您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 订阅
  捐助
一文深入了解:分布式系统中的缓存架构
 
  1983  次浏览      16
 2018-11-30
 
编辑推荐:
本文来自于阿里云,本文讲述基于Redis的限流系统的设计,主要会谈及限流系统中限流策略这个功能的设计;在实现方面,算法使用的是令牌桶算法来,访问Redis使用lua脚本。

1、概念

In computer networks, rate limiting is used to control the rate of traffic sent or received by a network interface controller and is used to prevent DoS attacks

用我的理解翻译一下:限流是对系统的出入流量进行控制,防止大流量出入,导致资源不足,系统不稳定。

限流系统是对资源访问的控制组件,控制主要的两个功能:限流策略和熔断策略,对于熔断策略,不同的系统有不同的熔断策略诉求,有的系统希望直接拒绝、有的系统希望排队等待、有的系统希望服务降级、有的系统会定制自己的熔断策略,很难一一列举,所以本文只针对限流策略这个功能做详细的设计。

针对限流策略这个功能,限流系统中有两个基础概念:资源和策略。

资源 :或者叫稀缺资源,被流量控制的对象;比如写接口、外部商户接口、大流量下的读接口

策略 :限流策略由限流算法和可调节的参数两部分组成

熔断策略:超出速率阈值的请求的处理策略,是我自己理解的一个叫法,不是业界主流的说法。

2、限流算法

限制瞬时并发数

限制时间窗最大请求数

令牌桶

2.1、限制瞬时并发数

定义:瞬时并发数,系统同时处理的请求/事务数量

优点:这个算法能够实现控制并发数的效果

缺点:使用场景比较单一,一般用来对入流量进行控制

java伪代码实现:

tomicInteger atomic = new AtomicInteger(1)
try {
if(atomic.incrementAndGet() > 限流数) {
//熔断逻辑
} else {
//处理逻辑
}
} finally {
atomic.decrementAndGet();
}

2.2、限制时间窗最大请求数

定义:时间窗最大请求数,指定的时间范围内允许的最大请求数

优点:这个算法能够满足绝大多数的流控需求,通过时间窗最大请求数可以直接换算出最大的QPS(QPS = 请求数/时间窗)

缺点:这种方式可能会出现流量不平滑的情况,时间窗内一小段流量占比特别大

lua代码实现:

-- 资源唯一标识
local key = KEYS[1]
--- 时间窗最大并发数
local max_window_concurrency = tonumber(ARGV[1])
--- 时间窗
local window = tonumber(ARGV[2])
--- 时间窗内当前并发数
local curr_window_concurrency = tonumber(redis.call('get', key) or 0)
if current + 1 > limit then
return false
else
redis.call("INCRBY", key,1)
if window > -1 then
redis.call("expire", key,window)
end
return true
end

2.3、令牌桶

算法描述

假如用户配置的平均发送速率为r,则每隔1/r秒一个令牌被加入到桶中

假设桶中最多可以存放b个令牌。如果令牌到达时令牌桶已经满了,那么这个令牌会被丢弃

当流量以速率v进入,从桶中以速率v取令牌,拿到令牌的流量通过,拿不到令牌流量不通过,执行熔断逻辑

属性

长期来看,符合流量的速率是受到令牌添加速率的影响,被稳定为:r

因为令牌桶有一定的存储量,可以抵挡一定的流量突发情况

M是以字节/秒为单位的最大可能传输速率:M>r

T max = b/(M-r) 承受最大传输速率的时间

B max = T max * M 承受最大传输速率的时间内传输的流量

优点:流量比较平滑,并且可以抵挡一定的流量突发情况

因为我们限流系统的实现就是基于令牌桶这个算法,具体的代码实现参考下文。

3、工程实现

3.1、技术选型

mysql:存储限流策略的参数等元数据

redis+lua:令牌桶算法实现

说明:因为我们把redis 定位为:缓存、计算媒介,所以元数据都是存在db中

3.2、架构图

3.3、 数据结构

字段描述name令牌桶的唯一标示apps能够使用令牌桶的应用列表max_permits令牌桶的最大令牌数rate向令牌桶中添加令牌的速率created_by创建人updated_by更新人

限流系统的实现是基于redis的,本可以和应用无关,但是为了做限流元数据配置的统一管理,按应用维度管理和使用,在数据结构中加入了apps这个字段,出现问题,排查起来也比较方便。

3.4、代码实现

3.4.1、代码实现遇到的问题

参考令牌桶的算法描述,一般思路是在RateLimiter-client放一个重复执行的线程,线程根据配置往令牌桶里添加令牌,这样的实现由如下缺点:

需要为每个令牌桶配置添加一个重复执行的线程

重复的间隔精度不够精确:线程需要每1/r秒向桶里添加一个令牌,当r>1000 时间线程执行的时间间隔根本没办法设置(从后面性能测试的变现来看RateLimiter-client 是可以承担 QPS > 5000 的请求速率)

3.4.2、解决方案

基于上面的缺点,参考了google的guava中RateLimiter中的实现,我们使用了触发式添加令牌的方式。

算法描述

基于上述的令牌桶算法

将添加令牌改成触发式的方式,取令牌的是做添加令牌的动作

在去令牌的时候,通过计算上一次添加令牌和当前的时间差,计算出这段间应该添加的令牌数,然后往桶里添加

curr_mill_second = 当前毫秒数

last_mill_second = 上一次添加令牌的毫秒数

r = 添加令牌的速率

reserve_permits = (curr_mill_second-last_mill_second)/1000 * r

添加完令牌之后再执行取令牌逻辑

3.4.3、 lua代码实现

- 获取令牌
--- 返回码
--- 0 没有令牌桶配置
--- -1 表示取令牌失败,也就是桶里没有令牌
--- 1 表示取令牌成功
--- @param key 令牌(资源)的唯一标识
--- @param permits 请求令牌数量
--- @param curr_mill_second 当前毫秒数
--- @param context 使用令牌的应用标识
local function acquire(key, permits, curr_mill_second, context)
local rate_limit_info = redis.pcall("HMGET", key, "last_mill_second", "curr_permits", "max_permits", "rate", "apps")
local last_mill_second = rate_limit_info[1]
local curr_permits = tonumber(rate_limit_info[2])
local max_permits = tonumber(rate_limit_info[3])
local rate = rate_limit_info[4]
local apps = rate_limit_info[5]
--- 标识没有配置令牌桶
if type(apps) == 'boolean' or apps == nil or not contains(apps, context) then
return 0
end
local local_curr_permits = max_permits;
--- 令牌桶刚刚创建,上一次获取令牌的毫秒数为空
--- 根据和上一次向桶里添加令牌的时间和当前时间差,触发式往桶里添加令牌
--- 并且更新上一次向桶里添加令牌的时间
--- 如果向桶里添加的令牌数不足一个,则不更新上一次向桶里添加令牌的时间
if (type(last_mill_second) ~= 'boolean' and last_mill_second ~= false and last_mill_second ~= nil) then
local reverse_permits = math.floor(((curr_mill_second - last_mill_second) / 1000) * rate)
local expect_curr_permits = reverse_permits + curr_permits;
local_curr_permits = math.min(expect_curr_permits, max_permits);
--- 大于0表示不是第一次获取令牌,也没有向桶里添加令牌
if (reverse_permits > 0) then
redis.pcall("HSET", key, "last_mill_second", curr_mill_second)
end
else
redis.pcall("HSET", key, "last_mill_second", curr_mill_second)
end
local result = -1
if (local_curr_permits - permits >= 0) then
result = 1
redis.pcall("HSET", key, "curr_permits", local_curr_permits - permits)
else
redis.pcall("HSET", key, "curr_permits", local_curr_permits)
end
return result
end

关于限流系统的所有实现细节,我都已经放到github上,gitbub地址:https://github.com/wukq/rate-limiter,有兴趣的同学可以前往查看,由于笔者经验与知识有限,代码中如有错误或偏颇,欢迎探讨和指正。

3.4.4、管理界面

前面的设计中,限流的配置是和应用关联的,为了更够更好的管理配置,需要一个统一的管理页面去对配置进行管控:

按应用对限流配置进行管理

不同的人分配不同的权限;相关人员有查看配置的权限,负责人有修改和删除配置的权限

3.5、性能测试

配置:aws-elasticcache-redis 2核4g

因为Ratelimiter-client的功能比较简单,基本上是redis的性能打个折扣。

单线程取令牌:Ratelimiter-client的 QPS = 250/s

10个线程取令牌:Ratelimiter-client的 QPS = 2000/s

100个线程取令牌:Ratelimiter-client的 QPS = 5000/s

4、总结

限流系统从设计到实现都比较简单,但是确实很实用,用四个字来形容就是:短小强悍,其中比较重要的是结合公司的权限体系和系统结构,设计出符合自己公司规范的限流系统。

不足:

redis 我们用的是单点redis,只做了主从,没有使用redis高可用集群(可能使用redis高可用集群,会带来新的问题)

限流系统目前只做了应用层面的实现,没有做接口网关上的实现

熔断策略需要自己定制,如果实现的好一点,可以给一些常用的熔断策略模板

   
1983 次浏览       16
相关文章

基于EA的数据库建模
数据流建模(EA指南)
“数据湖”:概念、特征、架构与案例
在线商城数据库系统设计 思路+效果
 
相关文档

Greenplum数据库基础培训
MySQL5.1性能优化方案
某电商数据中台架构实践
MySQL高扩展架构设计
相关课程

数据治理、数据架构及数据标准
MongoDB实战课程
并发、大容量、高性能数据库设计与优化
PostgreSQL数据库实战培训