±à¼ÍƼö: |
±¾ÎÄÀ´×ÔÓÚcsdn£¬ÎÄÖн²½âÁËһЩÊý¾ÝÍÚ¾òµÄÀíÂÛ,¸ÅÄ¼°Ïà¹ØÊµÀý¡£ÒÔͼ±í£¬Í¼Æ¬µÄÐÎʽչʾ£¬¿É¹©´ó¼ÒÖ±¹ÛµÄ¸ÐÊÜÊý¾ÝÍÚ¾ò¡£ |
|
»¥ÁªÍøµÄѸÃÍ·¢Õ¹£¬´ßÉúÁËÊý¾ÝµÄ±¬Õ¨Ê½Ôö³¤¡£Ãæ¶Ôº£Á¿µÄÊý¾Ý£¬ÈçºÎÍÚ¾òÊý¾ÝµÄ¼ÛÖµ£¬³ÉΪһ¸öÔ½À´Ô½ÖØÒªµÄÎÊÌâ¡£±¾ÎÄÊ×ÏȽéÉÜÊý¾ÝÍÚ¾òµÄ»ù±¾ÄÚÈÝ£¬È»ºó°´ÕÕÊý¾ÝÍÚ¾ò»ù±¾µÄ´¦ÀíÁ÷³Ì£¬ÒÔÐÔ±ðÔ¤²âʵÀýÀ´½²½âÒ»¸ö¾ßÌåµÄÊý¾ÝÍÚ¾òÈÎÎñÊÇÈçºÎʵÏֵġ£
Êý¾ÝÍÚ¾òµÄ»ù±¾ÄÚÈÝ
Ê×ÏÈ£¬¶ÔÓÚÊý¾ÝÍÚ¾òµÄ¸ÅÄĿǰ±È½Ï¹ã·ºÈϿɵÄÒ»ÖÖ½âÊÍÈçÏ£º
Data mining is the use of efficient techniques for
the analysis of very large collections of data and
the extraction of useful and possibly unexpected patterns
in data.
Êý¾ÝÍÚ¾òÊÇÒ»ÖÖͨ¹ý·ÖÎöº£Á¿Êý¾Ý£¬´ÓÊý¾ÝÖÐÌáȡDZÔڵĵ«ÊǷdz£ÓÐÓõÄģʽµÄ¼¼Êõ¡£
Ö÷ÒªµÄÊý¾ÝÍÚ¾òÈÎÎñ
Êý¾ÝÍÚ¾òÈÎÎñ¿ÉÒÔ·ÖΪԤ²âÐÔÈÎÎñºÍÃèÊöÐÔÈÎÎñ¡£Ô¤²âÐÔÈÎÎñÖ÷ÒªÊÇÔ¤²â¿ÉÄܳöÏÖµÄÇé¿ö£»ÃèÊöÐÔÈÎÎñÔòÊÇ·¢ÏÖһЩÈËÀà¿ÉÒÔ½âÊ͵Äģʽ»ò¹æÂÉ¡£Êý¾ÝÍÚ¾òÖбȽϳ£¼ûµÄÈÎÎñ°üÀ¨·ÖÀà¡¢¾ÛÀà¡¢¹ØÁª¹æÔòÍÚ¾ò¡¢Ê±¼äÐòÁÐÍÚ¾ò¡¢»Ø¹éµÈ£¬ÆäÖзÖÀà¡¢»Ø¹éÊôÓÚÔ¤²âÐÔÈÎÎñ£¬¾ÛÀà¡¢¹ØÁª¹æÔòÍÚ¾ò¡¢Ê±¼äÐòÁзÖÎöµÈÔò¶¼ÊǽâÊÍÐÔÈÎÎñ¡£
°´ÕÕÊý¾ÝÍÚ¾òµÄ»ù±¾Á÷³Ì£¬À´Ì¸Ì¸·ÖÀàÎÊÌâ
ÔÚ¼òµ¥½éÉÜÁËÊý¾ÝÍÚ¾òµÄ»ù±¾ÄÚÈݺó£¬ÎÒÃÇÀ´ÇÐÈëÖ÷Ìâ¡£ÒÔÊý¾ÝÍÚ¾òµÄÁ÷³ÌΪÖ÷Ïߣ¬´©²åÐÔ±ðÔ¤²âµÄʵÀý£¬À´½²½â·ÖÀàÎÊÌâ¡£¸ù¾Ý¾µä½Ì¿ÆÊéºÍʵ¼Ê¹¤×÷¾ÑéÀ´¿´£¬Êý¾ÝÍÚ¾òµÄ»ù±¾Á÷³ÌÖ÷Òª°üÀ¨Î岿·Ö£¬Ê×ÏÈÊÇÃ÷È·ÎÊÌ⣬µÚ¶þÊǶÔÊý¾Ý½øÐÐÔ¤´¦Àí£¬µÚÈýÊǶÔÊý¾Ý½øÐÐÌØÕ÷¹¤³Ì£¬×ª»¯ÎªÎÊÌâËùÐèÒªµÄÌØÕ÷£¬µÚËÄÊǸù¾ÝÎÊÌâµÄÆÀ¼Û±ê׼ѡÔñ×îÓŵÄÄ£ÐͺÍËã·¨£¬×îºó½«ÑµÁ·µÄÄ£ÐÍÓÃÓÚʵ¼ÊÉú²ú£¬²ú³öËùÐè½á¹û£¨Èçͼ1Ëùʾ£©¡£

ͼ1 Êý¾ÝÍÚ¾òµÄ»ù±¾Á÷³Ì
ÏÂÃæÎÒÃÇ·Ö±ð½éÉܸ÷»·½ÚÉæ¼°µÄÖ÷ÒªÄÚÈÝ£º
1.Ã÷È·ÎÊÌâºÍÁ˽âÊý¾Ý
ÕâÒ»»·½Ú×îÖØÒªµÄÊÇÐèÇóºÍÊý¾ÝµÄÆ¥Åä¡£Ê×ÏÈÐèÒªÃ÷È·ÐèÇó£¬ÓÐ×ÅÔõÑùµÄÐèÇó£¿ÊÇÐèÒª×ö·ÖÀà¡¢¾ÛÀà¡¢ÍÆ¼ö»¹ÊÇÆäËû£¿Êµ¼ÊÊý¾ÝÊÇ·ñÖ§³Ö¸ÃÐèÇ󣿱ÈÈ磬·ÖÀàÎÊÌâÐèÒªÓлòÕß¿ÉÒÔ¹¹Ôì³ötraining
set£¬Èç¹ûûÓÐtraining set£¬¾ÍûÓа취°´ÕÕ·ÖÀàÎÊÌâÀ´½â¾ö¡£´ËÍ⣬Êý¾ÝµÄ¹æÄ£¡¢ÖØÒªfeatureµÄ¸²¸Ç¶ÈµÈ£¬Ò²ÊÇÐèÒªÌØ±ð¿¼ÂǵÄÎÊÌâ¡£
2.Êý¾ÝÔ¤´¦Àí
1£©Êý¾Ý¼¯³É£¬Êý¾ÝÈßÓ࣬ÊýÖµ³åÍ»
Êý¾ÝÍÚ¾òÖÐ×¼±¸Êý¾ÝµÄʱºò£¬ÐèÒª¾¡¿ÉÄܵؽ«Ïà¹ØÊý¾Ý¼¯³ÉÔÚÒ»Æð¡£Èç¹û¼¯³ÉµÄÊý¾ÝÖУ¬ÓÐÁ½Áлò¶àÁÐÖµÒ»Ñù£¬Ôò²»¿É±ÜÃâµØ»á²úÉúÊýÖµ³åÍ»»òÊý¾ÝÈßÓ࣬¿ÉÄÜÐèÒª¸ù¾ÝÊý¾ÝµÄÖÊÁ¿À´¾ö¶¨±£Áô³åÍ»ÖеÄÄÄÒ»ÁС£
2£©Êý¾Ý²ÉÑù
Ò»°ãÀ´Ëµ£¬ÓÐЧµÄ²ÉÑù·½Ê½ÈçÏ£ºÈç¹ûÑù±¾ÊÇÓдú±íÐԵģ¬ÔòʹÓÃÑù±¾Êý¾ÝºÍʹÓÃÕû¸öÊý¾Ý¼¯µÄЧ¹û¼¸ºõÊÇÒ»ÑùµÄ¡£³éÑù·½·¨Óкܶ࣬ÐèÒª¿¼ÂÇÊÇÓзŻصIJÉÑù£¬»¹ÊÇÎ޷ŻصIJÉÑù£¬ÒÔ¼°¾ßÌåÑ¡ÔñÄÄÖÖ²ÉÑù·½Ê½¡£
3£©Êý¾ÝÇåÏ´¡¢È±Ê§Öµ´¦ÀíÓëÔëÉùÊý¾Ý
ÏÖʵÊÀ½çÖеÄÊý¾Ý£¬ÊÇÕæÊµµÄÊý¾Ý£¬²»¿É±ÜÃâµØ»á´æÔÚ¸÷ÖÖ¸÷ÑùµÄÒì³£Çé¿ö¡£±ÈÈçijÁеÄֵȱʧ£¬»òÕßijÁеÄÖµÊÇÒì³£µÄ£¬ËùÒÔ£¬ÎÒÃÇÐèÒªÔÚÊý¾ÝÔ¤´¦Àí½×¶Î½øÐÐÊý¾ÝÇåÏ´£¬À´¼õÉÙÔëÒôÊý¾Ý¶ÔÄ£ÐÍѵÁ·ºÍÔ¤²â½á¹ûµÄÓ°Ïì¡£
3.ÌØÕ÷¹¤³Ì
Êý¾ÝºÍÌØÕ÷¾ö¶¨ÁË»úÆ÷ѧϰµÄÉÏÏÞ£¬¶øÄ£ÐͺÍËã·¨Ö»ÊDZƽüÕâ¸öÉÏÏÞ¶øÒÑ¡£ÏÂÃæµÄ¹Ûµã˵Ã÷ÁËÌØÕ÷¹¤³ÌµÄÌØµãºÍÖØÒªÐÔ¡£
Feature engineering is another topic which doesn¡¯t
seem to merit any review papers or books, or even
chapters in books, but it is absolutely vital to ML
success. [¡] Much of the success of machine learning
is actually success in engineering features that a
learner can understand.
¡ª Scott Locklin, in ¡°Neglected machine learning ideas¡±
1£©ÌØÕ÷£º¶ÔËùÐè½â¾öÎÊÌâÓÐÓõÄÊôÐÔ
ÌØÕ÷ÊǶÔÄãËùÐè½â¾öÎÊÌâÓÐÓûòÕßÓÐÒâÒåµÄÊôÐÔ¡£±ÈÈ磬ÔÚ¼ÆËã»úÊÓ¾õÁìÓò£¬Í¼Æ¬×÷ΪÑо¿¶ÔÏ󣬿ÉÄÜͼƬÖеÄÒ»¸öÏßÌõ¾ÍÊÇÒ»¸öÌØÕ÷£»ÔÚ×ÔÈ»ÓïÑÔ´¦ÀíÁìÓòÖУ¬Ñо¿¶ÔÏóÊÇÎĵµ£¬ÎĵµÖеÄÒ»¸ö´ÊÓïµÄ³öÏÖ´ÎÊý¾ÍÊÇÒ»¸öÌØÕ÷£»ÔÚÓïÒôʶ±ðÁìÓòÖУ¬Ñо¿¶ÔÏóÊÇÒ»¶Î»°£¬phoneme£¨Òô룩¿ÉÄܾÍÊÇÒ»¸öÌØÕ÷¡£
2£©ÌØÕ÷µÄÌáÈ¡¡¢Ñ¡ÔñºÍ¹¹Ôì
¼ÈÈ»ÌØÕ÷ÊǶÔÎÒÃÇËù½â¾öµÄÎÊÌâ×îÓÐÓõÄÊôÐÔ¡£Ê×ÏÈÎÒÃÇÐèÒª´¦ÀíµÄÊǸù¾ÝÔʼÊý¾Ý³éÈ¡³öËùÐèÒªµÄÌØÕ÷¡£Ø½Ðè×¢ÒâµÄÊÇ£¬²¢²»ÊÇËùÓеÄÌØÕ÷¶ÔËù½â¾öµÄÎÊÌâ²úÉúµÄÓ°ÏìÒ»Ñù´ó£¬ÓÐÐ©ÌØÕ÷¿ÉÄܶÔÎÊÌâ²úÉúÌØ±ð´óµÄÓ°Ï죬µ«ÓÐЩÔò¿ÉÄÜÓ°ÏìÉõ΢£¬ºÍËù½â¾öµÄÎÊÌâ²»Ïà¹ØµÄÌØÕ÷ÐèÒª±»ÌÞ³ýµô¡£Òò´Ë£¬ÎÒÃÇÐèÒªÕë¶ÔËù½â¾öµÄÎÊÌâÑ¡Ôñ×îÓÐÓõÄÌØÕ÷¼¯ºÏ£¬Ò»°ã¿ÉÒÔͨ¹ýÏà¹ØÏµÊýµÈ·½Ê½À´¼ÆËãÌØÕ÷µÄÖØÒªÐÔ¡£µ±È»£¬ÓÐЩģÐͱ¾Éí»áÊä³öfeatureÖØÒªÐÔ£¬ÈçRandom
ForestµÈËã·¨¡£¶ø¶ÔÓÚͼƬ¡¢ÒôƵµÈÔʼÊý¾ÝÐÎÌ¬ÌØ±ð´óµÄ¶ÔÏó£¬Ôò¿ÉÄÜÐèÒª²ÉÓÃÏñPCAÕâÑùµÄ×Ô¶¯½µÎ¬¼¼Êõ¡£ÁíÍ⣬»¹¿ÉÄÜÐèÒª±¾È˶ÔÊý¾ÝºÍËùÐè½â¾öµÄÎÊÌâÓÐÉîÈëµÄÀí½â£¬Äܹ»Í¨¹ýÌØÕ÷×éºÏµÈ·½·¨¹¹Ôì³öеÄÌØÕ÷£¬ÕâÒ²ÕýÊÇÌØÕ÷¹¤³Ì±»³ÆÖ®ÎªÊÇÒ»ÃÅÒÕÊõµÄÔÒòÖ®Ò»¡£
ʵÀý½²½â£¨Ò»£©
½ÓÏÂÀ´£¬ÎÒÃÇͨ¹ýÒ»¸öÐÔ±ðÔ¤²âµÄʵÀýÀ´ËµÃ÷Êý¾ÝÍÚ¾ò´¦ÀíÁ÷³ÌÖеġ°Ã÷È·ÎÊÌ⡱¡¢¡°Êý¾ÝÔ¤´¦Àí¡±ºÍ¡°ÌØÕ÷¹¤³Ì¡±Èý¸ö²¿·Ö¡£
¼ÙÉèÎÒÃÇÓÐÈçÏÂÁ½ÖÖÊý¾Ý£¬Ïë¸ù¾ÝÊý¾ÝѵÁ·Ò»¸öÔ¤²âÓû§ÐÔ±ðµÄÄ£ÐÍ¡£
Êý¾Ý1£º Óû§Ê¹ÓÃAppµÄÐÐΪÊý¾Ý£»
Êý¾Ý2£º Óû§ä¯ÀÀÍøÒ³µÄÐÐΪÊý¾Ý£»
µÚÒ»²½£ºÃ÷È·ÎÊÌâ
Ê×ÏÈÃ÷È·¸ÃÎÊÌâÊôÓÚÊý¾ÝÍÚ¾ò³£¼ûÎÊÌâÖеÄÄÄÒ»À࣬ ÊÇ·ÖÀà¡¢¾ÛÀà£¬ÍÆ¼ö»¹ÊÇÆäËû£¿¼ÙÉ豾ʵÀýÊý¾ÝÓв¿·ÖÊý¾Ý´øÓÐÄÐÅ®ÐÔ±ð£¬Ôò¸ÃÎÊÌâΪ·ÖÀàÎÊÌ⣻
Êý¾Ý¼¯ÊÇ·ñ¹»´ó£¿ÎÒÃÇÐèÒª×ã¹»´óµÄÊý¾ÝÀ´ÑµÁ·Ä£ÐÍ£¬Èç¹ûÊý¾Ý¼¯²»¹»´ó£¬ÄÇôËùѵÁ·µÄÄ£ÐͺÍÕæÊµÇé¿öÆ«²î»á±È½Ï´ó£»
Êý¾ÝÊÇ·ñÂú×ãËù½â¾öÎÊÌâµÄ¼ÙÉ裿ͳ¼Æ·¢ÏÖÄÐÈ˺ÍÅ®ÈËʹÓõÄApp²»Ì«Ò»Ö£¬ä¯ÀÀÍøÒ³µÄÄÚÈÝÒ²²»Ì«Ò»Ö£¬Ôò˵Ã÷ÎÒÃÇͨ¹ýÊý¾Ý¿ÉÒÔÌáÈ¡³ö¶ÔÔ¤²âÐÔ±ðÓÐÓõÄÌØÕ÷£¬À´°ïÖú½â¾öÎÊÌâ¡£Èç¹û¸ù¾ÝÊý¾ÝÌáÈ¡²»³öÓÐÓõÄÌØÕ÷£¬ÄÇôÕë¶Ôµ±Ç°Êý¾Ý£¬ÎÊÌâÊÇû·¨´¦ÀíµÄ¡£
µÚ¶þ²½£ºÊý¾ÝÔ¤´¦Àí
ʵ¼Ê¹¤×÷ÖУ¬ÔÚÊý¾ÝÔ¤´¦Àí֮ǰÐèҪȷ¶¨Õû¸öÏîÄ¿µÄ±à³ÌÓïÑÔ£¨ÈçPython¡¢Java¡¢ Scala£©ºÍ¿ª·¢¹¤¾ß£¨ÈçPig¡¢Hive¡¢Spark£©¡£Í¨³£¶øÑÔ£¬±à³ÌÓïÑԺͿª·¢¹¤¾ßµÄÑ¡Ôñ¶¼ÒÀÀµÓÚËù´¦µÄÊý¾Ýƽ̨»·¾³£»
ѡȡ¶àÉÙÊý¾Ý×öÄ£ÐÍѵÁ·£¿ÕâÊdz£ËµµÄÊý¾Ý²ÉÑùÎÊÌâ¡£Ò»°ãÈÏΪ²ÉÑùÊý¾ÝÁ¿Ô½´ó£¬¶ÔËù½â¾öµÄÈÎÎñ°ïÖúÔ½´ó£¬µ«ÊÇÊý¾ÝÁ¿Ô½´ó£¬¼ÆËã´ú¼ÛÒ²Ô½´ó£¬Òò´Ë£¬ÐèÒªÔÚ½â¾öÎÊÌâµÄЧ¹ûºÍ¼ÆËã´ú¼ÛÖ®¼äÕÛÖÐһϣ»
°ÑËùÓÐÏà¹ØµÄÊý¾Ý¾ÛºÏÔÚÒ»Æð£¬Èç¹ûÓÐÏàͬ×Ö¶ÎÔò´æÔÚÊý¾ÝÈßÓàµÄÎÊÌ⣬ÐèÒª¸ù¾ÝÊý¾ÝµÄÖÊÁ¿ÌÞ³ýµôÈßÓàµÄÊý¾Ý£»Êý¾ÝÖпÉÄÜ´æÔÚÒì³£Öµ£¬ÔòÐèÒª¹ýÂ˵ô£»Êý¾ÝÖпÉÄÜÓеÄÖµÓÐȱʧ£¬ÔòÐèÒªÌî³äĬÈÏÖµ¡£
Êý¾ÝÔ¤´¦Àíºó¿ÉÄܵĽá¹û£¨Èç±í1¡¢±í2Ëùʾ£©£º
±í1 Êý¾Ý1Ô¤´¦Àíºó½á¹û

±í2 Êý¾Ý2Ô¤´¦Àíºó½á¹û

µÚÈý²½£ºÌØÕ÷¹¤³Ì
ÓÉÓÚÊý¾Ý1ºÍÊý¾Ý2µÄÀàÐͲ»Ì«Ò»Ñù£¬ËùÒÔ½øÐÐÌØÕ÷¹¤³Ìʱ£¬Ëù²ÉÓõķ½·¨Ò²²»Ì«Ò»Ñù£¬ÏÂÃæ·Ö±ð½éÉÜһϣº
Êý¾Ý1µÄÌØÕ÷¹¤³Ì
Êý¾Ý1µÄµ¥¸öÌØÕ÷µÄ·ÖÎöÖ÷Òª°üÀ¨ÒÔÏÂÄÚÈÝ£º
ÊýÖµÐÍÌØÕ÷µÄ´¦Àí£¬±ÈÈçAppµÄÆô¶¯´ÎÊýÊǸöÁ¬ÐøÖµ£¬¿ÉÒÔ°´Õյ͡¢ÖС¢¸ßÈý¸öµµ´Î½«Æô¶¯´ÎÊý·Ö¶Î³ÉÀëÉ¢Öµ£»
Àà±ðÐÍÌØÕ÷µÄ´¦Àí£¬±ÈÈçÓû§Ê¹ÓõÄÉ豸ÊÇÈýÐÇ»òÕßÁªÏ룬ÕâÊÇÒ»¸öÀà±ðÌØÕ÷£¬¿ÉÒÔ²ÉÓÃ0-1±àÂëÀ´´¦Àí£»
ÐèÒª¿¼ÂÇÌØÕ÷ÊÇ·ñÐèÒª¹éÒ»»¯¡£
Êý¾Ý1µÄ¶à¸öÌØÕ÷µÄ·ÖÎöÖ÷Òª°üÀ¨ÒÔÏÂÄÚÈÝ£º
ʹÓõÄÉ豸ÀàÐÍÊÇ·ñ¾ö¶¨ÁËÐÔ±ð£¿ÐèÒª×öÏà¹ØÐÔ·ÖÎö£¬Í¨³£¼ÆËãÏà¹ØÏµÊý£»
AppµÄÆô¶¯´ÎÊýºÍÍ£Áôʱ³¤ÊÇ·ñÍêÈ«ÕýÏà¹Ø£¬½á¹û±íÃ÷ÌØ±ðÏà¹Ø£¬Ôò˵Ã÷AppµÄÍ£Áôʱ³¤ÊÇÎÞÓÃÌØÕ÷£¬½«AppµÄÍ£Áôʱ³¤Õâ¸öÌØÕ÷¹ýÂ˵ô£»
Èç¹ûÌØÕ÷Ì«¶à£¬¿ÉÄÜÐèÒª×ö½µÎ¬´¦Àí¡£
2.Êý¾Ý2µÄÌØÕ÷¹¤³Ì
Êý¾Ý2ÊǵäÐ͵ÄÎı¾Êý¾Ý£¬Îı¾Êý¾Ý³£ÓõĴ¦Àí²½Öè°üº¬ÒÔϼ¸¸ö²¿·Ö£º
ÍøÒ³ ¡ú ·Ö´Ê ¡ú ȥͣÓÃ´Ê ¡ú ÏòÁ¿»¯
·Ö´Ê¡£¿ÉÒÔ²ÉÓÃJieba·Ö´Ê£¨Python¿â£©»òÕÅ»ªÆ½ÀÏʦµÄICTCLAS£»
È¥³ýÍ£Óôʡ£Í£Óôʱí³ýÁ˼ÓÈë³£¹æµÄÍ£ÓôÊÍ⣬»¹¿ÉÒÔ½«DF£¨Document Frequency£©±È½Ï¸ßµÄ´Ê¼ÓÈëÍ£ÓÃ´Ê±í£¬×÷ΪÁìÓòÍ£Óôʣ»
ÏòÁ¿»¯¡£Ò»°ãÊǽ«Îı¾×ª»¯ÎªTF»òTF-IDFÏòÁ¿¡£
ÌØÕ÷¹¤³ÌºóÊý¾Ý1µÄ½á¹û£¨Èç±í3Ëùʾ£¬A1µÍ±íʾÆô¶¯App1µÄ´ÎÊý±È½ÏµÍ£¬ÒÔ´ËÀàÍÆ£¬is_hx±íʾÉ豸ÊÇ·ñÊÇ»ªÎª£¬LabelΪ1±íʾMale£©¡£
±í3 Êý¾Ý1ÌØÕ÷¹¤³Ìºó½á¹û

ÌØÕ÷¹¤³ÌºóÊý¾Ý2µÄ½á¹û£¨Èç±í4Ëùʾ£¬term1=5±íʾuser1ä¯ÀÀµÄÍøÒ³ÖгöÏÖ´Ê1µÄƵÂÊ£¬ÒÔ´ËÀàÍÆ£©¡£
±í4 Êý¾Ý2ÌØÕ÷¹¤³Ìºó½á¹û

µÚËIJ½£ºËã·¨ºÍÄ£ÐÍ
×öÍêÌØÕ÷¹¤³Ìºó£¬ÏÂÒ»²½¾ÍÊÇÑ¡ÔñºÏÊʵÄÄ£ÐͺÍËã·¨¡£Ëã·¨ºÍÄ£Ð͵ÄÑ¡ÔñÖ÷Òª¿¼ÂÇһϼ¸¸ö·½Ã棺
ѵÁ·¼¯µÄ´óС£»
ÌØÕ÷µÄά¶È´óС£»
Ëù½â¾öÎÊÌâÊÇ·ñÊÇÏßÐԿɷֵģ»
ËùÓеÄÌØÕ÷ÊǶÀÁ¢µÄÂð£¿
ÐèÒª²»ÐèÒª¿¼ÂǹýÄâºÏµÄÎÊÌ⣻
¶ÔÐÔÄÜÓÐÄÄЩҪÇó£¿
ÉÏÃæÖÐÌáµ½µÄºÜ¶àÎÊÌâû·¨Ö±½Ó»Ø´ð£¬¿ÉÄÜÎÒÃÇ»¹ÊDz»ÖªµÀ¸ÃÑ¡ÔñÄÄÖÖÄ£ÐͺÍËã·¨£¬µ«Êǰ¿¨Ä·Ìêµ¶ÔÀí¸ø³öÁËÄ£ÐͺÍËã·¨µÄÑ¡Ôñ·½·¨£º
Occam¡¯s Razor principle: use the least complicated
algorithm that can address your needs and only go
for something more complicated if strictly necessary.
Òµ½ç±È½ÏͨÓõÄË㷨ѡÔñÒ»°ãÊÇÕâÑùµÄ¹æÂÉ£ºÈç¹ûLR¿ÉÒÔ£¬ÔòʹÓÃLR£»Èç¹ûLR²»Êʺϣ¬ÔòÑ¡ÔñEnsembleµÄ·½Ê½£»Èç¹ûEnsemble·½Ê½²»Êʺϣ¬Ôò¿¼ÂÇÊÇ·ñ³¢ÊÔDeep
Learning¡£ÏÂÃæÖ÷Òª½éÉÜÒ»ÏÂLRËã·¨ºÍEnsemble·½·¨µÄÏà¹ØÄÚÈÝ¡£
LRËã·¨£¨Logistic Regression£¬Âß¼»Ø¹éËã·¨£©
Ö»ÒªÈÏΪÎÊÌâÊÇÏßÐԿɷֵģ¬¾Í¿É²ÉÓÃLR£¬Í¨¹ýÌØÕ÷¹¤³Ì½«Ò»Ð©·ÇÏßÐÔÌØÕ÷ת»¯ÎªÏßÐÔÌØÕ÷¡£ Ä£ÐͱȽϿ¹Ô룬¶øÇÒ¿ÉÒÔͨ¹ýL1¡¢L2·¶ÊýÀ´×ö²ÎÊýÑ¡Ôñ¡£LR¿ÉÒÔÓ¦ÓÃÓÚÊý¾ÝÌØ±ð´óµÄ³¡¾°£¬ÒòΪËüµÄË㷨ЧÂÊÌØ±ð¸ß£¬ÇÒºÜÈÝÒ×·Ö²¼Ê½ÊµÏÖ¡£
Çø±ðÓÚÆäËû´ó¶àÊýÄ£ÐÍ£¬LR±È½ÏÌØ±ðµÄÒ»µãÊǽá¹û¿ÉÒÔ½âÊÍΪ¸ÅÂÊ£¬Äܽ«ÎÊÌâתΪÅÅÐòÎÊÌâ¶ø²»ÊÇ·ÖÀàÎÊÌâ¡£
Ensemble·½·¨£¨×éºÏ·½·¨£©
×éºÏ·½·¨µÄÔÀíÖ÷ÒªÊǸù¾Ýtraining setѵÁ·¶à¸ö·ÖÀàÆ÷£¬È»ºó×ۺ϶à¸ö·ÖÀàÆ÷µÄ½á¹û£¬×ö³öÔ¤²â£¨Èçͼ2Ëùʾ£©¡£

ͼ2 ×éºÏ·½·¨µÄ»ù±¾Á÷³Ì
×éºÏ·½Ê½Ö÷Òª·ÖΪBaggingºÍBoosting¡£BaggingÊÇBootstrap AggregatingµÄËõд£¬»ù±¾ÔÀíÊÇÈÃѧϰË㷨ѵÁ·¶àÂÖ£¬Ã¿ÂÖµÄѵÁ·¼¯ÓÉ´Ó³õʼµÄѵÁ·¼¯ÖÐËæ»úÈ¡³öµÄn¸öѵÁ·Ñù±¾×é³É£¨ÓзŻصÄËæ»ú³éÑù£©£¬ÑµÁ·Ö®ºó¿ÉµÃµ½Ò»¸öÔ¤²âº¯Êý¼¯ºÏ£¬Í¨¹ýͶƱ·½Ê½¾ö¶¨Ô¤²â½á¹û¡£
¶øBoostingÖÐÖ÷ÒªµÄÊÇAdaBoost£¨Adaptive Boosting£©¡£»ù±¾ÔÀíÊdzõʼ»¯Ê±¶Ôÿһ¸öѵÁ·Ñù±¾¸³ÏàµÈµÄÈ¨ÖØ1£¯n£¬È»ºóÓÃѧϰËã·¨¶ÔѵÁ·¼¯ÑµÁ·¶àÂÖ£¬Ã¿ÂÖ½áÊøºó£¬¶ÔѵÁ·Ê§°ÜµÄѵÁ·Ñù±¾¸³ÒԽϴóµÄÈ¨ÖØ¡£Ò²¾ÍÊÇÈÃѧϰËã·¨ÔÚºóÐøµÄѧϰÖм¯ÖжԱȽÏÄѵÄѵÁ·Ñù±¾½øÐÐѧϰ£¬´Ó¶øµÃµ½Ò»¸öÔ¤²âº¯Êý¼¯ºÏ¡£Ã¿¸öÔ¤²âº¯Êý¶¼ÓÐÒ»¶¨µÄÈ¨ÖØ£¬Ô¤²âЧ¹ûºÃµÄÔ¤²âº¯ÊýÈ¨ÖØ½Ï´ó£¬·´Ö®½ÏС£¬×îÖÕͨ¹ýÓÐÈ¨ÖØµÄͶƱ·½Ê½À´¾ö¶¨Ô¤²â½á¹û¡£
BaggingºÍBoostingµÄÖ÷񻂿±ðÈçÏ£º
È¡Ñù·½Ê½²»Í¬¡£Bagging²ÉÓþùÔÈÈ¡Ñù£¬¶øBoosting¸ù¾Ý´íÎóÂÊÀ´È¡Ñù£¬Òò´ËÀíÂÛÉÏÀ´½²BoostingµÄ·ÖÀྫ¶ÈÒªÓÅÓÚBagging£»
ѵÁ·¼¯µÄÑ¡Ôñ·½Ê½²»Í¬¡£BaggingµÄѵÁ·¼¯µÄÑ¡ÔñÊÇËæ»úµÄ£¬¸÷ÂÖѵÁ·¼¯Ö®¼äÏ໥¶ÀÁ¢£¬¶øBoostngµÄ¸÷ÂÖѵÁ·¼¯µÄÑ¡ÔñÓëÇ°ÃæµÄѧϰ½á¹ûÓйأ»
Ô¤²âº¯Êý²»Í¬¡£BaggingµÄ¸÷Ô¤²âº¯ÊýûÓÐÈ¨ÖØ£¬¶øBoostingÊÇÓÐÈ¨ÖØµÄ¡£BaggingµÄ¸÷¸öÔ¤²âº¯Êý¿ÉÒÔ²¢ÐÐÉú³É£¬¶øBoostingµÄ¸÷¸öÔ¤²âº¯ÊýÖ»ÄÜ˳ÐòÉú³É¡£
¶ÔÓÚÏñÉñ¾ÍøÂçÕâÑù¼«ÆäºÄʱµÄѧϰ·½·¨£¬Bagging¿Éͨ¹ý²¢ÐÐѵÁ·½ÚÊ¡´óÁ¿Ê±¼ä¿ªÏú¡£BaggingºÍBoosting¶¼¿ÉÒÔÓÐЧµØÌá¸ß·ÖÀàµÄ׼ȷÐÔ¡£ÔÚ´ó¶àÊýÊý¾Ý¼¯ÖУ¬BoostingµÄ׼ȷÐÔ±ÈBaggingÒª¸ß¡£
·ÖÀàËã·¨µÄÆÀ¼Û
ÉÏÒ»²¿·Ö½éÉÜÁ˳£ÓõÄÄ£ÐͺÍËã·¨£¬²»Í¬µÄËã·¨ÔÚ²»Í¬µÄÊý¾Ý¼¯ÉÏ»á²úÉú²»Í¬µÄЧ¹û£¬ÎÒÃÇÐèÒªÁ¿»¯Ëã·¨µÄºÃ»µ£¬Õâ¾ÍÊÇ·ÖÀàËã·¨µÄÆÀ¼Û¡£ÔÚ±¾ÎÄÖУ¬±ÊÕß½«Ö÷Òª½éÉÜһϻìÏý¾ØÕóºÍÖ÷ÒªµÄÆÀ¼ÛÖ¸±ê¡£
1.»ìÏý¾ØÕó£¨Èçͼ3Ëùʾ£©

ͼ3 »ìÏý¾ØÕó
1£©True positives(TP)£º¼´Êµ¼ÊΪÕýÀýÇÒ±»·ÖÀàÆ÷»®·ÖΪÕýÀýµÄÑù±¾Êý£»
2£©False positives(FP)£º¼´Êµ¼ÊΪ¸ºÀýµ«±»·ÖÀàÆ÷»®·ÖΪÕýÀýµÄÑù±¾Êý£»
3£©False negatives(FN)£º¼´Êµ¼ÊΪÕýÀýµ«±»·ÖÀàÆ÷»®·ÖΪ¸ºÀýµÄÑù±¾Êý£»
4£©True negatives(TN)£º¼´Êµ¼ÊΪ¸ºÀýÇÒ±»·ÖÀàÆ÷»®·ÖΪ¸ºÀýµÄÑù±¾Êý¡£
2.Ö÷ÒªµÄÆÀ¼ÛÖ¸±ê
1£©×¼È·ÂÊaccuracy=(TP+TN)/(P+N)¡£Õâ¸öºÜÈÝÒ×Àí½â£¬¾ÍÊDZ»·Ö¶ÔµÄÑù±¾Êý³ýÒÔËùÓеÄÑù±¾Êý¡£Í¨³£À´Ëµ£¬×¼È·ÂÊÔ½¸ß£¬·ÖÀàÆ÷Ô½ºÃ£»
2£©ÕÙ»ØÂÊrecall=TP/(TP+FN)¡£ÕÙ»ØÂÊÊǸ²¸ÇÃæµÄ¶ÈÁ¿£¬¶ÈÁ¿ÓжàÉÙ¸öÕýÀý±»·ÖΪÕýÀý¡£
3£©ROCºÍAUC¡£
ʵÀý½²½â£¨¶þ£©
ʵÀý£¨Ò»£©²ú³öµÄÌØÕ÷Êý¾Ý£¬¾¹ý¡°Ä£ÐͺÍËã·¨¡±ÒÔ¼°¡°Ëã·¨µÄÆÀ¼Û¡±Á½²¿·ÖËùÉæ¼°µÄ´úÂëʵÀýÈçͼ4Ëùʾ¡£

ͼ4 Ä£ÐÍѵÁ·Ê¾Àý´úÂë
×ܽá
±¾ÎÄÒÔÊý¾ÝÍÚ¾òµÄ»ù±¾´¦ÀíÁ÷³ÌΪÖ÷Ïߣ¬ÒÔÐÔ±ðÔ¤²âΪ¾ßÌåʵÀý£¬½éÉÜÁË´¦ÀíÒ»¸öÊý¾ÝÍÚ¾òµÄ·ÖÀàÎÊÌâËùÉæ¼°µÄ·½·½ÃæÃæ¡£¶ÔÓÚÒ»¸öÊý¾ÝÍÚ¾òÎÊÌ⣬Ê×ÏÈÒªÃ÷È·ÎÊÌ⣬ȷ¶¨ÒÑÓеÄÊý¾ÝÊÇ·ñÄܹ»½â¾öËùÐèÒª½â¾öµÄÎÊÌ⣬Ȼºó¾ÍÊÇÊý¾ÝÔ¤´¦ÀíºÍÌØÕ÷¹¤³Ì½×¶Î£¬ÕâÍùÍùÊÇÔÚʵ¼Ê¹¤³ÌÖÐ×îºÄʱ¡¢×îÂé·³µÄ½×¶Î¡£¾¹ýÌØÕ÷¹¤³Ìºó£¬ÐèҪѡÔñºÏÊʵÄÄ£ÐͽøÐÐѵÁ·£¬²¢ÇÒ¸ù¾ÝÆÀ¼Û±ê׼ѡÔñ×îÓÅÄ£ÐͺÍ×îÓŲÎÊý£¬
×îºó¸ù¾Ý×îÓÅÄ£ÐͶÔδ֪Êý¾Ý½øÐÐÔ¤²â£¬²ú³ö½á¹û¡£Ï£Íû±¾ÎĵÄÄÚÈݶԴó¼ÒÓÐËù°ïÖú¡£ |