±à¼ÍƼö: |
±¾ÎÄÀ´×ÔÓÚ¼òÊ飬ÎÄÖÐÖ÷Òª½éÉÜÁËΪʲôҪÓÃAdaBoost£¨ÎªÊ²Ã´ÒªÓÃÈõ·ÖÀàÆ÷ºÍ¶à¸öʵÀýÀ´¹¹½¨Ò»¸öÇ¿·ÖÀàÆ÷£©¡£ |
|
ÕâÒ»Éú»îÎÊÌâÓ³Éäµ½¼ÆËã»úÊÀ½ç¾Í±ä³ÉÁËÔªËã·¨£¨meta-algorithm£©»òÕß¼¯³É·½·¨£¨ensemble
method£©¡£ÕâÖÖ¼¯³É¿ÉÒÔÊDz»Í¬Ëã·¨µÄ¼¯³É£¬Ò²¿ÉÒÔÊÇͬһËã·¨ÔÚ²»Í¬ÉèÖÃÏµļ¯³É£¬»¹¿ÉÒÔÊÇÊý¾Ý¼¯²»Í¬²¿·Ö·ÖÅ䏸²»Í¬·ÖÀàÆ÷Ö®ºóµÄ¼¯³É¡£AdaBoost¾ÍÊÇÒ»ÖÖ×îÁ÷ÐеÄÔªËã·¨¡£
ʲôÊÇAdaBoost
AdaBoostÊÇadaptive boostingµÄËõд£¬boostingÊÇÒ»ÖÖÓëbaggingºÜÀàËÆµÄ¼¼Êõ£¬½«ÔʼÊý¾Ý¼¯Ñ¡ÔñS´ÎºóµÃµ½S¸öÐÂÊý¾Ý¼¯£¬ÐÂÊý¾Ý¼¯ÓëÔʼÊý¾Ý¼¯´óСÏàµÈ£¬Ã¿¸öÊý¾Ý¼¯¶¼ÊÇͨ¹ýÔÚÔʼÊý¾Ý¼¯ÖÐËæ»úÑ¡ÔñÒ»¸öÑù±¾À´Ìæ»»µÃµ½µÄ£¬Õâ¾ÍÒâζ×Å¿ÉÒÔ¶à´ÎÑ¡Ôñͬһ¸öÑù±¾¡£ÔÚS¸öÊý¾Ý¼¯½¨ºÃÖ®ºó£¬½«Ä³¸öѧϰËã·¨·Ö±ð×÷ÓÃÓÚÿ¸öÊý¾Ý¼¯¾ÍµÃµ½ÁËS¸ö·ÖÀàÆ÷£¬µ±ÎÒÃÇÒª¶ÔÐÂÊý¾Ý·ÖÀàʱ£¬¾Í¿ÉÒÔÓÃÕâS¸ö·ÖÀàÆ÷½øÐзÖÀ࣬ѡÔñ·ÖÀàÆ÷ͶƱ½á¹û×î¶àµÄÀà±ð×÷Ϊ×îºó·ÖÀà½á¹û¡£boostingͨ¹ý¼¯ÖйØ×¢±»ÒÑÓзÖÀàÆ÷´í·ÖµÄÊý¾ÝÀ´»ñµÃеķÖÀàÆ÷£¬boosting¸øÃ¿¸ö·ÖÀàÆ÷µÄÈ¨ÖØ²»ÏàµÈ£¬Ã¿¸öÈ¨ÖØ´ú±íµÄÊǶÔÓ¦µÄ·ÖÀàÆ÷ÔÚÉÏÒ»ÂÖµü´úÖеijɹ¦¶È£¬·ÖÀà½á¹ûÊÇ»ùÓÚËùÓзÖÀàÆ÷µÄ¼ÓȨÇóºÍµÃµ½µÄ¡£
ΪʲôҪÓÃAdaBoost£¨ÎªÊ²Ã´ÒªÓÃÈõ·ÖÀàÆ÷ºÍ¶à¸öʵÀýÀ´¹¹½¨Ò»¸öÇ¿·ÖÀàÆ÷£©
µÈ´ý´ð°¸ÖС£¡£¡£
AdaboostËã·¨Á÷³ÌÊÇʲô
1£©¸øÊý¾ÝÖеÄÿһ¸öÑù±¾Ò»¸öÈ¨ÖØ
2£©ÑµÁ·Êý¾ÝÖеÄÿһ¸öÑù±¾£¬µÃµ½µÚÒ»¸ö·ÖÀàÆ÷
3£©¼ÆËã¸Ã·ÖÀàÆ÷µÄ´íÎóÂÊ£¬¸ù¾Ý´íÎóÂʼÆËãÒª¸ø·ÖÀàÆ÷·ÖÅäµÄÈ¨ÖØ£¨×¢ÒâÕâÀïÊÇ·ÖÀàÆ÷µÄÈ¨ÖØ£©
4£©½«µÚÒ»¸ö·ÖÀàÆ÷·Ö´íÎóµÄÑù±¾È¨ÖØÔö¼Ó£¬·Ö¶ÔµÄÑù±¾È¨ÖؼõС£¨×¢ÒâÕâÀïÊÇÑù±¾µÄÈ¨ÖØ£©
5£©È»ºóÔÙÓÃеÄÑù±¾È¨ÖØÑµÁ·Êý¾Ý£¬µÃµ½ÐµķÖÀàÆ÷£¬µ½²½Öè3
6£©Ö±µ½²½Öè3ÖзÖÀàÆ÷´íÎóÂÊΪ0£¬»òÕßµ½´ïµü´ú´ÎÊý
7£©½«ËùÓÐÈõ·ÖÀàÆ÷¼ÓȨÇóºÍ£¬µÃµ½·ÖÀà½á¹û£¨×¢ÒâÊÇ·ÖÀàÆ÷È¨ÖØ£©
½âÊÍ£º²½Öè3ÖУ¬´íÎóÂʵ͍ÒåÊÇ£º

´íÎóÂÊ.png·ÖÀàÆ÷µÄÈ¨ÖØ¼ÆË㹫ʽÊÇ£º

²½Öè4ÖУ¬´íÎóÑù±¾È¨Öظü¸Ä¹«Ê½Îª£º

ÕýÈ·Ñù±¾È¨Öظü¸Ä¹«Ê½Îª£º

ÆäÖÐtÖ¸µ±Ç°·ÖÀàÆ÷£¬iÖ¸µÚi¸öÑù±¾¡£
¹¹½¨»ùÓÚµ¥²ã¾ö²ßÊ÷µÄAdaBoost·ÖÀàÆ÷
ÓÃÒ»¸öºÜ¼òµ¥µÄÉ¢µã·ÖÀàÎÊÌâÀ´ÊµÏÖAdaBoost·ÖÀàÆ÷¡£
×¼±¸Êý¾Ý¼¯
import numpy
as np
def loadSimpData():
datMat = np.matrix([[1. , 2.1],
[1.5 , 1.6],
[1.3, 1. ],
[1. , 1. ],
[2. , 1. ]])
classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
return datMat, classLabels
datMat, classLabels = loadSimpData()
showScatter(datMat, classLabels) |
showScatter·½·¨ÓÃÀ´»æÖÆÉ¢µãͼ£¬´úÂëÈçÏ£º
import matplotlib.pyplot
as plt
def showScatter(matrix, labels):
plt.figure(figsize=(8,6))
x1 = []; y1 = []; x2 = []; y2 = []
for i in range(len(labels)):
if labels[i] == 1.0:
x1.append(matrix[i, 0])
y1.append(matrix[i, 1])
else:
x2.append(matrix[i, 0])
y2.append(matrix[i, 1])
plt.scatter(x1, y1, marker='o',
color='green', alpha=0.7, label='1.0')
plt.scatter(x2, y2, marker='^',
color='red', alpha=0.7, label='-1.0')
plt.title('dataset')
plt.ylabel('variable Y')
plt.xlabel('Variable X')
plt.legend(loc='upper right')
plt.show() |
ËùÒÔÒª½øÐеķÖÀàÈçÏÂͼËùʾ£º

½á¹ûµ÷Ó÷½·¨£¨ÆÚÍûʵÏÖЧ¹û£©
°ÑËü·ÅÔÚµÚ¶þ²½£¬µ¹×Åд³ÌÐò£¬ÊǽèÓÃÁËTDDµÄ˼·£¬ÕâÑù»á¸üºÃÀí½â£¬²âÊԾͲ»Õ³³öÀ´ÁË£¬´Ó½á¹û³ö·¢£¬Ò»²½Ò»²½Çý¶¯³öËã·¨´úÂë¡£
¶ÔÓÚÕâ¸ödemo£¬ÎÒÃÇÏ£ÍûÊäÈëÒ»¸ö»ò¶à¸öµã£¬¸æËßÎÒÃÇÊÇ1.0ÀࣨÂÌɫԵ㣩»¹ÊÇ-1.0ÀࣨºìÉ«Èý½Ç£©¡£
ΪÁËÈôúÂë¸üÁé»î£¬ÎÒÃǰÑÈõ·ÖÀàÆ÷Ò²×÷Ϊ²ÎÊý´«È룬Ôò×îºóµÄµ÷ÓÃΪ£º
# [[5, 5], [0,
0]]ÊÇÒª·ÖÀàµÄµã
# classifierArrÊÇÈõ·ÖÆ÷Êý×é
adaClassify ([[5, 5], [0, 0]], classifierArr)
|
ÆÚÍûµÄÊä³öÊÇ£º
[[1.], [-1.]]
дAdaBoost·ÖÀຯÊý
´ÓÉÏÒ»²½ÈÃÎÒÃÇÇý¶¯³öadaClassifyº¯Êý£¬ÎÒÃÇÏ£Íûÿһ¸öÈõ·ÖÀàÆ÷ÊÇÒ»¸ö×ֵ䣬ÓÐ×îºÃµÄά¶È¡¢ËùÓõÄãÐÖµ¡¢ÊÇ´óÓÚãÐÖµ»¹ÊÇСÓÚãÐֵΪ1ÀàÕâЩÊôÐÔ£¬Í¨¹ýÕâЩÊôÐÔÄܵõ½Ò»¸ö·ÖÀà½á¹û£¬ÔÙÓ÷ÖÀà½á¹û³ËÒÔ·ÖÀàÆ÷µÄÈ¨ÖØ£¬½øÐÐÀÛ¼Ó£¬·µ»Ø·ÖÀà½á¹û£¬ÏÂÃæÐ´ËüµÄʵÏÖ
# datToClass£ºÒª·ÖÀàµÄÊý¾Ý
# classifierArr£ºÈõ·ÖÀàÆ÷Êý×é
def adaClassify(datToClass, classifierArr):
dataMatrix = np.mat(datToClass)
m = np.shape(dataMatrix)[0]
aggClassEst = np.mat(np.zeros((m, 1))) # ΪÁËÂú×ãÊä³öÆÚÍû£¬ÏÈÓÃ0ÁÐÏòÁ¿³õʼ»¯Êä³ö½á¹û
for i in range(len(classifierArr)):
classEst = stumpClassify(dataMatrix, classifierArr[i]['dim'],
classifierArr[i]['thresh'], classifierArr[i]['ineq'])
# µÃµ½Ò»¸öÈõ·ÖÀàÆ÷·ÖÀà½á¹û
aggClassEst += classifierArr[i]['alpha'] * classEst
# ¶ÔÓ¦Ëã·¨Á÷³ÌµÄ²½Öè7£¬½«Èõ·ÖÀàÆ÷½á¹û¼ÓȨÇóºÍ
# print(aggClassEst)
return np.sign(aggClassEst) #ÓÉÓÚÊǶþÀàÎÊÌ⣬ËùÒÔ¿ÉÒÔ¸ù¾Ý¼ÓȨÇóºÍ½á¹ûµÄÕý¸ºÇé¿öµÃµ½ÆÚÍûµÄ·ÖÀàÊä³ö
|
д»ùÓÚµ¥²ã¾ö²ßÊ÷µÄAdaBoostº¯Êý
ÉÏÒ»²½¿ÉÒÔÇý¶¯³östumpClassifyº¯Êý£¬ÐèÒª´«ÈëµÄ²ÎÊýΪҪ·ÖÀàµÄÊý¾Ý¡¢Î¬¶È¡¢ãÐÖµ¡¢´óÓÚãÐÖµÊÇ1À໹ÊÇСÓÚãÐÖµÊÇ1À࣬ϣÍûËüÄܸø³öÒ»¸ö·ÖÀà½á¹û£¬½á¹û³¤ÕâÑù£º[[1.],[1.],[-1.],...]¡£ÊµÏÖÈçÏ£º
# dataMatirx£ºÒª·ÖÀàµÄÊý¾Ý
# dimen£ºÎ¬¶È
# threshVal£ºãÐÖµ
# threshIneq£ºÓÐÁ½ÖÖ£¬¡®lt¡¯=lower than£¬¡®gt¡¯=greater
than
def stumpClassify(dataMatrix, dimen, threshVal,
threshIneq):
retArray = np.ones((np.shape(dataMatrix)[0], 1))
if threshIneq == 'gt':
retArray[dataMatrix[:, dimen] <= threshVal]
= -1.0 # Èç¹ûÏ£Íû´óÓÚãÐÖµµÄÊÇ1£¬ÔòСÓÚãÐÖµµÄ²¿·ÖÖÃΪ-1
else:
retArray[dataMatrix[:, dimen] > threshVal]
= -1.0
return retArray |
ѵÁ··ÖÀàÆ÷
½ÓÏÂÀ´µÄ¹¤×÷¾ÍÊÇѵÁ··ÖÀàÆ÷£¬µÃµ½classifierArrÈõ·ÖÀàÆ÷Êý×飬×÷Ϊ²ÎÊý£¬´©¸øÎÒÃǵÄ×îÖе÷Óú¯Êý¡£
»ØÏëAdaBoost·ÖÀàÆ÷µÄ²½Öè2-6£¬¼´Ã¿¸ö·ÖÀàÆ÷¶¼ÊÇÔÚÉÏÒ»´ÎµÄ»ù´¡ÉϸüÐÂÈ¨ÖØ£¬ÑµÁ·Êý¾Ý£¬È¨Öظüз½·¨ÊÇÔö¼Ó·ÖÀà´íÎóµÄÑù±¾È¨ÖØ£¬¼õС·ÖÀàÕýÈ·µÄÑù±¾È¨ÖØ¡£
ÎÒÃÇÏ£Íû¸æËßÕâ¸öº¯ÊýÊý¾Ý¼¯£¬»¹ÓжÔÓ¦µÄ±êÇ©£¬ÎÒÃÇÉèÖõÄ×î¶àµü´ú´ÎÊýºó£¬ÄÜ·µ»ØÒ»¸öÈõ·ÖÀàÆ÷Êý×é¡£ËùÒÔº¯Êý³¤ÏÂÃæÕâÑù£º
def adaBoostTrainDS(dataArr,
classLabels, numIt=40):
weakClassArr = []
m = np.shape(dataArr)[0]
D = np.mat(np.ones((m,1)) / m) # ³õʼ»¯È¨ÖØÏòÁ¿£¬¸øÃ¿¸öÑù±¾ÏàͬµÄÈ¨ÖØ£¬[[1/m],[1/m],[1/m],...]
aggClassEst = np.mat(np.zeros((m,1))) # ³õʼ»¯Ã¿¸öÑù±¾µÄÔ¤¹ÀֵΪ0
for i in range(numIt): # ±éÀúµü´ú´ÎÊý
bestStump, error, classEst = buildStump(dataArr,
classLabels, D) # ¹¹½¨Ò»¿Ãµ¥²ã¾ö²ßÊ÷£¬·µ»Ø×îºÃµÄÊ÷£¬´íÎóÂʺͷÖÀà½á¹û
alpha = float(0.5 * np.log((1.0 - error)/error))
#¼ÆËã·ÖÀàÆ÷È¨ÖØ
bestStump['alpha'] = alpha #½«alphaÖµÒ²¼ÓÈë×î¼ÑÊ÷×Öµä
weakClassArr.append(bestStump) # ½«Èõ·ÖÀàÆ÷¼ÓÈëÊý×é
# print("classEst:", classEst.T)
# ¸üÐÂÈ¨ÖØÏòÁ¿D
expon = np.multiply(-1*alpha*np.mat(classLabels).T,
classEst)
D = np.multiply(D, np.exp(expon))
D = D / D.sum()
# ÀÛ¼Ó´íÎóÂÊ£¬Ö±µ½´íÎóÂÊΪ0»òÕßµ½´ïµü´ú´ÎÊý
aggClassEst += alpha * classEst
print("aggClassEst:", aggClassEst.T)
aggErrors = np.multiply(np.sign(aggClassEst) !=
np.mat(classLabels).T, np.ones((m, 1)))
errorRate = aggErrors.sum() / m
print("total error:", errorRate, "\n")
if errorRate == 0.0:
break;
return weakClassArr |
¹¹½¨µ¥²ã¾ö²ßÊ÷·ÖÀàÆ÷
ͨ¹ýÉÏÒ»²½¿ÉÒÔÇý¶¯³öbuildStumpº¯Êý¡£ÎÒÃÇÏ£ÍûÊäÈëÊý¾Ý¼¯ºÍ±êÇ©ÒÔ¼°ÓÉÿ¸öÑù±¾µÄÈ¨ÖØ¹¹³ÉµÄÈ¨ÖØ¾ØÕóD£¬Äܵõ½×îºÃµÄ·ÖÀàÆ÷µÄÊôÐÔ£¬°üº¬Î¬¶È¡¢ãÐÖµ¡¢´óÓÚãÐÖµ»¹ÊÇСÓÚãÐÖµÊÇ1.0À࣬»¹ÓзÖÀàÆ÷´íÎóÂÊ£¬×îºÃµÄ·ÖÀàÆ÷µÄ³¤Ïà¡£
# dataArr: Êý¾Ý¼¯
# classLabels£º±êÇ©
# D£ºÓÉÿ¸öÑù±¾µÄÈ¨ÖØ¹¹³ÉµÄ¾ØÕó
def buildStump(dataArr, classLabels, D):
dataMatrix = np.mat(dataArr)
labelMat = np.mat(classLabels).T # ±êǩת³ÉÁÐÏòÁ¿
m, n = np.shape(dataMatrix) #mΪÊý¾Ý¸öÊý£¬nΪÿÌõÊý¾Ýº¬ÓеÄÑù±¾Êý£¨Ò²¾ÍÊÇÌØÕ÷£©
numSteps = 10.0
bestStump = {}
bestClasEst = np.mat(np.zeros((m, 1))) # ³õʼ»¯×îºÃµÄ·ÖÀàÆ÷Ϊ[[0],[0],[0],...]
minError = np.inf #×îС´íÎóÂÊ£¬²»Í£¸üÐÂ×îС´íÎóÂÊ
for i in range(n): #±éÀúÌØÕ÷
rangeMin = dataMatrix[:, i].min(); # ÕÒÕâÒ»ÁÐÌØÕ÷µÄ×îСֵ
rangeMax = dataMatrix[:, i].max(); # ÕÒÕâÒ»ÁÐÌØÕ÷µÄ×î´óÖµ
stepSize = (rangeMax - rangeMin) / numSteps #ÿ´ÎÒÆ¶¯µÄ²½³¤
for j in range(-1, int(numSteps) + 1): #¶Ôÿ¸ö²½³¤
for inequal in ['lt', 'gt']: # ÿ¸öÌõ¼þ£¬´óÓÚãÐÖµÊÇ1»¹ÊÇСÓÚãÐÖµÊÇ1
threshVal = (rangeMin + float(j) * stepSize) #
ãÐÖµÉèΪ×îСֵ+µÚj¸ö²½³¤
print('i=%d, threshVal=%f, inequal=%s'%(i,threshVal,inequal))
predictedVals = stumpClassify(dataMatrix, i ,
threshVal, inequal) # ½«dataMatrixµÄµÚi¸öÌØÕ÷inequalãÐÖµµÄÖÃΪ1£¬·ñÔòΪ-1
print(predictedVals)
errArr = np.mat(np.ones((m, 1)))
errArr[predictedVals == labelMat] = 0 # Ô¤²â¶ÔµÄÖÃ0
print(errArr)
weightedError = D.T * errArr
print("split: dim %d, threshold %.2f, threshold
inequal: %s, the weighted error is %.3f"
% (i, threshVal, inequal, weightedError))
if weightedError < minError:
minError = weightedError
bestClasEst = predictedVals.copy()
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['ineq'] = inequal
return bestStump, minError, bestClasEst |
ÉÏÊö¹ý³Ì¾ÍÊÇ£¬±éÀúÿ¸öÌØÕ÷£¬ÔÚÿ¸öÌØÕ÷ÉÏÕÒºÏÀíµÄ·Ö½çµã£¬Ã¿´ÎÒÆ¶¯Ò»¸ö²½³¤£¬¶Ôÿ¸ö²½³¤£¬¸ù¾ÝËüµÄ´óÓÚãÐÖµÊÇ1.0»¹ÊÇСÓÚãÐÖµÊÇ1.0ÀàµÃµ½·ÖÀàÇé¿ö£¬¼ÆËã´íÎóÂÊ£¬ÕÒ´íÎóÂÊ×îСµÄÒ»ÖÖÇé¿ö·µ»Ø¡£bestStumpÊÇÒ»¸ö×ֵ䣬ÕÒµ½Ò»¸öºÃµÄ·ÖÀàÆ÷£¬µ±È»Òª°üº¬ËùÑ¡ÔñµÄά¶È£¨Ó³Éäµ½Õâ¸öÌâÄ¿¾ÍÊÇxÖỹÊÇyÖᣩ£¬·ÖÀàµÄãÐÖµÊǶàÉÙ£¬´óÓÚ»¹ÊÇСÓÚãÐÖµµÄÊÇ1.0À࣬ËùÒÔ°ÑÕâЩÊôÐÔ·ÅÈëÁËbestStump×ֵ䡣
½øÐвâÊÔ
µ½ÕâÀ¾ÍʵÏÖÁË£¬¿ÉÒÔÓÃÒ»¸ö»òÒ»×éµã½øÐвâÊÔ£¬ÓõÚÒ»²½ÉèÏëµÄµ÷Ó÷½·¨£º
# ·ÖÀࣨ0£¬0£©µã
adaClassify([0,0], classifierArray) |
Êä³ö½á¹ûΪ£º

¿É¼û£¬£¨0£¬0£©µã·ÖÀàΪ-1Àà¡£
×ܽá
AdaBoost¼òµ¥À´½²£¬¾ÍÊǶà¸öÈõ·ÖÀàÆ÷£¬¿ÉÄÜ»ùÓÚµ¥²ã¾ö²ßÊ÷£¬Ò²¿ÉÄÜ»ùÓÚÆäËûËã·¨£¬Ã¿Ò»¸öÈõ·ÖÀàÆ÷µÃµ½Ò»¸ö·ÖÀà½á¹û£¬¸ù¾ÝËüµÄ´íÎóÂʸøÕâ¸ö·ÖÀàÆ÷Ò»¸öÈ¨ÖØ£¬»¹Òª¸üÐÂÑù±¾µÄÈ¨ÖØ£¬»ùÓÚÕâ¸öÈ¨ÖØ¾ØÕó£¬ÔÙȥѵÁ·³öÒ»¸öÈõ·ÖÀàÆ÷£¬ÒÀ´ÎÑ»·£¬Ö±µ½´íÎóÂÊΪ0£¬¾ÍµÃµ½ÁËһϵÁÐÈõ·ÖÀàÆ÷£¬×é³ÉÒ»¸öÇÀ·ÖÀàÆ÷£¬½«ÕâЩÈõ·ÖÀàÆ÷µÄ½á¹û¼ÓȨÇóºÍ£¬Äܵõ½Ò»¸ö½ÏΪ׼ȷµÄ·ÖÀà¡£
|