµÄÊÇ£¬ÕâÀïµÄ´íÎóÂʼÆËãÊÇ»ùÓÚÑù±¾È¨Öصģ¬ËùÓзִíµÄÑù±¾³ËÒÔÆä¶ÔÓ¦µÄÈ¨ÖØ£¬È»ºó½øÐÐÀۼӵõ½·ÖÀàÆ÷µÄ´íÎóÂÊ¡£´íÎóÂʵõ½Ö®ºó£¬¸ù¾Ý´íÎóÂʵĴóС£¬¸úµ±Ç°´æ´¢µÄ×îС´íÎóÂʵķÖÀàÆ÷½øÐбȽϣ¬Ñ¡Ôñ³ö´íÎóÂÊ×îСµÄÌØÕ÷ѵÁ·³öÀ´µÄ·ÖÀàÆ÷£¬×÷Ϊ×î¼Ñµ¥²ã¾ö²ßÊ÷Êä³ö£¬²¢Í¨¹ý×ÖµäÀàÐͱ£´æÆäÏà¹ØÖØÒªµÄÐÅÏ¢¡£

µü´úµÄ¹ý³ÌÈçÏÂËùʾ£º

ºÃÁË£¬Èõ·ÖÀàÆ÷ÓÐÁË£¬ÄÇôÎÒÃǽÓÏÂÀ´¾Í¿ÉÒÔÀ´ÌÖÂÛadaBoostµÄ¾ßÌåѵÁ·¹ý³ÌÁË

3 ÍêÕûAdaBoostË㷨ʵÏÖ

ÉÏÃæÒѾ­¹¹½¨ºÃÁË»ùÓÚ¼ÓȨÊäÈëÖµ½øÐоö²ßµÄµ¥²ã·ÖÀàÆ÷£¬ÄÇô¾ÍÒѾ­ÓÐÁËʵÏÖÒ»¸öÍêÕûAdaBoostËã·¨ËùÐèÒªµÄËùÓÐÐÅÏ¢ÁË¡£ÏÂÃæÏÈ¿´Ò»ÏÂÕû¸öAdaBoostµÄα´úÂëʵÏÖ£º

#ÍêÕûAdaBoostË㷨ʵÏÖ
#Ë㷨ʵÏÖα´úÂë
#¶Ôÿ´Îµü´ú£º
#ÀûÓÃbuildStump()º¯ÊýÕÒµ½×î¼ÑµÄµ¥²ã¾ö²ßÊ÷
#½«×î¼Ñµ¥²ã¾ö²ßÊ÷¼ÓÈëµ½µ¥²ã¾ö²ßÊ÷Êý×é
#¼ÆËãalpha
#¼ÆËãеÄÈ¨ÖØÏòÁ¿D
#¸üÐÂÀÛ¼ÆÀà±ð¹À¼ÆÖµ
#Èç¹û´íÎóÂÊΪµÈÓÚ0.0£¬Í˳öÑ­»·

ÔÙÀ´¿´¿´¾ßÌåµÄʵÏÖ´úÂë°É£º

#adaBoostËã·¨
#@dataArr£ºÊý¾Ý¾ØÕó
#@classLabels:±êÇ©ÏòÁ¿
#@numIt:µü´ú´ÎÊý
def adaBoostTrainDS(dataArr,classLabels,numIt=40):
#Èõ·ÖÀàÆ÷Ïà¹ØÐÅÏ¢Áбí
weakClassArr=[]
#»ñÈ¡Êý¾Ý¼¯ÐÐÊý
m=shape(dataArr)[0]
#³õʼ»¯È¨ÖØÏòÁ¿µÄÿһÏîÖµÏàµÈ
D=mat(ones((m,1))/m)
#ÀۼƹÀ¼ÆÖµÏòÁ¿
aggClassEst=mat((m,1))
#Ñ­»·µü´ú´ÎÊý
for i in range(numIt):
#¸ù¾Ýµ±Ç°Êý¾Ý¼¯£¬±êÇ©¼°È¨Öؽ¨Á¢×î¼Ñµ¥²ã¾ö²ßÊ÷
bestStump,error,classEst=buildStump
(dataArr,classLabels,D)
#´òÓ¡È¨ÖØÏòÁ¿
print("D:",D.T)
#Çóµ¥²ã¾ö²ßÊ÷µÄϵÊýalpha
alpha=float(0.5*log((1.0-error)/(max(error,1e-16))))
#´æ´¢¾ö²ßÊ÷µÄϵÊýalphaµ½×Öµä
bestStump['alpha']=alpha
#½«¸Ã¾ö²ßÊ÷´æÈëÁбí
weakClassArr.append(bestStump)
#´òÓ¡¾ö²ßÊ÷µÄÔ¤²â½á¹û
print("classEst:",classEst.T)
#Ô¤²âÕýȷΪexp(-alpha),Ô¤²â´íÎóΪexp(alpha)
#¼´Ôö´ó·ÖÀà´íÎóÑù±¾µÄÈ¨ÖØ£¬¼õÉÙ·ÖÀàÕýÈ·µÄÊý¾ÝµãÈ¨ÖØ
expon=multiply(-1*alpha*mat(classLabels).T,classEst)
#¸üÐÂȨֵÏòÁ¿
D=multiply(D,exp(expon))
D=D/D.sum()
#ÀÛ¼Óµ±Ç°µ¥²ã¾ö²ßÊ÷µÄ¼ÓȨԤ²âÖµ
aggClassEst+=alpha*classEst
print("aggClassEst",aggClassEst.T)
#Çó³ö·ÖÀà´íµÄÑù±¾¸öÊý
aggErrors=multiply(sign(aggClassEst)!=\
mat(classLabels).T,ones((m,1)))
#¼ÆËã´íÎóÂÊ
errorRate=aggErrors.sum()/m
print("total error:",errorRate,"\n")
#´íÎóÂÊΪ0.0Í˳öÑ­»·
if errorRate==0.0:break
#·µ»ØÈõ·ÖÀàÆ÷µÄ×éºÏÁбí
return weakClassArr

¶ÔÓÚÉÏÃæµÄ´úÂ룬ÐèҪ˵Ã÷µÄÓÐһϼ¸µã£º

£¨1£©ÉÏÃæµÄÊäÈë³ýÁËÊý¾Ý¼¯ºÍ±êǩ֮Í⣬»¹ÓÐÓû§×Ô¼ºÖ¸¶¨µÄµü´ú´ÎÊý£¬Óû§¿ÉÒÔ¸ù¾Ý×Ô¼ºµÄ³É±¾ÐèÒªºÍʵ¼ÊÇé¿ö£¬É趨ºÏÊʵĵü´ú´ÎÊý£¬¹¹½¨³öÐèÒªµÄÈõ·ÖÀàÆ÷ÊýÁ¿¡£

£¨2£©È¨ÖØÏòÁ¿D°üº¬Á˵±Ç°µ¥²ã¾ö²ßÊ÷·ÖÀàÆ÷Ï£¬¸÷¸öÊý¾Ý¼¯Ñù±¾µÄÈ¨ÖØ£¬Ò»¿ªÊ¼ËüÃǵÄÖµ¶¼ÏàµÈ¡£µ«ÊÇ£¬¾­¹ý·ÖÀàÆ÷·ÖÀàÖ®ºó£¬»á¸ù¾Ý·ÖÀàµÄÈ¨ÖØ¼ÓȨ´íÎóÂʶÔÕâÐ©È¨ÖØ½øÐÐÐ޸ģ¬Ð޸ĵķ½ÏòΪ£¬Ìá¸ß·ÖÀà´íÎóÑù±¾µÄÈ¨ÖØ£¬¼õÉÙ·ÖÀàÕýÈ·µÄÑù±¾µÄÈ¨ÖØ¡£

£¨3£©·ÖÀàÆ÷ϵÊýalpha£¬ÊÇÁíÍâÒ»¸ö·Ç³£ÖØÒªµÄ²ÎÊý£¬ËüÔÚ×îÖյķÖÀàÆ÷×éºÏ¾ö²ß·ÖÀà½á¹ûµÄ¹ý³ÌÖУ¬Æðµ½Á˷dz£ÖØÒªµÄ×÷Óã¬Èç¹ûij¸öÈõ·ÖÀàÆ÷µÄ·ÖÀà´íÎóÂʸüµÍ£¬ÄÇô¸ù¾Ý´íÎóÂʼÆËã³öÀ´µÄ·ÖÀàÆ÷ϵÊý½«¸ü¸ß£¬ÕâÑù£¬ÕâЩ·ÖÀà´íÎóÂʸüµÍµÄ·ÖÀàÆ÷ÔÚ×îÖյķÖÀà¾ö²ßÖУ¬»áÆðµ½¸ü¼ÓÖØÒªµÄ×÷Óá£

£¨4£©ÉÏÊö´úÂëµÄѵÁ·¹ý³ÌÊÇÒÔ´ïµ½µü´úµÄÓû§Ö¸¶¨µÄµü´ú´ÎÊý»òÕßѵÁ·´íÎóÂÊ´ïµ½ÒªÇó¶øÌø³öÑ­»·¡£¶ø×îÖյķÖÀàÆ÷¾ö²ß½á¹û£¬»áͨ¹ýsignº¯Êý£¬½«½á¹ûÖ¸¶¨Îª+1»òÕß-1

ÏÂÃæÊÇѵÁ·µÄ¹ý³Ì£º

/p>

4 ²âÊÔËã·¨

ÄÇôÓÐÁËѵÁ·ºÃµÄ·ÖÀàÆ÷£¬ÊDz»ÊÇÒª²âÊÔÒ»ÏÂÄØ£¬±Ï¾¹ÑµÁ·´íÎóÂÊÕë¶ÔµÄÊÇÒÑÖªµÄÊý¾Ý£¬ÎÒÃÇÐèÒªÔÚ·ÖÀàÆ÷δ֪µÄÊý¾ÝÉϽøÐвâÊÔ£¬¿´¿´·ÖÀàЧ¹û¡£ÉÏÃæµÄѵÁ·´úÂë»á°ïÎÒÃDZ£´æÃ¿¸öÈõ·ÖÀàÆ÷µÄÖØÒªÐÅÏ¢£¬±ÈÈç·ÖÀàÆ÷ϵÊý£¬·ÖÀàÆ÷µÄ×îÓÅÌØÕ÷£¬ÌØÕ÷ãÐÖµµÈ¡£ÓÐÁËÕâÐ©ÖØÒªµÄÐÅÏ¢£¬ÎÒÃÇÄõ½Ö®ºó£¬¾Í¿ÉÒÔ¶Ô²âÊÔÊý¾Ý½øÐÐÔ¤²â·ÖÀàÁË

#²âÊÔadaBoost£¬adaBoost·ÖÀຯÊý
#@datToClass:²âÊÔÊý¾Ýµã
#@classifierArr£º¹¹½¨ºÃµÄ×îÖÕ·ÖÀàÆ÷
def adaClassify(datToClass,classifierArr):
#¹¹½¨Êý¾ÝÏòÁ¿»ò¾ØÕó
dataMatrix=mat(datToClass)
#»ñÈ¡¾ØÕóÐÐÊý
m=shape(dataMatrix)[0]
#³õʼ»¯×îÖÕ·ÖÀàÆ÷
aggClassEst=mat(zeros((m,1)))
#±éÀú·ÖÀàÆ÷ÁбíÖеÄÿһ¸öÈõ·ÖÀàÆ÷
for i in range(len(classifierArr)):
#ÿһ¸öÈõ·ÖÀàÆ÷¶Ô²âÊÔÊý¾Ý½øÐÐÔ¤²â·ÖÀà
classEst=stumpClassify(dataMat,classifierArr[i]['dim'],\
classifierArr[i]['thresh'],
classifierArr[i]['ineq'])
#¶Ô¸÷¸ö·ÖÀàÆ÷µÄÔ¤²â½á¹û½øÐмÓȨÀÛ¼Ó
aggClassEst+=classifierArr[i]['alpha']*classEst
print('aggClassEst',aggClassEst)
#ͨ¹ýsignº¯Êý¸ù¾Ý½á¹û´óÓÚ»òСÓÚ0Ô¤²â³ö+1»ò-1
return sign(aggClassEst)

¿´Ò»¸ö²âÊÔÑùÀý

´Ó½á¹û¿´À´£¬²»Ä÷¢ÏÖ£¬Ëæ×ŵü´ú´ÎÊýµÄÔö¼Ó£¬·ÖÀà½á¹ûÊÇÖð½¥Ô½Ç¿µÄ¡£

Èý£¬ÊµÀý£ºÄÑÊý¾Ý¼¯ÉÏÓ¦ÓÃadaBoost

µÚËÄÕµÄlogistic»Ø¹éʱÓõ½ÁËÔ¤²âÂíðÞ²¡ÊÇ·ñËÀÍöµÄÊý¾Ý¼¯¡£ÕâÀÎÒÃÇÔÙ´ÎÀûÓøôæÔÚ30%Êý¾ÝȱʧµÄÊý¾Ý¼¯À´½øÐÐadaBoostËã·¨²âÊÔ£¬±È½ÏÆäÓëlogistic»Ø¹é·ÖÀàÆ÷µÄ·ÖÀà´íÎóÂÊ¡£

Ê×ÏÈ£¬´ÓÎļþÖмÓÔØÊý¾Ý¼¯£¬×ª±ä³ÉÎÒÃÇÏëÒªµÄÊý¾Ý¸ñʽ£¬ÏÈ¿´ÏÂÃæ×ÔÊÊÓ¦Êý¾Ý¼ÓÔØº¯Êý´úÂ룺

#×ÔÊÊÓ¦¼ÓÔØÊý¾Ý
def loadDataSet(filename):
#´´½¨Êý¾Ý¼¯¾ØÕ󣬱êÇ©ÏòÁ¿
dataMat=[];labelMat=[]
#»ñÈ¡ÌØÕ÷ÊýÄ¿(°üÀ¨×îºóÒ»Àà±êÇ©)
#readline():¶ÁÈ¡ÎļþµÄÒ»ÐÐ
#readlines:¶ÁÈ¡Õû¸öÎļþËùÓÐÐÐ
numFeat=len(open(filename).readline().split('\t'))
#´ò¿ªÎļþ
fr=open(filename)
#±éÀúÎı¾Ã¿Ò»ÐÐ
for line in fr.readlines():
lineArr=[]
curLine=line.strip().split('\t')
for i in range(numFeat-1):
lineArr.append(float(curLine[i]))
#Êý¾Ý¾ØÕó
dataMat.append(lineArr)
#±êÇ©ÏòÁ¿
labelMat.append(float(curLine[-1]))
return dataMat,labelMat

Óë֮ǰµÄ¼ÓÔØÊý¾Ý´úÂ벻ͬµÄÊÇ£¬¸Ãº¯Êý¿ÉÒÔ×Ô¶¯¼ì²â³öÊý¾ÝÑù±¾µÄÌØÕ÷ÊýÄ¿¡£ºÃÁË£¬À´¿´×îÖյIJâÊÔ´úÂ뺯Êý£º

#ѵÁ·ºÍ²âÊÔ·ÖÀàÆ÷
def classify():
#ÀûÓÃѵÁ·¼¯ÑµÁ··ÖÀàÆ÷
datArr,labelArr=loadDataSet('horseColicTraining2.txt')
#µÃµ½ÑµÁ·ºÃµÄ·ÖÀàÆ÷
classifierArray=adaBoostTrainDS(datArr,labelArr,10)
#ÀûÓòâÊÔ¼¯²âÊÔ·ÖÀàÆ÷µÄ·ÖÀàЧ¹û
testArr,testLabelArr=loadDataSet('horseClicTest2.txt')
prediction=adaClassify(testArr,classifierArray)
#Êä³ö´íÎóÂÊ
num=shape(mat(labelArr))[1]
errArr=mat(ones((num,1)))
error=errArr[prediction!=mat(testLabelArr).T].sum()
print("the errorRate is: %.2f",errorRate=float(error)/float((num)))

»ùÓÚÉÏÃæµÄadaBoost·ÖÀàÆ÷ѵÁ·ºÍ²âÊÔ´úÂ룬µÃµ½ÁËÏÂÃæµÄ²»Í¬Èõ·ÖÀàÆ÷ÊýÄ¿Çé¿öϵÄAdaBoost²âÊԺͷÖÀà´íÎóÂÊ¡£

·ÖÀàÆ÷ÊýÄ¿ ѵÁ·´íÎóÂÊ(%) ²âÊÔ´íÎóÂÊ(%)

¹Û²ìÉ̱êµÄÊý¾ÝÎÒÃÇ·¢ÏÖ£º

£¨1£©Ëæ×Å·ÖÀàÆ÷ÊýÄ¿µÄÔö¼Ó£¬adaBoost·ÖÀàÆ÷µÄѵÁ·´íÎóÂʲ»¶ÏµÄ¼õÉÙ£¬¶ø²âÊÔ´íÎóÂÊÔòÊǾ­ÀúÏȼõÉÙµ½×îСֵ£¬ÔÙÖð½¥Ôö´óµÄ¹ý³Ì¡£ÏÔÈ»£¬Õâ¾ÍÊÇËù˵µÄ¹ýÄâºÏ¡£Òò´Ë£¬¶ÔÓÚÕâÖÖÇé¿ö£¬ÎÒÃÇÓ¦¸Ã²ÉÈ¡ÏàÓ¦µÄ´ëÊ©£¬±ÈÈç²ÉÈ¡½»²æÑéÖ¤µÄ·½·¨£¬ÔÚѵÁ··ÖÀàÆ÷ʱ£¬É趨һ¸öÑéÖ¤¼¯ºÏ£¬²»¶Ï²âÊÔÑéÖ¤¼¯µÄ·ÖÀà´íÎóÂÊ£¬µ±·¢ÏÖѵÁ·¼¯´íÎóÂʼõÉÙµÄͬʱ£¬ÑéÖ¤¼¯µÄ´íÎóÂʽÏÖ®ÉÏÒ»´Î½á¹ûÉÏÉýÁË£¬¾ÍֹͣѵÁ·¡£»òÕ߯äËû±È½ÏʵÓõÄÄ£ÄâÍ˻𷽷¨£¬»ùÒòÒÅ´«·½·¨µÈ¡£

£¨2£©Ç°ÃæµÄµÚËÄÕµÄlogistic»Ø¹é·ÖÀàÆ÷¶Ô¸ÃÊý¾Ý¼¯µÄ·ÖÀà´íÎóÂÊÊÇ35%£¬ÏÔÈ»adaBoost·ÖÀàÆ÷È¡µÃÁ˸üºÃµÄ·ÖÀàЧ¹û¡£

£¨3£©ÓÐÎÄÏ×±íÃ÷£¬¶ÔÓÚ±íÏֺõÄÊý¾Ý¼¯£¬AdaBoostµÄ²âÊÔÎó²îÂÊ»áËæ×ŵü´ú´ÎÊýµÄÔö¼Ó¶øÖð½¥Îȶ¨ÔÚijһ¸öÖµ¸½½ü£¬¶ø²»»á³öÏÖÉϱíÖеÄÏȼõСºóÉÏÉýµÄÇé¿ö¡£ÏÔÈ»£¬ÕâÀïÓõ½µÄÊý¾Ý¼¯²»ÄܳÆÎª"±íÏÖºÃ"µÄÊý¾Ý¼¯£¬±È½Ï¸ÃÊý¾Ý¼¯´æÔÚ30%µÄÊý¾Ýȱʧ¡£ÔÚµÚËÄÕµÄlogistic»Ø¹éÖУ¬ÎÒÃǽ²ÕâЩȷʵµÄÊý¾ÝÉèÖÃΪ0£¬ÏÔÈ»ÕâÔÚlogistic»Ø¹éËã·¨ÖÐÊǺÏÊÊ£¬ÕâÑù²»»á¶Ô·ÖÀà½á¹ûÔì³ÉÓ°Ïì¡£µ«ÊÇ£¬ÔÚadaBoostËã·¨ÖÐÒÀÈ»ÕâÑùÉèÖã¬ÆäºÏÀíÐÔ»¹ÓдýÖ¤Ã÷£¬ËùÒÔ£¬ÓбØÒª¿ÉÒÔ½«ÕâЩȱʧµÄÊý¾ÝÖµÓÉ0±ä³É¸ÃÌØÕ÷ÏàÀàËÆµÄÊý¾Ý£¬»òÕ߸ÃÌØÕ÷Êý¾ÝµÄƽ¾ùÖµ£¬ÔÙÀ´½øÐÐadaBoostË㷨ѵÁ·£¬¿´¿´µÃµ½µÄ½á¹û»á²»»áÓÐËùÌáÉý£¿

ËÄ£¬×ܽá

adaBoostÊÇboosting·½·¨ÖÐ×îÁ÷ÐеÄÒ»ÖÖËã·¨¡£ËüÊÇÒÔÈõ·ÖÀàÆ÷×÷Ϊ»ù´¡·ÖÀàÆ÷£¬ÊäÈëÊý¾ÝÖ®ºó£¬Í¨¹ý¼ÓȨÏòÁ¿½øÐмÓȨ£¬£»ÔÚÿһÂֵĵü´ú¹ý³ÌÖж¼»á»ùÓÚÈõ·ÖÀàÆ÷µÄ¼ÓȨ´íÎóÂÊ£¬¸üÐÂÈ¨ÖØÏòÁ¿£¬´Ó¶ø½øÐÐÏÂÒ»´Îµü´ú¡£²¢ÇÒ»áÔÚÿһÂÖµü´úÖмÆËã³ö¸ÃÈõ·ÖÀàÆ÷µÄϵÊý£¬¸ÃϵÊýµÄ´óС½«¾ö¶¨¸ÃÈõ·ÖÀàÆ÷ÔÚ×îÖÕÔ¤²â·ÖÀàÖеÄÖØÒª³Ì¶È¡£ÏÔÈ»£¬ÕâÁ½µãµÄ½áºÏÊÇadaBoostËã·¨µÄÓÅÊÆËùÔÚ¡£

Óŵ㣺·º»¯´íÎóÂʵͣ¬ÈÝÒ×ʵÏÖ£¬¿ÉÒÔÓ¦ÓÃÔڴ󲿷ַÖÀàÆ÷ÉÏ£¬ÎÞ²ÎÊýµ÷Õû

ȱµã£º¶ÔÀëÉ¢Êý¾ÝµãÃô¸Ð

   
2767 ´Îä¯ÀÀ       27
Ïà¹ØÎÄÕÂ

»ùÓÚEAµÄÊý¾Ý¿â½¨Ä£
Êý¾ÝÁ÷½¨Ä££¨EAÖ¸ÄÏ£©
¡°Êý¾Ýºþ¡±£º¸ÅÄî¡¢ÌØÕ÷¡¢¼Ü¹¹Óë°¸Àý
ÔÚÏßÉ̳ÇÊý¾Ý¿âϵͳÉè¼Æ ˼·+Ч¹û
 
Ïà¹ØÎĵµ

GreenplumÊý¾Ý¿â»ù´¡Åàѵ
MySQL5.1ÐÔÄÜÓÅ»¯·½°¸
ijµçÉÌÊý¾ÝÖÐ̨¼Ü¹¹Êµ¼ù
MySQL¸ßÀ©Õ¹¼Ü¹¹Éè¼Æ
Ïà¹Ø¿Î³Ì

Êý¾ÝÖÎÀí¡¢Êý¾Ý¼Ü¹¹¼°Êý¾Ý±ê×¼
MongoDBʵս¿Î³Ì
²¢·¢¡¢´óÈÝÁ¿¡¢¸ßÐÔÄÜÊý¾Ý¿âÉè¼ÆÓëÓÅ»¯
PostgreSQLÊý¾Ý¿âʵսÅàѵ