您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Modeler   Code  
会员   
 
   
 
 
     
   
 订阅
  捐助
双倍提升Apache Spark排序性能
 
作者 Sandy Ryza and Saisai (Jerry) Shao 来源:Cloudera  火龙果软件  发布于 2015-1-27
  1693  次浏览      16
 

Cloudera和英特尔公司的工程师们正在通力合作,旨在使Spark shuffle阶段具有更高的可扩展性和稳定性。本文对相关方法的设计进行了详细描述。

区别常见的Embarrassingly Parallel系统,类似MapReduce和Apache Spark(Apache Hadoop的下一代数据处理引擎)这样的计算引擎主要区别在于对“all-to-all” 操作的支持上。和许多分布式引擎一样,MapReduce和Spark的操作通常针对的是被分片数据集的子分片,很多操作每次只处理单个数据节点,同时这些操作所涉及到的数据往往都只存在于这个数据片内。all-to-all操作必须将数据集看作一个整体,而每个输出结果都可以总结自不同分片上的记录。Spark的groupByKey、sortByKey,还有reduceByKey这些shuffle功能都属于这方面常见的操作。

在这些分布式计算引擎中,shuffle指的是在一个all-to-all操作中将数据再分割和聚合的操作。显而易见,在实践生产中,我们在Spark部署时所发现的大多性能、可扩展性及稳定性问题都是在shuffle过程中产生的。

Cloudera和英特尔的工程师们正通力合作以扩展Spark的shuffle,使得shuffle可以更加快速与稳定地处理大量的数据集。Spark在很多方面相较MapReduce有更多优势,同时又在稳定性与可扩展性上相差无几。在此,我们从久经考验的MapReduce shuffle部署中吸取经验,以提高排序数据输出的shuffle性能。

在本文中,我们将会逐层解析——介绍目前Spark shuffle的运作实现模式,提出修改建议,并对性能的提高方式进行分析。更多的工作进展可以于正在进行中的SPARK-2926发现。

Spark目前的运作实现模式

一个shuffle包含两组任务:1. 产生shuffle数据的阶段;2.使用shuffle数据的阶段。鉴于历史原因,写入数据的任务被称做“map task”,而读取数据的任务被称做“reduce tasks”,但是以上角色分配只局限于单个job的某个具体shuffle过程中。在一个shuffle中扮演reduce的task,在另一个shuffle中可能就是map了,因为它在前者里面执行的是读取操作,而在后者中执行的是数据写入任务,并在随后的阶段中被消费。

MapReduce和Spark的shuffle都使用到了“pull”模式。在每个map任务中,数据被写入本地磁盘,然后在reduce任务中会远程请求读取这些数据。由于shuffle使用的是all-to-all模式,任何map任务输出的记录组都可能用于任意reduce。一个job在map时的shuffle操作基于以下原则:所有用于同一个reduce操作的结果都会被写入到相邻的组别中,以便获取数据时更为简单。

Spark默认的shuffle实现(即hash-based shuffle)是map阶段为每个reduce任务单独打开一个文件,这种操作胜在简单,但实际中却有一些问题,比如说实现时Spark必须维持大量的内存消耗,或者造成大量的随机磁盘I/O。此外,如果M和R分别代表着一个shuffle操作中的map和reduce数量,则hash-based shuffle需要产生总共M*R个数量的临时文件,Shuffle consolidation将这个数量减至C*R个(这里的C代表的是同时能够运行的map任务数量),但即便是经过这样的修改之后,在运行的reducer数量过多时还是经常会出现“文件打开过多”的限制。

Hash-based shuffle中单个map任务

Sort-based shuffle中单个map任务

为了进一步提高shuffle的稳定性与性能,从1.1版本开始,Spark引入了“sort-based shuffle”实现,其功能与MapReduce使用的map方式十分类似。在部署时,每个任务的map输出结果都会被储存在内存里(直到可用内存耗尽),然后在reduce任务中进行排序,之后再spill到一个单独的文件。如果在单个任务中该操作发生了多次,那么这个任务的输出将被合并。

在reduced的过程中,一组线程负责抓取远程的map输出blocks。当数据进入后,它们会被反序列化,再转化成一个适用于执行all-to-all操作的数据结构。在类似groupByKey、reduceByKey,还有aggregateByKey之类的聚合操作中,其结果会变成一个ExternalAppendOnlyMap(本质上是一个内存溢出时会spill到硬盘的哈希map)。在类似sortByKey的排序操作中,输出结果会变成一个ExternalSorter(将结果分类后可能会spill到硬盘,并在对结果进行排序后返回一个迭代程序)。

完全Sort-based Shuffle

上文所描述的方式有两个弊端:

  • 每个Spark reduce的任务都需要同时打开大量的反序列化记录,从而导致内存的大量消耗,而大量的Java对象对JVM的垃圾收集(garbage collection)产生压力,会造成系统变慢和卡顿,同时由于这个版本较之序列化的版本内存消耗更为巨大,因而Spark必须更早更频繁的spill,造成硬盘I/O也更为频繁。此外,由于判断反序列化对象的内存占用情况时难以达到100%的准确率,因此保持大量的反序列化对象会加剧内存不足的可能性。
  • 在引导需要在分片内的排序操作时,我们需要进行两次排序:mapper时按分片排序,reducer时按Key排序。

我们修改了map时在分片内按Key对结果进行排序,这样在reduce时我们只要合并每个map任务排序后的吧blocks即可。我们可以按照序列化的模式将每个block存到内存中,然后在合并时逐一地将结果反序列化。这样任何时候,内存中反序列化记录的最大数量就是已经合并的blocks总量。

完全sort-based shuffle中的单个map任务

单个reduce任务可以接收来自数以千计map任务的blocks,为了使得这个多路归并更加高效,尤其是在数据超过可用内存的情况下,我们引入了分层合并( tiered merger)的概念。如果需要合并许多保存在磁盘上的blocks,这样做可以最小化磁盘寻道数量。分层合并同样适用于ExternalAppendOnlyMap以及ExternalSorter的内部合并步骤,但是暂时我们还没有进行修改。

高性能合并

每个任务中有一组线程是负责同步抓取shuffle数据的,每个任务对应的内存池有48MB,用来存放相应的数据。

我们引入了SortShuffleReader,先从内存池中获取到blocks,然后[key, value]的方式向用户代码中返回迭代器对象。

Spark有一个所有任务共享的shuffle内存区域,默认大小是完整executor heap的20%。当blocks进入时,SortShuffleReader会尝试从该主区域中调用shuffle所需的内存,直至内存塞满调用失败为止,然后我们需要将数据spill到硬盘上以释放内存。SortShuffleReader将所有(好吧,并非所有的,有时候只会spill一小部分)内存中的数据块写入一个单独的文件中并存入硬盘。随着blocks被存入硬盘,一个后台线程会对其进行监视,并在必要时将这些文件合并为更大一些的磁盘blogs。“final merge”会将所有最终硬盘与内存中的blocks全部合并起来。

如何确定是时候进行一个临时的“磁盘到磁盘”合并?

spark.shuffle.maxMergeFactor(默认为100)控制着一次可以合并的硬盘blocks数量的最大值,当硬盘blocks的数量超过限制时,后台线程会运行一次合并以降低这个数量(但是不会马上奏效,详情请查看代码)。在确定需要合并多少blocks时,线程首先会将需要执行合并的blocks数量设定为最小值,并将这个值作为合并数量的上限,以期尽可能减少blocks的合并次数。因此,如果spark.shuffle.maxMergeFactor是100,而磁盘blocks的最终数量为110,这样只需总共进行11个blocks的合并,就可将最终磁盘blocks的数量保持在恰好100。想要再合并哪怕一个blocks,都会需要再一次的额外合并,而可能导致不必要的磁盘I/O。

maxMergeWidth为4的分层合并。每个矩形代表一个segment,其中三个合并为一个,然后最终有四个segment被合并到一个迭代器中,以备下一次操作使用。

与sortByKey的性能对比

我们测试了使用SparkPerf进行sortbykey时,在相应的修改后,性能有何变化。在其中我们选择了两个不同大小的数据集,以比较我们的改动在内存足以支持所有shuffle数据时,和不足以支持的情况下对于性能的增益情况。

Spark的sortByKey变化导致两个job和三个stage。

  • Sample stage:进行数据取样以创建一个分区范围,分区大小相等。
  • Map阶段:写入为reduce阶段准备的shuffle bucket。
  • Reduce阶段:得到相关的shuffle结果,按特定的数据集分区进行合并/分类。

引入一个6节点集群的基准,每个executor包含24个core和36GB的内存,大数据集有200亿条记录,压缩后在HDFS上占409.8GB。小数据集有20亿条记录,压缩后在HDFS上占15.9GB。每条记录都包含一对10个字符串的键值对,在两个case中,我们在超过1000个分片中测试了排序,每个stage的运行时间表以及总共的job如下图显示:

大数据集(越低则越好)

小数据集(越低则越好)

取样阶段耗时相同,因为此阶段并不涉及shuffle过程;在map阶段,在我们的改进下,每个分片中按Key对数据进行排序,导致这个阶段的运行时间增加了(大数据集增加了37%,小数据集则是27%)。但是增加的时间在reduce阶段得到了更大的补偿,由于现在只需合并排序后的数据,Reduce阶段的两个数据集的耗时共减少了66%,从而使得大数据集加速27%,小数据集加速17%。

下面还有什么?

SPARK-2926是Spark shuffle的几个改进计划的成果之一,在这个版本中很多方面上shuffle可以更好地管理内存:

  • SPARK-4550 用内存缓冲中的map输出数据作为原始数据,取代Java对象。map输出数据的空间消耗更少,从而使得spill更少,在原始数据的对比上更快。
  • SPARK-4452 更详细地追踪不同shuffle数据结构的内存分配,同时将无需消耗的内存尽早返还。
  • SPARK-3461 追踪agroupBy后出现的特定Key值相应字符串或者节点,而不是一次将其全部loading入内存。
   
1693 次浏览       16
相关文章

基于EA的数据库建模
数据流建模(EA指南)
“数据湖”:概念、特征、架构与案例
在线商城数据库系统设计 思路+效果
 
相关文档

Greenplum数据库基础培训
MySQL5.1性能优化方案
某电商数据中台架构实践
MySQL高扩展架构设计
相关课程

数据治理、数据架构及数据标准
MongoDB实战课程
并发、大容量、高性能数据库设计与优化
PostgreSQL数据库实战培训
最新课程计划
信息架构建模(基于UML+EA)3-21[北京]
软件架构设计师 3-21[北京]
图数据库与知识图谱 3-25[北京]
业务架构设计 4-11[北京]
SysML和EA系统设计与建模 4-22[北京]
DoDAF规范、模型与实例 5-23[北京]

MySQL索引背后的数据结构
MySQL性能调优与架构设计
SQL Server数据库备份与恢复
让数据库飞起来 10大DB2优化
oracle的临时表空间写满磁盘
数据库的跨平台设计
更多...   


并发、大容量、高性能数据库
高级数据库架构设计师
Hadoop原理与实践
Oracle 数据仓库
数据仓库和数据挖掘
Oracle数据库开发与管理


GE 区块链技术与实现培训
航天科工某子公司 Nodejs高级应用开发
中盛益华 卓越管理者必须具备的五项能力
某信息技术公司 Python培训
某博彩IT系统厂商 易用性测试与评估
中国邮储银行 测试成熟度模型集成(TMMI)
中物院 产品经理与产品管理
更多...