Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Modeler   Code  
»áÔ±   
 
   
 
 
     
   
 ¶©ÔÄ
  ¾èÖú
Ñ¡ÔñR¿ª·¢Êý¾Ý·ÖÎöƽ̨µÄ 4 ¸ö²»´íµÄÀíÓÉ
 
À´Ô´£ºÊý¾Ý²Ö¿â֮· ·¢²¼ÓÚ£º 2016-6-12
  2506  次浏览      29
 

ÕªÒª: R ÊÇÒ»ÖÖÁé»îµÄ±à³ÌÓïÑÔ£¬×¨Îª´Ù½øÌ½Ë÷ÐÔÊý¾Ý·ÖÎö¡¢¾­µäͳ¼ÆÑ§²âÊԺ͸߼¶Í¼ÐÎѧ¶øÉè¼Æ¡£R ÓµÓзḻµÄ¡¢ÈÔÔÚ²»¶ÏÀ©´óµÄÊý¾Ý°ü¿â£¬´¦ÓÚͳ¼ÆÑ§¡¢Êý¾Ý·ÖÎöºÍÊý¾ÝÍÚ¾ò·¢Õ¹µÄÇ°ÑØ¡£

ΪʲôѡÔñ R£¿

R ¿ÉÒÔÖ´ÐÐͳ¼Æ¡£Äú¿ÉÒÔ½«ËüÊÓΪ SAS Analytics µÈ·ÖÎöϵͳµÄ¾ºÕù¶ÔÊÖ£¬¸ü²»ÓÃÌá StatSoft STATISTICA »ò Minitab µÈ¸ü¼òµ¥µÄ°ü¡£Õþ¸®¡¢ÆóÒµºÍÖÆÒ©ÐÐÒµÖÐÐí¶àרҵͳ¼ÆÑ§¼ÒºÍ·½·¨Ñ§¼Ò¶¼½«ÆäÈ«²¿Ö°ÒµÉúÑĶ¼Í¶Èëµ½ÁË IBM SPSS »ò SAS ÖУ¬µ«È´Ã»Óбàд¹ýÒ»ÐÐ R ´úÂë¡£ËùÒÔ´ÓijÖ̶ֳÈÉϽ²£¬Ñ§Ï°ºÍʹÓà R µÄ¾ö¶¨ÊÂ¹ØÆóÒµÎÄ»¯ºÍÄúÏ£ÍûÈçºÎ¹¤×÷¡£ÎÒÔÚͳ¼Æ×Éѯʵ¼ùÖÐʹÓÃÁ˶àÖÖ¹¤¾ß£¬µ«ÎҵĴ󲿷ֹ¤×÷¶¼ÊÇÔÚ R ÖÐÍê³ÉµÄ¡£ÒÔÏÂÕâЩʾÀý¸ø³öÁËÎÒʹÓà R µÄÔ­Òò£º

R ÊÇÒ»ÖÖÇ¿´óµÄ½Å±¾ÓïÑÔ¡£ÎÒ×î½ü±»ÒªÇó·ÖÎöÒ»¸ö·¶Î§Ñо¿µÄ½á¹û¡£Ñо¿ÈËÔ±¼ì²éÁË 1,600 ƪÑо¿ÂÛÎÄ£¬²¢ÒÀ¾Ý¶à¸öÌõ¼þ¶ÔËüÃǵÄÄÚÈݽøÐбàÂ룬ÊÂʵÉÏ£¬ÕâЩÌõ¼þÊÇ´óÁ¿¾ßÓжà¸öÑ¡ÏîºÍ·Ö²æµÄÌõ¼þ¡£ËüÃǵÄÊý¾Ý£¨Ôø¾­±âƽ»¯µ½Ò»¸ö Microsoft? Excel? µç×Ó±í¸ñÉÏ£©°üº¬ 8,000 ¶àÁУ¬ÆäÖд󲿷ֶ¼Êǿյġ£Ñо¿ÈËԱϣÍûͳ¼Æ²»Í¬Àà±ðºÍ±êÌâϵÄ×ÜÊý¡£R ÊÇÒ»ÖÖÇ¿´óµÄ½Å±¾ÓïÑÔ£¬Äܹ»·ÃÎÊÀàËÆ Perl µÄÕýÔò±í´ïʽÀ´´¦ÀíÎı¾¡£ÁèÂÒµÄÊý¾ÝÐèÒªÒ»ÖÖ±à³ÌÓïÑÔ×ÊÔ´£¬¶øÇÒ¾¡¹Ü SAS ºÍ SPSS ÌṩÁ˽ű¾ÓïÑÔÀ´Ö´ÐÐÏÂÀ­²Ëµ¥ÒâÍâµÄÈÎÎñ£¬µ« R ÊÇ×÷ΪһÖÖ±à³ÌÓïÑÔ±àдµÄ£¬ËùÒÔÊÇÒ»ÖÖ¸üÊʺϸÃÓÃ;µÄ¹¤¾ß¡£

R ×ßÔÚʱ´úµÄÇ°ÑØ¡£Í³¼ÆÑ§ÖеÄÐí¶àз¢Õ¹×î³õ¶¼ÊÇÒÔ R °üµÄÐÎʽ³öÏֵģ¬È»ºó²Å±»ÒýÈëµ½ÉÌҵƽ̨ÖС£ÎÒ×î½ü»ñµÃÁËÒ»Ïî¶Ô»¼Õß»ØÒäµÄÒ½ÁÆÑо¿µÄÊý¾Ý¡£¶ÔÓÚÿλ»¼Õߣ¬ÎÒÃÇÓµÓÐÒ½Éú½¨ÒéµÄÖÎÁÆÏîÄ¿ÊýÁ¿£¬ÒÔ¼°»¼Õßʵ¼Ê¼ÇסµÄÏîÄ¿ÊýÁ¿¡£×ÔȻģÐÍÊDZ´Ëþ¡ª¶þÏî·Ö²¼¡£Õâ´ÓÉÏÊÀ¼Í 50 Äê´ú¾ÍÒÑÖªµÀ£¬µ«½«¸ÃÄ£ÐÍÓë¸ÐÐËȤµÄ±äÁ¿Ïà¹ØÁªµÄ¹ÀËã¹ý³ÌÊÇ×î½ü²Å³öÏֵġ£ÏñÕâÑùµÄÊý¾Ýͨ³£ÓɹãÒå¹À¼Æ·½³Ìʽ (general estimating equations, GEE) ´¦Àí£¬µ« GEE ·½·¨Êǽ¥½øµÄ£¬¶øÇÒ¼ÙÉè³éÑù·¶Î§ºÜ¹ã¡£ÎÒÏëÒªÒ»ÖÖ¾ßÓб´Ëþ¡ª¶þÏî R µÄ¹ãÒåÏßÐÔÄ£ÐÍ¡£Ò»¸ö×îÐ嵀 R °ü¹ÀËãÁËÕâһģÐÍ£ºBen Bolker ±àдµÄ betabinom¡£¶ø SPSS ûÓС£

¼¯³ÉÎĵµ·¢²¼¡£ R ÍêÃÀµØ¼¯³ÉÁË LaTeX Îĵµ·¢²¼ÏµÍ³£¬ÕâÒâζ×ÅÀ´×Ô R µÄͳ¼ÆÊä³öºÍͼÐοÉǶÈëµ½¿É¹©·¢²¼µÄÎĵµÖС£Õâ²»ÊÇËùÓÐÈ˶¼ÓõÃÉÏ£¬µ«Èç¹ûÄúÏ£Íû±ãЯÒì²½¹ØÓÚÊý¾Ý·ÖÎöµÄÊé¼®£¬»òÕßÖ»ÊDz»Ï£Íû½«½á¹û¸´ÖƵ½ÎÄ×Ö´¦ÀíÎĵµ£¬×î¶ÌÇÒ×îÓÅÑŵÄ·¾¶¾ÍÊÇͨ¹ý

R ºÍ LaTeX¡£

ûÓгɱ¾¡£×÷Ϊһ¸öСÐÍÆóÒµµÄËùÓÐÕߣ¬ÎÒºÜϲ»¶ R µÄÃâ·ÑÌØ¶¨¡£¼´Ê¹¶ÔÓÚ¸ü´óµÄÆóÒµ£¬ÖªµÀÄúÄܹ»ÁÙʱµ÷Èëij¸öÈ˲¢Á¢¼´ÈÃËûÃÇ×øÔÚ¹¤×÷Õ¾ÅÔʹÓÃÒ»Á÷µÄ·ÖÎöÈí¼þ£¬Ò²ºÜ²»´í¡£ÎÞÐèµ£ÓÇÔ¤Ëã¡£

R ÊÇʲô£¬ËüÓкÎÓÃ;£¿

×÷ΪһÖÖ±à³ÌÓïÑÔ£¬R ÓëÐí¶àÆäËûÓïÑÔ¶¼ºÜÀàËÆ¡£Èκαàд¹ý´úÂëµÄÈ˶¼»áÔÚ R ÖÐÕÒµ½ºÜ¶àÊìϤµÄ¶«Î÷¡£R µÄÌØÊâÐÔÔÚÓÚËüÖ§³ÖµÄͳ¼ÆÕÜѧ¡£

Ò»ÖÖͳ¼ÆÑ§¸ïÃü£ºS ºÍ̽Ë÷ÐÔÊý¾Ý·ÖÎö

¼ÆËã»ú×ÜÊÇÉ󤼯Ëã ¡ª ÔÚÄú±àд²¢µ÷ÊÔÁËÒ»¸ö³ÌÐòÀ´Ö´ÐÐÄúÏëÒªµÄËã·¨ºó¡£µ«ÔÚÉÏÊÀ¼Í 60 ºÍ 70 Äê´ú£¬¼ÆËã»ú²¢²»Éó¤ÐÅÏ¢µÄÏÔʾ£¬ÓÈÆäÊÇͼÐΡ£ÕâЩ¼¼ÊõÏÞÖÆÔÚ½áºÏͳ¼ÆÀíÂÛÖеÄÇ÷ÊÆ£¬Òâζ×Åͳ¼ÆÊµ¼ùºÍͳ¼ÆÑ§¼ÒµÄÅàѵרעÓÚÄ£Ð͹¹½¨ºÍ¼ÙÉè²âÊÔ¡£Ò»¸öÈ˼ٶ¨ÕâÑùÒ»¸öÊÀ½ç£¬Ñо¿ÈËÔ±ÔÚÆäÖÐÉ趨¼ÙÉ裨³£³£ÊÇũҵ·½ÃæµÄ£©£¬¹¹½¨¾«ÐÄÉè¼ÆµÄʵÑ飨ÔÚÒ»¸öũҵվ£©£¬ÌîÈëÄ£ÐÍ£¬È»ºóÔËÐвâÊÔ¡£Ò»¸ö»ùÓÚµç×Ó±í¸ñ¡¢²Ëµ¥Çý¶¯µÄ³ÌÐò£¨±ÈÈç SPSS ·´Ó³ÁËÕâÒ»·½·¨£©¡£ÊÂʵÉÏ£¬SPSS ºÍ SAS Analytics µÄµÚÒ»¸ö°æ±¾°üº¬Ò»Ð©×ÓÀý³Ì£¬ÕâЩ×ÓÀý³Ì¿É´ÓÒ»¸ö£¨Fortran »òÆäËû£©³ÌÐòµ÷ÓÃÀ´ÌîÈëºÍ²âÊÔÒ»¸öÄ£Ð͹¤¾ßÏäÖеÄÒ»¸öÄ£ÐÍ¡£

ÔÚÕâ¸ö¹æ·¶»¯ºÍÉøÍ¸ÀíÂ۵Ŀò¼ÜÖУ¬John Tukey ·ÅÈëÁË̽Ë÷ÐÔÊý¾Ý·ÖÎö (EDA) µÄ¸ÅÄÕâ¾ÍÏñÒ»¸ö¶ìÂÑʯ»÷ÖÐÁ˲£Á§Îݶ¥¡£Èç½ñ£¬ºÜÄÑÏëÏñûÓÐʹÓÃÏäÏßͼ£¨box plot£© À´¼ì²éÆ«¶ÈºÍÒì³£Öµ¾Í¿ªÊ¼·ÖÎöÒ»¸öÊý¾Ý¼¯µÄÇéÐΣ¬»òÕßûÓÐÕë¶ÔÒ»¸ö·Öλµãͼ¼ì²éij¸öÏßÐÔÄ£ÐͲвîµÄ³£Ì¬µÄÇéÐΡ£ÕâЩÏë·¨ÓÉ Tukey Ìá³ö£¬ÏÖÔÚÈκνéÉÜÐÔµÄͳ¼Æ¿Î³Ì¶¼»á½éÉÜËüÃÇ¡£µ«²¢²»×ÜÊÇÈç´Ë¡£

ÓëÆä˵ EDA ÊÇÒ»ÖÖÀíÂÛ£¬²»Èç˵ËüÊÇÒ»ÖÖ·½·¨¡£¸Ã·½·¨Àë²»¿ªÒÔϾ­Ñ鹿Ôò£º

1¡¢Ö»ÒªÓпÉÄÜ£¬¾ÍӦʹÓÃͼÐÎÀ´Ê¶±ð¸ÐÐËȤµÄ¹¦ÄÜ¡£

2¡¢·ÖÎöÊǵÝÔöµÄ¡£³¢ÊÔÒÔÏÂÕâÖÖÄ£ÐÍ£»¸ù¾Ý½á¹ûÀ´Ìî³äÁíÒ»¸öÄ£ÐÍ¡£

3¡¢Ê¹ÓÃͼÐμì²éÄ£ÐͼÙÉè¡£±ê¼Ç´æÔÚÒì³£Öµ¡£

4¡¢Ê¹Óý¡È«µÄ·½·¨À´·ÀֹΥ±³·Ö²¼¼ÙÉè¡£

Tukey µÄ·½·¨Òý·¢ÁËÒ»¸öеÄͼÐη½·¨ºÍÎȽ¡¹À¼ÆµÄ·¢Õ¹À˳±¡£Ëü»¹Æô·¢ÁËÒ»¸ö¸üÊʺÏ̽Ë÷ÐÔ·½·¨µÄÐÂÈí¼þ¿ò¼ÜµÄ¿ª·¢¡£

S ÓïÑÔÊÇÔÚ±´¶ûʵÑéÊÒÓÉ John Chambers ºÍͬÊ¿ª·¢µÄ£¬±»ÓÃ×÷Ò»¸öͳ¼Æ·ÖÎöƽ̨£¬ÓÈÆäÊÇ Tukey ÅÅÐò¡£µÚÒ»¸ö°æ±¾£¨¹©±´¶ûʵÑéÊÒÄÚ²¿Ê¹Óã©ÓÚ 1976 Ä꿪·¢£¬µ«Ö±µ½ 1988 Ä꣬Ëü²ÅÐγÉÁËÀàËÆÆäµ±Ç°ÐÎʽµÄ°æ±¾¡£ÔÚÕâʱ£¬¸ÃÓïÑÔÒ²¿É¹©±´¶ûʵÑéÊÒÍⲿµÄÓû§Ê¹Ó᣸ÃÓïÑÔµÄÿ¸ö·½Ãæ¶¼·ûºÏÊý¾Ý·ÖÎöµÄ ¡°ÐÂÄ£ÐÍ¡±£º

1¡¢S ÊÇÒ»ÖÖÔÚ±à³Ì»·¾³²Ù×÷µÄ½âÊÍÓïÑÔ¡£S Óï·¨Óë C µÄÓï·¨ºÜÏàËÆ£¬µ«Ê¡È¥ÁËÀ§ÄѵIJ¿·Ö¡£S ¸ºÔðÖ´ÐÐÄÚ´æ¹ÜÀíºÍ±äÁ¿ÉùÃ÷£¬¾ÙÀý¶øÑÔ£¬ÕâÑùÓû§¾ÍÎÞÐè±àд»òµ÷ÊÔÕâЩ·½ÃæÁË¡£¸üµÍµÄ±à³Ì¿ªÏúʹµÃÓû§¿ÉÒÔÔÚͬһ¸öÊý¾Ý¼¯ÉÏ¿ìËÙÖ´ÐдóÁ¿·ÖÎö¡£

2¡¢´ÓÒ»¿ªÊ¼£¬S ¾Í¿¼Âǵ½Á˸߼¶Í¼ÐεĴ´½¨£¬Äú¿ÉÏòÈκδò¿ªµÄͼÐδ°¿ÚÌí¼Ó¹¦ÄÜ¡£Äú¿ÉºÜÈÝÒ×µØÍ»³öÐËȤµã£¬²éѯËüÃǵÄÖµ£¬Ê¹É¢µãͼ±äµÃ¸üƽ»¬£¬µÈµÈ¡£

3¡¢ÃæÏò¶ÔÏóÐÔÊÇ 1992 ÄêÌí¼Óµ½ S Öеġ£ÔÚÒ»¸ö±à³ÌÓïÑÔÖУ¬¶ÔÏó¹¹ÔìÊý¾ÝºÍº¯ÊýÀ´Âú×ãÓû§µÄÖ±¾õ¡£ÈËÀàµÄ˼άʼÖÕÊÇÃæÏò¶ÔÏóµÄ£¬Í³¼ÆÍÆÀíÓÈÆäÈç´Ë¡£Í³¼ÆÑ§¼Ò´¦ÀíÆµÂÊ±í¡¢Ê±¼äÐòÁС¢¾ØÕó¡¢¾ßÓи÷ÖÖÊý¾ÝÀàÐ͵ĵç×Ó±í¸ñ¡¢Ä£ÐÍ£¬µÈµÈ¡£ÔÚÿÖÖÇé¿öÏ£¬Ô­Ê¼Êý¾Ý¶¼ÓµÓÐÊôÐÔºÍÆÚÍûÖµ£º¾ÙÀý¶øÑÔ£¬Ò»¸öʱ¼äÐòÁаüº¬¹Û²ìÖµºÍʱ¼äµã¡£¶øÇÒ¶ÔÓÚÿÖÖÊý¾ÝÀàÐÍ£¬¶¼Ó¦µÃµ½±ê׼ͳ¼ÆÊý¾ÝºÍÆ½ÃæÍ¼¡£¶ÔÓÚʱ¼äÐòÁУ¬ÎÒ¿ÉÄÜ»æÖÆÒ»¸öʱ¼äÐòÁÐÆ½ÃæÍ¼ºÍÒ»¸öÏà¹ØÍ¼£»¶ÔÓÚÄâºÏÄ£ÐÍ£¬ÎÒ¿ÉÄÜ»æÖÆÄâºÏÖµºÍ²Ð²î¡£S Ö§³ÖΪËùÓÐÕâЩ¸ÅÄî´´½¨¶ÔÏó£¬Äú¿ÉÒÔ¸ù¾ÝÐèÒª´´½¨¸ü¶àµÄ¶ÔÏóÀà¡£¶ÔÏóʹµÃ´ÓÎÊÌâµÄ¸ÅÄµ½Æä´úÂëµÄʵÏÖ±äµÃ·Ç³£¼òµ¥¡£

Ò»ÖÖ¾ßÓÐ̬¶ÈµÄÓïÑÔ£ºS¡¢S-Plus ºÍ¼ÙÉè²âÊÔ

×î³õµÄ S ÓïÑԷdz£ÖØÊÓ Tukey µÄ EDA£¬ÒÑ´ïµ½Ö»ÄÜ ÔÚ S ÖÐÖ´ÐÐ EDA ¶ø²»ÄÜÖ´ÐÐÆäËûÈκβÙ×÷µÄ³Ì¶È¡£ÕâÊÇÒ»ÖÖ¾ßÓÐ̬

µÄÓïÑÔ¡£¾ÙÀý¶øÑÔ£¬¾¡¹Ü S ´øÀ´ÁËһЩÓÐÓõÄÄÚ²¿¹¦ÄÜ£¬µ«Ëüȱ·¦ÄúÏ£Íûͳ¼ÆÈí¼þÓµÓеÄһЩ×îÃ÷ÏԵŦÄÜ¡£Ã»Óк¯ÊýÀ´Ö´ÐÐË«³éÑù²âÊÔ»òÈκÎÀàÐ͵ÄÕæÊµ¼ÙÉè²âÊÔ¡£µ« Tukey ÈÏΪ£¬¼ÙÉè²âÊÔÓÐʱÕýºÏÊÊ¡£

1988 Ä꣬λÓÚÎ÷ÑÅͼµÄ Statistical Science »ñµÃ S µÄÊÚȨ£¬²¢½«¸ÃÓïÑÔµÄÒ»¸öÔöÇ¿°æ±¾£¨³ÆÎª S-Plus£©ÒÆÖ²µ½ DOS ÒÔ¼°ÒÔºóµÄ Windows? ÖС£Êµ¼ÊÈÏʶµ½¿Í»§ÏëҪʲôºó£¬Statistical Science Ïò S-Plus Ìí¼ÓÁ˾­µäͳ¼ÆÑ§¹¦ÄÜ¡£Ìí¼ÓÖ´Ðз½²î·ÖÎö (ANOVA)¡¢²âÊÔºÍÆäËûÄ£Ð͵ŦÄÜ¡£¶Ô S µÄÃæÏò¶ÔÏóÐÔ¶øÑÔ£¬ÈκÎÕâÀàÄâºÏÄ£Ð͵Ľá¹û±¾Éí¶¼ÊÇÒ»¸ö S ¶ÔÏ󡣺ÏÊʵĺ¯Êýµ÷Óö¼»áÌṩ¼ÙÉè²âÊÔµÄÄâºÏÖµ¡¢²Ð²îºÍ p-Öµ¡£Ä£ÐͶÔÏóÉõÖÁ¿ÉÒÔ°üº¬·ÖÎöµÄÖÐ¼ä¼ÆËã²½Ö裬±ÈÈçÒ»¸öÉè¼Æ¾ØÕóµÄ QR ·Ö½â£¨ÆäÖÐ Q ÊǶԽÇÏߣ¬R ÊÇÓÒÉϽǣ©¡£

ÓÐÒ»¸ö R °üÀ´Íê³É¸ÃÈÎÎñ£¡»¹ÓÐÒ»¸ö¿ªÔ´ÉçÇø

´óÔ¼ÔÚÓë·¢²¼ S-Plus ÏàͬµÄʱ¼ä£¬ÐÂÎ÷À¼°Â¿ËÀ¼´óѧµÄ Ross Ihaka ºÍ Robert Gentleman ¾ö¶¨³¢ÊÔ±àдһ¸ö½âÊÍÆ÷¡£ËûÃÇÑ¡ÔñÁË S ÓïÑÔ×÷ΪÆäÄ£ÐÍ¡£¸ÃÏîÄ¿Öð½¥³ÉÐβ¢»ñµÃÁËÖ§³Ö¡£ËüÃǽ«ÆäÃüÃûΪ R¡£

R ÊÇ S µÄÒ»ÖÖʵÏÖ£¬°üº¬ S-Plus ¿ª·¢µÄ¸ü¶àÄ£ÐÍ¡£ÓÐʱºò£¬·¢»Ó×÷ÓõÄÊÇͬһЩÈË¡£R ÊÇ GNU Ðí¿ÉϵÄÒ»¸ö¿ªÔ´ÏîÄ¿¡£ÔÚ´Ë»ù´¡ÉÏ£¬R ²»¶Ï·¢Õ¹£¬Ö÷Ҫͨ¹ýÌí¼Ó°ü¡£R °ü ÊÇÒ»¸ö°üº¬Êý¾Ý¼¯¡¢R º¯Êý¡¢ÎĵµºÍ C »ò Fortran ¶¯Ì¬¼ÓÔØÏîµÄ¼¯ºÏ£¬¿ÉÒÔÒ»Æð°²×°²¢´Ó R »á»°·ÃÎÊ¡£R °üÏò R Ìí¼Óй¦ÄÜ£¬Í¨¹ýÕâЩ°ü£¬Ñо¿ÈËÔ±¿ÉÔÚͬÐÐÖ®¼äÇáËɵع²Ïí¼ÆËã·½·¨¡£Ò»Ð©°üµÄ·¶Î§ÓÐÏÞ£¬ÁíһЩ°ü´ú±í×ÅÕû¸öͳ¼ÆÑ§ÁìÓò£¬»¹ÓÐһЩ°üº¬×îеļ¼Êõ·¢Õ¹¡£ÊÂʵÉÏ£¬Í³¼ÆÑ§ÖеÄÐí¶à·¢Õ¹×î³õ¶¼ÊÇÒÔ R °üÐÎʽ³öÏֵģ¬È»ºó²ÅÓ¦Óõ½ÉÌÓÃÈí¼þÖС£

ÔÚ׫д±¾ÎÄʱ£¬R ÏÂÔØÕ¾µã CRAN ÉÏÒÑÓÐ 4,701 ¸ö R °ü¡£ÆäÖУ¬µ¥µ¥ÄÇÒ»Ìì¾ÍÌí¼ÓÁË 6 ¸ö R ¡£ÍòÊÂÍòÎï¶¼ÓÐÒ»¸ö¶ÔÓ¦µÄ R °ü£¬ÖÁÉÙ¿´ÆðÀ´ÊÇÕâÑù¡£

ÎÒÔÚʹÓà R ʱ»á·¢Éúʲô£¿

±¸×¢£º±¾ÎIJ»ÊÇÒ»²¿ R ½Ì³Ì¡£ÏÂÃæµÄʾÀý½öÊÔͼÈÃÄúÁ˽â R »á»°¿´ÆðÀ´ÊÇʲôÑùµÄ¡£

R ¶þ½øÖÆÎļþ¿ÉÓÃÓÚ Windows¡¢Mac OS X ºÍ¶à¸ö Linux? ·¢Ðа档Դ´úÂëÒ²¿É¹©ÈËÃÇ×ÔÐбàÒë¡£

ÔÚWindowsRÖУ¬°²×°³ÌÐò½« R Ìí¼Óµ½¿ªÊ¼²Ëµ¥ÖС£ÒªÔÚ Linux ÖÐÆô¶¯ R£¬¿É´ò¿ªÒ»¸öÖÕ¶Ë´°¿Ú²¢ÔÚÌáʾ·ûϼüÈë R¡£ÄúÓ¦¿´µ½ÀàËÆÍ¼ 1 µÄ»­Ãæ¡£

ͼ 1. R ¹¤×÷Çø

ÔÚÌáʾ·ûϼüÈëÒ»¸öÃüÁR ¾Í»áÏìÓ¦¡£

´Ëʱ£¬ÔÚÕæÊµµÄ»·¾³ÖУ¬Äú¿ÉÄÜ»á´ÓÒ»¸öÍⲿÊý¾ÝÎļþ½«Êý¾Ý¶ÁÈë R ¶ÔÏóÖС£R ¿É´Ó¸÷ÖÖ²»Í¬¸ñʽµÄÎļþ¶ÁÈ¡Êý¾Ý£¬µ«¶ÔÓÚ±¾Ê¾Àý£¬ÎÒʹÓõÄÊÇÀ´×Ô MASS °üµÄ michelson Êý¾Ý¡£Õâ¸ö°ü¸½´øÁË Venables and Ripley µÄ±êÖ¾ÐÔÎı¾ Modern Applied Statistics with S-Plus£¨²Î¼û ²Î¿¼×ÊÁÏ£©¡£michelson °üº¬À´×Ô²âÁ¿¹âËÙµÄÁ÷ÐÐµÄ Michelson and Morley ʵÑéµÄ½á¹û¡£

Çåµ¥ 1 ÖÐÌṩµÄÃüÁî¿ÉÒÔ¼ÓÔØ MASS °ü£¬»ñÈ¡²¢²é¿´ michelson Êý¾Ý¡£Í¼ 2 ÏÔʾÁËÕâЩÃüÁîºÍÀ´×Ô R µÄÏìÓ¦¡£Ã¿Ò»Ðаüº¬Ò»¸ö R º¯Êý£¬ËüµÄ²ÎÊý·ÅÔÚ·½À¨ºÅ ([]) ÄÚ¡£

Çåµ¥ 1. Æô¶¯Ò»¸ö R »á»°

 2+2  # R can be a calculator. R responds, correctly, with 4.
library("MASS")# Loads into memory the functions and data sets from
# package MASS, that accompanies Modern Applied Statistics in S

data(michelson) # Copies the michelson data set into the workspace.

ls() # Lists the contents of the workspace. The michelson data is there.

head(michelson) # Displays the first few lines of this data set.
# Column Speed contains Michelson and Morleys estimates of the
# speed of light, less 299,000, in km/s.
# Michelson and Morley ran five experiments with 20 runs each.
# The data set contains indicator variables for experiment and run.
help(michelson) # Calls a help screen, which describes the data set.

ͼ 2. »á»°Æô¶¯ºÍ R µÄÏìÓ¦

ÏÖÔÚÈÃÎÒÃÇ¿´¿´¸ÃÊý¾Ý£¨²Î¼û Çåµ¥ 2£©¡£Êä³öÈç ͼ 3 ÖÐËùʾ¡£

Çåµ¥ 2. R ÖеÄÒ»¸öÏäÏßͼ

# Basic boxplot

with(michelson, boxplot(Speed ~ Expt))

# I can add colour and labels. I can also save the results to an object.

michelson.bp = with(michelson, boxplot(Speed ~ Expt, xlab="Experiment", las=1,
ylab="Speed of Light - 299,000 m/s",
main="Michelson-Morley Experiments",
col="slateblue1"))

# The current estimate of the speed of light, on this scale, is 734.5
# Add a horizontal line to highlight this value.

abline(h=734.5, lwd=2,col="purple") #Add modern speed of light

Michelson and Morley ËÆºõÓмƻ®µØ¸ß¹ÀÁ˹âËÙ¡£¸÷¸öʵÑéÖ®¼äËÆºõÒ²´æÔÚÒ»¶¨µÄ²»¾ùÔÈÐÔ¡£

ͼ 3. »æÖÆÒ»¸öÏäÏßͼ

ÔÚ¶Ô·ÖÎö¸Ðµ½ÂúÒâºó£¬ÎÒ¿ÉÒÔ½«ËùÓÐÃüÁî±£´æµ½Ò»¸ö R º¯ÊýÖС£²Î¼ûÇåµ¥ 3¡£

Çåµ¥ 3. R ÖеÄÒ»¸ö¼òµ¥º¯Êý

 MyExample = function(){
library(MASS)
data(michelson)
michelson.bw = with(michelson, boxplot(Speed ~ Expt, xlab="Experiment", las=1,
ylab="Speed of Light - 299,000 m/s", main="Michelsen-Morley Experiments",
col="slateblue1"))
abline(h=734.5, lwd=2,col="purple")

}

Õâ¸ö¼òµ¥Ê¾ÀýÑÝʾÁË R µÄ¶à¸öÖØÒª¹¦ÄÜ£º

1¡¢±£´æ½á¹û¡ªboxplot() º¯Êý·µ»ØÒ»Ð©ÓÐÓõÄͳ¼ÆÊý¾ÝºÍÒ»¸öͼ±í£¬Äú¿ÉÒÔͨ¹ýÀàËÆmichelson.bp = ... µÄ¸ºÖµÓï¾ä½«ÕâЩ½á¹û±£´æµ½Ò»¸ö R ¶ÔÏóÖУ¬²¢ÔÚÐèҪʱÌáÈ¡ËüÃÇ¡£Èκθ³ÖµÓï¾äµÄ½á¹û¶¼¿ÉÔÚ R »á»°µÄÕû¸ö¹ý³ÌÖлñµÃ£¬²¢ÇÒ¿ÉÒÔ×÷Ϊ½øÒ»²½·ÖÎöµÄÖ÷Ìâ¡£boxplot º¯Êý·µ»ØÒ»¸öÓÃÓÚ»æÖÆÏäÏßͼµÄͳ¼ÆÊý¾Ý£¨ÖÐλÊý¡¢ËÄ·ÖλµÈ£©¾ØÕó¡¢Ã¿¸öÏäÏßͼÖеÄÏîÊý£¬ÒÔ¼°Òì³£Öµ£¨ÔÚ Í¼ 3 ÖеÄͼ±íÉÏÏÔʾΪ¿ª¿ÚÔ²£©¡£

2¡¢¹«Ê½ÓïÑÔ¡ª R£¨ºÍ S£©ÓÐÒ»ÖÖ½ô´ÕµÄÓïÑÔÀ´±í´ïͳ¼ÆÄ£ÐÍ¡£²ÎÊýÖеĴúÂë Speed ~ Expt ¸æËߺ¯ÊýÔÚÿ¸ö Expt £¨ÊµÑéÊý×Ö£©¼¶±ðÉÏ»æÖÆ Speed µÄÏäÏßͼ¡£Èç¹ûÏ£ÍûÖ´Ðз½²î·ÖÎöÀ´²âÊÔ¸÷´ÎʵÑéÖеÄËÙ¶ÈÊÇ·ñ´æÔÚÏÔÖø²îÒ죬ÄÇô¿ÉÒÔʹÓÃÏàͬµÄ¹«Ê½£ºlm(Speed ~ Expt)¡£¹«Ê½ÓïÑԿɱí´ï·á¸»¶àÑùµÄͳ¼ÆÄ£ÐÍ£¬°üÀ¨½»²æºÍǶÌ×ЧӦ£¬ÒÔ¼°¹Ì¶¨ºÍËæ»úÒòËØ¡£

3¡¢Óû§¶¨ÒåµÄRº¯Êý¡ª ÕâÊÇÒ»ÖÖ±à³ÌÓïÑÔ¡£

R ÒѽøÈë 21 ÊÀ¼Í

Tukey µÄ̽Ë÷ÐÔÊý¾Ý·ÖÎö·½·¨ÒѳÉΪ³£¹æ¿Î³Ì¡£ÎÒÃÇÔÚ½ÌÊÚÕâÖÖ·½·¨£¬¶øÍ³¼ÆÑ§¼ÒÒ²ÔÚʹÓø÷½·¨¡£R Ö§³ÖÕâÖÖ·½·¨£¬Õâ½âÊÍÁËËüΪʲôÈÔÈ»Èç´ËÁ÷ÐеÄÔ­Òò¡£ÃæÏò¶ÔÏóÐÔ»¹°ïÖú R ±£³Ö×îУ¬ÒòΪеÄÊý¾ÝÀ´Ô´ÐèҪеÄÊý¾Ý½á¹¹À´Ö´ÐзÖÎö¡£InfoSphere? Streams ÏÖÔÚÖ§³Ö¶ÔÓë John Chambers ËùÉèÏëµÄ²»Í¬µÄÊý¾ÝÖ´ÐÐ R ·ÖÎö¡£

 

×¢£º

140 ×Ö·ûµÄ½âÊÍ

R ÊÇ S µÄÒ»ÖÖ¿ªÔ´ÊµÏÖ£¬ÊÇÒ»ÖÖÓÃÓÚÊý¾Ý·ÖÎöºÍͼÐεıà³Ì»·¾³¡£

À´×Ô ¡°Í¼Ðλ¯µÄÊý¾Ý·ÖÎö·½·¨¡±

¡°ÔÚÈκÎÑÏËàµÄÓ¦ÓÃÖУ¬¶¼Ó¦¸Ãͨ¹ý¶àÖÖ·½Ê½·ÖÎöÊý¾Ý£¬¹¹ÔìÒ»Ð©Æ½ÃæÍ¼£¬²¢Ö´Ðжà´Î·ÖÎö£¬ÈÃÿ¸ö²½ÖèµÄ½á¹ûΪÏÂÒ»¸ö²½ÖèÌṩ½¨Òé¡£ÓÐЧµÄÊý¾Ý·ÖÎöÊǵü´úʽµÄ¡£¡±¡ªJohn Chambers£¨²Î¼û ²Î¿¼×ÊÁÏ£©¡£

R ÐèÒªÖ÷Á÷Ó²¼þÂð£¿

ÎÒÔÚһ̨ÔËÐÐ Crunchbang Linux µÄºê³žÉÏÍø±¾ÉÏÔËÐÐÁËÕâ¸öʾÀý¡£R ²»ÐèÒª±¿ÖصĻúÆ÷À´Ö´ÐÐÖÐС¹æÄ£µÄ·ÖÎö¡£20 ÄêÀ´£¬ÈËÃÇÒ»Ö±ÈÏΪ R Ö®ËùÒÔ»ºÂýÊÇÒòΪËüÊÇÒ»ÖÖ½âÊÍÐÔÓïÑÔ£¬¶øÇÒËü¿ÉÒÔ·ÖÎöµÄÊý¾Ý´óСÊܼÆËã»úÄÚ´æµÄÏÞÖÆ¡£ÕâÊÇÕæµÄ£¬µ«Õâͨ³£ÓëÏÖ´ú»úÆ÷ºÁÎÞ¸Éϵ£¬³ý·ÇÓ¦ÓóÌÐò·Ç³£´ó£¨´óÊý¾Ý£©¡£

 

   
2506 ´Îä¯ÀÀ       29
Ïà¹ØÎÄÕÂ

»ùÓÚEAµÄÊý¾Ý¿â½¨Ä£
Êý¾ÝÁ÷½¨Ä££¨EAÖ¸ÄÏ£©
¡°Êý¾Ýºþ¡±£º¸ÅÄî¡¢ÌØÕ÷¡¢¼Ü¹¹Óë°¸Àý
ÔÚÏßÉ̳ÇÊý¾Ý¿âϵͳÉè¼Æ ˼·+Ч¹û
 
Ïà¹ØÎĵµ

GreenplumÊý¾Ý¿â»ù´¡Åàѵ
MySQL5.1ÐÔÄÜÓÅ»¯·½°¸
ijµçÉÌÊý¾ÝÖÐ̨¼Ü¹¹Êµ¼ù
MySQL¸ßÀ©Õ¹¼Ü¹¹Éè¼Æ
Ïà¹Ø¿Î³Ì

Êý¾ÝÖÎÀí¡¢Êý¾Ý¼Ü¹¹¼°Êý¾Ý±ê×¼
MongoDBʵս¿Î³Ì
²¢·¢¡¢´óÈÝÁ¿¡¢¸ßÐÔÄÜÊý¾Ý¿âÉè¼ÆÓëÓÅ»¯
PostgreSQLÊý¾Ý¿âʵսÅàѵ
×îл¼Æ»®
DeepSeek´óÄ£ÐÍÓ¦Óÿª·¢ 6-12[ÏÃÃÅ]
È˹¤ÖÇÄÜ.»úÆ÷ѧϰTensorFlow 6-22[Ö±²¥]
»ùÓÚ UML ºÍEA½øÐзÖÎöÉè¼Æ 6-30[±±¾©]
ǶÈëʽÈí¼þ¼Ü¹¹-¸ß¼¶Êµ¼ù 7-9[±±¾©]
Óû§ÌåÑé¡¢Ò×ÓÃÐÔ²âÊÔÓëÆÀ¹À 7-25[Î÷°²]
ͼÊý¾Ý¿âÓë֪ʶͼÆ× 8-23[±±¾©]

MySQLË÷Òý±³ºóµÄÊý¾Ý½á¹¹
MySQLÐÔÄܵ÷ÓÅÓë¼Ü¹¹Éè¼Æ
SQL ServerÊý¾Ý¿â±¸·ÝÓë»Ö¸´
ÈÃÊý¾Ý¿â·ÉÆðÀ´ 10´óDB2ÓÅ»¯
oracleµÄÁÙʱ±í¿Õ¼äдÂú´ÅÅÌ
Êý¾Ý¿âµÄ¿çƽ̨Éè¼Æ


²¢·¢¡¢´óÈÝÁ¿¡¢¸ßÐÔÄÜÊý¾Ý¿â
¸ß¼¶Êý¾Ý¿â¼Ü¹¹Éè¼ÆÊ¦
HadoopÔ­ÀíÓëʵ¼ù
Oracle Êý¾Ý²Ö¿â
Êý¾Ý²Ö¿âºÍÊý¾ÝÍÚ¾ò
OracleÊý¾Ý¿â¿ª·¢Óë¹ÜÀí


GE Çø¿éÁ´¼¼ÊõÓëʵÏÖÅàѵ
º½Ìì¿Æ¹¤Ä³×Ó¹«Ë¾ Nodejs¸ß¼¶Ó¦Óÿª·¢
ÖÐÊ¢Òæ»ª ׿Խ¹ÜÀíÕß±ØÐë¾ß±¸µÄÎåÏîÄÜÁ¦
ijÐÅÏ¢¼¼Êõ¹«Ë¾ PythonÅàѵ
ij²©²ÊITϵͳ³§ÉÌ Ò×ÓÃÐÔ²âÊÔÓëÆÀ¹À
ÖйúÓÊ´¢ÒøÐÐ ²âÊÔ³ÉÊì¶ÈÄ£Ðͼ¯³É(TMMI)
ÖÐÎïÔº ²úÆ·¾­ÀíÓë²úÆ·¹ÜÀí