Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Modeler   Code  
»áÔ±   
 
   
 
 
     
   
 ¶©ÔÄ
  ¾èÖú
ʹÓà Hive ¹¹½¨Êý¾Ý¿â
 
×÷Õß Peter J. Jamack£¬»ðÁú¹ûÈí¼þ    ·¢²¼ÓÚ 2014-10-15
  3254  次浏览      30
 

µ±ÄúÐèÒª´¦Àí´óÁ¿Êý¾Ýʱ£¬´æ´¢ËüÃÇÊÇÒ»¸ö²»´íµÄÑ¡Ôñ¡£ÁîÈËÄÑÒÔÖÃÐŵķ¢ÏÖ»òδÀ´Ô¤²â²»»áÀ´×ÔδʹÓõÄÊý¾Ý¡£´óÊý¾ÝÊÇÒ»¸ö¸´ÔӵĹÖÊÞ¡£Óà Java? ±à³ÌÓïÑÔ±àд¸´Ô MapReduce ³ÌÐòÒªºÄ·ÑºÜ¶àʱ¼ä¡¢Á¼ºÃµÄ×ÊÔ´ºÍרҵ֪ʶ£¬ÕâÕýÊÇ´ó²¿·ÖÆóÒµËù²»¾ß±¸µÄ¡£ÕâÒ²ÊÇÔÚ Hadoop ÉÏʹÓÃÖîÈç Hive Ö®ÀàµÄ¹¤¾ß¹¹½¨Êý¾Ý¿â»á³ÉΪһ¸ö¹¦ÄÜÇ¿´óµÄ½â¾ö·½°¸µÄÔ­Òò¡£

Èç¹ûÒ»¼Ò¹«Ë¾Ã»ÓÐ×ÊÔ´¹¹½¨Ò»¸ö¸´ÔӵĴóÊý¾Ý·ÖÎöƽ̨£¬¸ÃÔõô°ì£¿µ±ÒµÎñÖÇÄÜ (BI)¡¢Êý¾Ý²Ö¿âºÍ·ÖÎö¹¤¾ßÎÞ·¨Á¬½Óµ½ Apache Hadoop ϵͳ£¬»òÕßËüÃDZÈÐèÇó¸ü¸´ÔÓʱ£¬ÓÖ¸ÃÔõÑù°ì£¿´ó¶àÊýÆóÒµ¶¼ÓÐһЩӵÓйØÏµÊý¾Ý¿â¹ÜÀíϵͳ (RDBMSes) ºÍ½á¹¹»¯²éѯÓïÑÔ (SQL) ¾­ÑéµÄÔ±¹¤¡£Apache Hive ÔÊÐíÕâЩÊý¾Ý¿â¿ª·¢ÈËÔ±»òÕßÊý¾Ý·ÖÎöÈËԱʹÓà Hadoop£¬ÎÞÐèÁ˽â Java ±à³ÌÓïÑÔ»òÕß MapReduce¡£ÏÖÔÚ£¬Äú¿ÉÒÔÉè¼ÆÐÇÐÍÄ£Ð͵ÄÊý¾Ý²Ö¿â£¬»òÕß³£Ì¬»¯µÄÊý¾Ý¿â£¬¶ø²»ÐèÒªÌôÕ½ MapReduce ´úÂë¡£ºöȻ֮¼ä£¬BI ºÍ·ÖÎö¹¤¾ß£¬±ÈÈç IBM Cognos? »òÕß SPSS? Statistics£¬¾Í¿ÉÒÔÁ¬½Óµ½ Hadoop ϵͳ¡£

Êý¾Ý¿â

¹¹½¨Êý¾Ý¿â£¬²¢ÇÒÄܹ»Ê¹ÓÃÕâЩÊý¾Ý£¬Õâ²»ÊÇ Hadoop »òÕßÊý¾Ý¿âÎÊÌâ¡£¶àÄêÒÔÀ´£¬ÈËÃÇһֱϰ¹ß½«Êý¾Ý×éÖ¯µ½¿âÖС£ÓÐÐí¶àÓÉÀ´ÒѾõÄÎÊÌ⣺ÈçºÎ½«Êý¾Ý·ÖÃűðÀࣿÈçºÎ½«ËùÓÐÊý¾ÝÁ¬½Óµ½¼¯³ÉµÄƽ̨¡¢»úÏä»òÕß ¿â£¿¶àÄêÀ´£¬¸÷ÖÖ·½°¸²ã³ö²»Çî¡£

ÈËÃÇ·¢Ã÷Á˺ܶ෽·¨£¬±ÈÈç Dewey Decimal ϵͳ¡£ËûÃǽ«Í¨Ñ¶Â¼ÖеÄÈËÃû»òÆóÒµÃû°´ÕÕ×Öĸ˳ÐòÅÅÁС£»¹ÓнðÊôÎļþ¹ñ¡¢´ø»õ¼ÜµÄ²Ö¿â¡¢µØÖ·¿¨Îļþϵͳ£¬µÈµÈ¡£¹ÍÖ÷³¢ÊÔÓÃʱ¼ä¿¨£¬´ò¿¨Æ÷ÒÔ¼°Ê±¼ä±í×·×ÙÔ±¹¤¡£ÈËÃÇÐèÒª½á¹¹»¯ºÍ×éÖ¯»¯Êý¾Ý£¬»¹ÐèÒª·´Ó³ºÍ¼ì²éÕâЩÊý¾Ý¡£Èç¹ûÄúÎÞ·¨·ÃÎÊ¡¢½á¹¹»¯»òÀí½âÕâЩÊý¾Ý£¬ÄÇô´æ´¢Õâô¶àµÄÊý¾ÝÓÐʲôʵ¼ÊÒâÒåÄØ£¿

RDBMSes ʹÓÃÁ˹ý¼¯ºÏÂۺ͵ÚÈý·¶Ê½¡£Êý¾Ý²Ö¿âÓÐ Kimball¡¢Inmon¡¢ÐÇÐÍÄ£ÐÍ¡¢Corporate Information Factory£¬ÒÔ¼°×¨ÓÃÊý¾Ý¼¯ÊС£ËûÃÇÓÐÖ÷Êý¾Ý¹ÜÀí¡¢ÆóÒµ×ÊÔ´¹æ»®¡¢¿Í»§¹ØÏµ¹ÜÀí¡¢µç×ÓÒ½ÁƼǼºÍÆäËûÐí¶àϵͳ£¬ÈËÃÇʹÓÃÕâЩϵͳ½«ÊÂÎñ×éÖ¯µ½Ä³ÖֽṹºÍÖ÷ÌâÖС£ÏÖÔÚ£¬ÎÒÃÇÓдóÁ¿À´×Ô¸÷¸öÐÐÒµµÄ·Ç»ú¹¹»¯»ò°ë½á¹¹»¯Êý¾Ý£¬ÀýÈ磬É罻ýÌå¡¢Óʼþ¡¢Í¨»°¼Ç¼¡¢»úеָÁî¡¢Ô¶³ÌÐÅÏ¢£¬µÈµÈ¡£ÕâЩÐÂÊý¾ÝÐèÒª¼¯³Éµ½´æ´¢½á¹¹»¯µÄоÉÊý¾ÝµÄ·Ç³£¸´ÔÓ¡¢·Ç³£ÅÓ´óµÄϵͳÖС£ÈçºÎ·ÖÀà²ÅÄÜʹµÃÏúÊÛ¾­ÀíÄܹ»¸Ä½ø±¨¸æ£¿ÈçºÎ¹¹½¨¿â²ÅÄÜʹµÃÖ´ÐÐÖ÷¹ÜÄܹ»·ÃÎÊͼ±íºÍͼÐΣ¿

ÄúÐèÒªÕÒµ½Ò»ÖÖ½«Êý¾Ý½á¹¹»¯µ½Êý¾Ý¿âµÄ·½·¨¡£·ñÔò£¬Ö»ÊÇÓµÓдóÁ¿Ö»ÓÐÊý¾Ý¿ÆÑ§¼Ò²ÅÄÜ·ÃÎÊÊý¾Ý¡£ÓÐʱ£¬ÈËÃÇÖ»ÊÇÐèÒª¼òµ¥µÄ±¨¸æ¡£ÓÐʱ£¬ËûÃÇÖ»ÊÇÏëÒªÍÏ×§»òÕß±àд SQL ²éѯ¡£

´óÊý¾Ý¡¢Hadoop ºÍ InfoSphere BigInsights

±¾Ð¡½Ú½«ÏòÄú½éÉÜ InfoSphere? BigInsights?£¬ÒÔ¼°ËüÓë Hadoop¡¢´óÊý¾Ý¡¢Hive¡¢Êý¾Ý¿âµÈÓкÎÁªÏµ¡£InfoSphere BigInsights ÊÇ Hadoop µÄ IBM ·ÖÇø¡£Äú¿ÉÄÜ¶Ô Apache ºÍ Cloudera ±È½ÏÁ˽⣬µ«ÊÇÒµÄÚÐí¶àÈ˶¼ÔøÉæ×ã Hadoop¡£Ëü¿ªÊ¼ÓÚ¿ªÔ´µÄʹÓà MapReduce µÄ Hadoop ºÍ Hadoop ·Ö²¼Ê½Îļþϵͳ (HDFS)£¬Í¨³£»¹°üÀ¨ÆäËû¹¤¾ß£¬±ÈÈç ZooKeeper¡¢Oozie¡¢Sqoop¡¢Hive¡¢Pig ºÍ HBase¡£ÕâЩ·¢²¼°æÓëÆÕͨ Hadoop µÄÇø±ðÔÚÓÚËüÃDZ»Ìí¼ÓÔÚ Hadoop ¶¥²ã¡£InfoSphere BigInsights ¾ÍÊôÓÚÕâÒ»Àà°æ±¾¡£

Äú¿ÉÒÔÔÚ Hadoop µÄ Cloudera °æ±¾Ö®ÉÏʹÓà InfoSphere BigInsights¡£´ËÍ⣬InfoSphere BigInsights Ìṩһ¸ö¿ìËٵķǽṹ»¯µÄ·ÖÎöÒýÇæ£¬Äú¿ÉÒÔ½«ËüºÍ InfoSphere Streams ½áºÏÔÚÒ»ÆðʹÓá£InfoSphere Streams ÊÇÒ»¸öʵʱµÄ·ÖÎöÒýÇæ£¬Ëü¿ª´´ÁËÁªºÏʵʱ·ÖÎöºÍÃæÏòÅú´ÎµÄ·ÖÎöµÄ¿ÉÄÜ¡£

InfoSphere BigInsights »¹ÓµÓÐÄÚÖõġ¢»ùÓÚä¯ÀÀÆ÷µÄµç×Ó±í¸ñ BigSheets¡£Õâ¸öµç×Ó±í¸ñÔÊÐí·ÖÎöÈËԱÿÌìÒÔµç×Ó±í¸ñÑùʽʹÓôóÊý¾ÝºÍ Hadoop¡£ÆäËû¹¦ÄܰüÀ¨»ùÓÚ½ÇÉ«µÄ°²È«ºÍ¹ÜÀíµÄ LDAP ¼¯³É£»Óë InfoSphere DataStage? µÄ¼¯³É£¬ÓÃÓÚÌáÈ¡¡¢×ª»»¡¢¼ÓÔØ (ETL)£»³£ÓõÄʹÓð¸ÀýµÄ¼ÓËÙÆ÷£¬±ÈÈçÈÕÖ¾ºÍ»úÆ÷Êý¾Ý·ÖÎö£»°üº¬³£ÓÃĿ¼ºÍ¿ÉÖØ¸´Ê¹Óù¤×÷µÄÓ¦ÓÃĿ¼£»Eclipse ²å¼þ£»ÒÔ¼° BigIndex£¬Ëüʵ¼ÊÉÏÊÇÒ»¸ö»ùÓÚ Lucene µÄË÷Òý¹¤¾ß£¬¹¹½¨ÓÚ Hadoop Ö®ÉÏ¡£

Äú»¹¿ÉÒÔʹÓà Adaptive MapReduce¡¢Ñ¹ËõÎı¾Îļþ¡¢×ÔÊÊÓ¦µ÷¶ÈÔöÇ¿À´Ìá¸ßÐÔÄÜ¡£´ËÍ⣬Äú»¹¿ÉÒÔ¼¯³ÉÆäËûÓ¦Óã¬ÀýÈ磬ÄÚÈÝ·ÖÎöºÍ Cognos Consumer Insights¡£

Hive

Hive ÊÇÒ»¸öÇ¿´óµÄ¹¤¾ß¡£ËüʹÓÃÁË HDFS£¬ÔªÊý¾Ý´æ´¢£¨Ä¬ÈÏÇé¿öÏÂÊÇÒ»¸ö Apache Derby Êý¾Ý¿â£©¡¢shell ÃüÁî¡¢Çý¶¯Æ÷¡¢±àÒëÆ÷ºÍÖ´ÐÐÒýÇæ¡£Ëü»¹Ö§³Ö Java Êý¾Ý¿âÁ¬½ÓÐÔ (JDBC) Á¬½Ó¡£ ÓÉÓÚÆäÀàËÆ SQL µÄÄÜÁ¦ºÍÀàËÆÊý¾Ý¿âµÄ¹¦ÄÜ£¬Hive Äܹ»Îª·Ç±à³ÌÈËÔ±´ò¿ª´óÊý¾Ý Hadoop Éú̬ϵͳ¡£Ëü»¹ÌṩÁËÍⲿ BI Èí¼þ£¬ÀýÈ磬ͨ¹ý JDBC Çý¶¯Æ÷ºÍ Web ¿Í»§¶ËºÍ Cognos Á¬½Ó¡£

Äú¿ÉÒÔÒÀ¿¿ÏÖÓеÄÊý¾Ý¿â¿ª·¢ÈËÔ±£¬²»Ó÷Ñʱ·ÑÁ¦µØÑ°ÕÒ Java MapReduce ±à³ÌÈËÔ±¡£ÕâÑù×öµÄºÃ´¦ÔÚÓÚ£ºÄú¿ÉÒÔÈÃÒ»¸öÊý¾Ý¿â¿ª·¢ÈËÔ±±àд 10-15 ÐÐ SQL ´úÂ룬Ȼºó½«ËüÓÅ»¯ºÍ·­ÒëΪ MapReduce ´úÂ룬¶ø²»ÊÇÇ¿ÆÈÒ»¸ö·Ç±à³ÌÈËÔ±»òÕß±à³ÌÈËԱд 200 ÐдúÂ룬ÉõÖÁ¸ü¶àµÄ¸´ÔÓ MapReduce ´úÂë¡£

Hive ³£±»ÃèÊöΪ¹¹½¨ÓÚ Hadoop Ö®ÉϵÄÊý¾Ý²Ö¿â»ù´¡¼Ü¹¹¡£ÊÂʵÊÇ£¬Hive ÓëÊý¾Ý²Ö¿âûÓÐʲô¹ØÏµ¡£Èç¹ûÄúÏë¹¹½¨Ò»¸öÕæÊµµÄÊý¾Ý²Ö¿â£¬¿ÉÒÔ½èÖúһЩ¹¤¾ß£¬±ÈÈç IBM Netezza¡£µ«ÊÇÈç¹ûÄúÏëʹÓà Hadoop ¹¹½¨Ò»¸öÊý¾Ý¿â£¬µ«ÓÖûÓÐÕÆÎÕ Java »òÕß MapReduce ·½ÃæµÄ֪ʶ£¬ÄÇô Hive »áÊÇÒ»¸ö·Ç³£²»´íµÄÑ¡Ôñ£¨Èç¹ûÄúÁ˽â SQL£©¡£Hive ÔÊÐíÄúʹÓà Hadoop ºÍ HBase µÄ HiveQL ±àдÀàËÆ SQL µÄ²éѯ£¬»¹ÔÊÐíÄúÔÚ HDFS Ö®ÉϹ¹½¨ÐÇÐÍÄ£ÐÍ¡£

Hive Óë RDBMSes

Hive ÊÇÒ»¸ö¶Áģʽ ϵͳ£¬¶ø RDBMSes ÊÇÒ»¸öµäÐ͵Äдģʽ ϵͳ¡£´«Í³µÄ RDMBSes ÔÚ±àдÊý¾ÝʱÑé֤ģÐÍ¡£Èç¹ûÊý¾ÝÓë½á¹¹²»·û£¬Ôò»áÔâµ½¾Ü¾ø¡£Hive ²¢²»¹ØÐÄÊý¾ÝµÄ½á¹¹£¬ÖÁÉÙ²»»áÔÚµÚһʱ¼ä¹ØÐÄÊý¾Ý½á¹¹£¬Ëü²»»áÔÚÄú¼ÓÔØÊý¾ÝʱÑé֤ģÐÍ¡£¸üÈ·ÇеØËµ£¬Ö»ÔÚÄúÔËÐвéѯ֮ºó£¬Ëü²Å»á¹ØÐĸÃÄ£ÐÍ¡£

Hive µÄÏÞÖÆ

ÔÚʹÓà Hive ʱ¿ÉÄÜ»áÓÐһЩÌôÕ½¡£Ê×ÏÈ£¬ËüÓë SQL-92 ²»¼æÈÝ¡£Ä³Ð©±ê×¼µÄ SQL º¯Êý£¬ÀýÈç NOT IN¡¢NOT LIKE ºÍ NOT EQUAL ²¢²»´æÔÚ£¬»òÕßÐèҪijÖÖ¹¤×÷Çø¡£ÀàËÆµØ£¬²¿·ÖÊýѧº¯ÊýÓÐÑϸñÏÞÖÆ£¬»òÕß²»´æÔÚ¡£Ê±¼ä´Á»òÕß date ÊÇ×î½üÌí¼ÓµÄÖµ£¬Óë SQL ÈÕÆÚ¼æÈÝÐÔÏà±È£¬¸ü¾ßÓÐ Java ÈÕÆÚ¼æÈÝÐÔ¡£Ò»Ð©¼òµ¥¹¦ÄÜ£¬ÀýÈçÊý¾Ý²î±ð£¬²»ÄÜÕý³£¹¤×÷¡£

´ËÍ⣬Hive ²»ÊÇΪÁË»ñµÃµÍÑÓʱµÄ¡¢ÊµÊ±»òÕß½üºõʵʱµÄ²éѯ¶ø¿ª·¢µÄ¡£SQL ²éѯ±»×ª»¯³É MapReduce£¬ÕâÒâζ×ÅÓ봫ͳ RDBMS Ïà±È£¬¶ÔÓÚijÖÖ²éѯ£¬ÐÔÄÜ¿ÉÄܽϵ͡£

ÁíÒ»¸öÏÞÖÆÊÇ£¬ÔªÊý¾Ý´æ´¢Ä¬ÈÏÇé¿öÏÂÊÇÒ»¸ö Derby Êý¾Ý¿â£¬²¢²»ÊÇΪÆóÒµ»òÕßÉú²ú¶ø×¼±¸¡£²¿·Ö Hadoop Óû§×ª¶øÊ¹ÓÃÍⲿÊý¾Ý¿â×÷ΪԪÊý¾Ý´æ´¢£¬µ«ÊÇÕâЩÍⲿԪÊý¾Ý´æ´¢Ò²ÓÐÆä×ÔÉíµÄÄÑÌâºÍÅäÖÃÎÊÌâ¡£ÕâÒ²Òâζ×ÅÐèÒªÓÐÈËÔÚ Hadoop Íⲿά»¤ºÍ¹ÜÀí RDBMS ϵͳ¡£

°²×° InfoSphere BigInsights

Õâ¸ö°ôÇòÔ˶¯Êý¾ÝʾÀýÏòÄúչʾÁËÔÚ Hive ÖÐÈçºÎ´ÓÆ½ÃæÎļþ¹¹½¨³£ÓõÄÊý¾Ý¿â¡£ËäÈ»Õâ¸öʾÀý±È½ÏС£¬µ«ËüÏÔʾÁËʹÓà Hive ¹¹½¨Êý¾Ý¿âÓжàôÇáËÉ£¬Äú¿ÉÒÔʹÓøÃÊý¾ÝÔËÐÐͳ¼ÆÊý¾Ý£¬È·±£Ëü·ûºÏÔ¤ÆÚ¡£½«À´³¢ÊÔ×éÖ¯·Ç½á¹¹Êý¾Ýʱ¾ÍÎÞÐè¼ì²éÄÇЩÐÅÏ¢¡£

Íê³ÉÊý¾Ý¿â¹¹½¨Ö®ºó£¬Ö»ÒªÁ¬½Óµ½ Hive JDBC£¬¾Í¿ÉÒÔʹÓÃÈκÎÓïÑÔ¹¹½¨ Web »òÕß GUI ǰ¶Ë¡££¨ÅäÖúÍÉèÖÃÒ»¸ö thrift ·þÎñÆ÷£¬Hive JDBC ÊÇÁíÒ»¸ö»°Ì⣩¡£ÎÒʹÓà VMware Fusion ÔÚÎÒµÄ Apple Macbook ÉÏ´´½¨ÁËÒ»¸ö InfoSphere BigInsights ÐéÄâ»ú (VM)¡£ÕâÊÇÒ»¸ö¼òµ¥µÄ²âÊÔ£¬ÕâÑùÎÒµÄ VM ¾ÍÓÐ 1 GB µÄ RAM ºÍ 20 GB µÄ¹Ì̬´ÅÅÌ´æ´¢¿Õ¼ä¡£²Ù×÷ϵͳÊÇ CentOS 6.4 64-bit distro µÄ Linux?¡£Äú»¹¿ÉÒÔʹÓÃijЩ¹¤¾ß£¬ÀýÈç Oracle VM VirtualBox£¬Èç¹ûÄúÊÇ Windows? Óû§£¬ÄÇôÄú»¹¿ÉÒÔʹÓà VMware Player ´´½¨ InfoSphere BigInsights VM¡££¨ÔÚ Fusion ÉÏÉèÖà VM¡¢VMware Player »òÕß VirtualBox ²»ÔÚ±¾ÎĵÄÌÖÂÛ·¶Î§Ö®ÄÚ¡££©

´ÓÏÂÔØ IBM InfoSphere BigInsights »ù´¡°æ¿ªÊ¼¡£ÄúÐèÒªÓÐÒ»¸ö IBM ID£¬»òÕßÄú¿ÉÒÔ×¢²áÒ»¸ö ID£¬È»ºóÏÂÔØ InfoSphere BigInsights »ù´¡°æ¡£

ÊäÈëºÍ·ÖÎöÊý¾Ý

ÏÖÔÚ£¬Äú¿ÉÒÔÔÚÈκεط½»ñÈ¡Êý¾Ý¡£¾ø´ó¶àÊýÍøÕ¾¶¼ÌṩÁ˶ººÅ·Ö¸ôÖµ (CSV) ¸ñʽµÄÊý¾Ý£ºÌìÆø¡¢ÄÜÔ´¡¢Ô˶¯¡¢½ðÈںͲ©¿ÍÊý¾Ý¡£ÀýÈ磬ÎÒʹÓÃÀ´×Ô Sean Lahman ÍøÕ¾µÄ½á¹¹»¯Êý¾Ý¡£Ê¹Ó÷ǽṹ»¯Êý¾Ý»á·ÑÁ¦Ò»Ð©¡£

Ê×ÏÈ ÏÂÔØ CSV Îļþ£¨²Î¼û ͼ 1£©¡£

ͼ 1. ÏÂÔØÊ¾ÀýÊý¾Ý¿â

Èç¹ûÄúÄþÔ¸ÔÚÒ»¸ö¸üÊÖ¶¯µÄ»·¾³ÖУ¬ÄÇô¿ÉÒÔ´Ó Linux? Íê³ÉËü£¬ÄúÐèÒª´´½¨Ò»¸öĿ¼£¬È»ºóÔËÐÐ wget£º

$ Sudo mkdir /user/baseball.
sudo wget http://seanlahman.com/files/database/lahman2012-csv.zip

¸ÃÊý¾ÝʹÓÃÁË Creative Commons Attribution-ShareAlike 3.0 Unported Ðí¿É¡£

ѹËõÎļþÔÚ CSV ÎļþÖУ¬°üº¬Á˰ôÇòºÍ°ôÇòÔ˶¯Ô±µÄͳ¼ÆÊý¾Ý¡£Ê¾ÀýÖаüº¬ËĸöÖ÷±í£¬Ã¿¸ö±í¶¼Ö»ÓÐÒ»¸öÁУ¨Player_ID£©£º

Master table.csv¡ª Ô˶¯Ô±ÐÕÃû¡¢³öÉúÈÕÆÚºÍÉúƽÐÅÏ¢

Batting.csv¡ª »÷Çòͳ¼Æ

Pitching.csv¡ª ͶÇòͳ¼Æ

Fielding.csv¡ª ½ÓÇòͳ¼Æ

¸¨±í£º

AllStarFull.csv¡ª È«Ã÷ÐÇÕóÈÝ

Hall of Fame.csv¡ª ÃûÈËÌÃͶƱÊý¾Ý

Managers.csv¡ª ¹ÜÀíͳ¼Æ

Teams.csv¡ª Äê¶Èͳ¼ÆºÍÅÅÃû

BattingPost.csv¡ª Èü¼¾ºóµÄ»÷Çòͳ¼Æ

PitchingPost.csv¡ª Èü¼¾ºóµÄͶÇòͳ¼Æ

TeamFranchises.csv¡ª ¼ÓÃËÐÅÏ¢

FieldingOF.csv¡ª ³¡ÍâλÖÃÊý¾Ý

FieldingPost.csv¡ª Èü¼¾ºóµÄÏÖ³¡Êý¾Ý

ManagersHalf.csv¡ª ¾­¼ÍÈ˵ķּ¾Êý¾Ý

TeamsHalf.csv¡ª ÍŶӵķּ¾Êý¾Ý

Salaries.csv¡ª ÇòԱн×ÊÊý¾Ý

SeriesPost.csv¡ª Èü¼¾ºóϵÁÐÐÅÏ¢

AwardsManagers.csv¡ª ¾­¼ÍÈ˽±Ïî

AwardsPlayers.csv¡ª ÇòÔ±½±Ïî

AwardsShareManagers.csv¡ª ¾­¼ÍÈ˽±ÏîͶƱ

AwardsSharePlayers.csv¡ª ÇòÔ±½±ÏîͶƱ

Appearances.csv

Schools.csv

SchoolsPlayers.csv

Éè¼ÆÊý¾Ý¿â

Éè¼ÆÊý¾Ý¿âµÄ´ó²¿·ÖÄÚÈÝÒѾ­Íê³É¡£Player_ID ÊÇËĸöÖ÷±í£¨Master¡¢Batting¡¢Pitching ºÍ Fielding£©µÄÖ÷¼ü¡££¨ÎªÁ˸üºÃµØÀí½â±í¸ñ½á¹¹ºÍÒÀÀµÐÔ£¬ÇëÔĶÁ Readme2012.txt¡££©

Éè¼Æ·Ç³£¼òµ¥£ºÖ÷±íÊÇͨ¹ý Player_ID Á¬½ÓµÄ¡£Hive ²¢Ã»ÓÐÕæµÄʹÓÃÖ÷¼ü»òÕßÒýÓÃÍêÕûÐԵĸÅÄî¡£Schema on Read Òâζ×Å Hive »áÞðÆúÄúÊäÈëµ½±í¸ñÖеÄËùÓÐÄÚÈÝ¡£Èç¹ûÎļþÊÇ»ìÂÒÎÞÐòµÄ£¬ÄÇô¿ÉÄÜÐèҪѰÇóÁ¬½ÓËüÃǵÄ×î¼Ñ·½·¨ ¡£´ËÍ⣬ÔÚ½«Êý¾Ý¼ÓÔØµ½ HDFS »ò Hive ֮ǰ£¬ÐèÒª½øÐÐһЩת»¯¡£¸ù¾Ý Schema on Rea Ô­Àí£¬²»Á¼Êý¾ÝÔÚ Hive Öн«³¹µ×±ä³É²»Á¼Êý¾Ý¡£Õâ¾ÍÊÇÊý¾Ý·ÖÎö£¨ÎÞÂÛÊÇÔ´¼¶±ðµÄ»òÕß HDFS ¼¶±ðµÄ£©ÊÇÒ»¸öÖØÒª²½ÖèµÄÔ­Òò¡£Ã»ÓÐÊý¾Ý·ÖÎö£¬×îÖÕ»ñµÃµÄԭʼÊý¾ÝûÓÐÈË¿ÉÒÔʹÓá£ÐÒÔ˵ÄÊÇ£¬Õâ¸ö°ôÇòµÄʾÀý°üº¬Ò»Ð©Êý¾Ý£¬ÕâЩÊý¾ÝÔÚÄúÊäÈë Hadoop ֮ǰ£¬ÒѾ­±»ÇåÀíºÍ×éÖ¯µ½Ò»Æð¡£

½«Êý¾Ý¼ÓÔØµ½ HDFS »òÕß Hive

½«Êý¾Ý¼ÓÔØµ½ Hadoop ʹÓÃÁ˺ܶ಻ͬµÄÀíÂÛºÍʵ¼ù¡£ÓÐʱ£¬Äú¿ÉÒÔ½«Ô­Ê¼ÎļþÖ±½ÓÊäÈëµ½ HDFS¡£Äú¿ÉÄܻᴴ½¨Ò»¸öĿ¼ºÍ×ÓĿ¼À´×éÖ¯Îļþ£¬µ«Êǽ«Îļþ´ÓÒ»¸öµØ·½¸´ÖÆ»òÒÆ¶¯µ½ÁíÒ»¸öλÖÃÊÇÒ»¸ö¼òµ¥µÄ¹ý³Ì¡£

¾ÍÕâ¸öʾÀýÀ´Ëµ£¬Ö»Ðè·¢³ö put ÃüÁȻºó´´½¨Ò»¸öÃûΪ baseball µÄĿ¼¼´¿É£º

1
2
3
Hdfs dfs -mkdir /user/hadoop/baseball

hdfs dfs -put /LOCALFILE /user/hadoop/baseball

ʹÓà Hive ¹¹½¨Êý¾Ý¿â

Ëæ×ÅÊý¾Ý·ÖÎöºÍÉè¼ÆµÄÍê³É£¬ÏÂÒ»²½¾ÍÊǹ¹½¨Êý¾Ý¿âÁË¡£

ËäÈ»ÎÒûÓнéÉÜËùÓеÄʾÀý£¬µ«ÊÇ£¬Èç¹û¸úËæÎÒ¹¹½¨Á˵ÚÒ»¸öʾÀý£¬ÄÇôÄú¾ÍÄܹ»Á˽âÈçºÎÍê³ÉʣϵIJ½Öè¡£ÎÒͨ³£»á¹¹½¨Ò»Ð© SQL Îı¾½Å±¾£¬È»ºó½«ËüÃÇÊäÈë»òÕßÕ³Ìùµ½ Hive¡£ÆäËûÈË¿ÉÒÔʹÓà Hue »òÆäËû¹¤¾ßÀ´¹¹½¨Êý¾Ý¿âºÍ±í¸ñ¡£

ΪÁ˼ò±ãÆð¼û£¬ÎÒÃÇʹÓÃÁË Hive Shell¡£¸ß¼¶²½ÖèÊÇ£º

1.´´½¨°ôÇòÊý¾Ý¿â

2.´´½¨±í¸ñ

3.¼ÓÔØ±í¸ñ

4.ÑéÖ¤±í¸ñÊÇÕýÈ·µÄ

Äú»á¿´µ½Ò»Ð©Ñ¡ÏÀýÈ磬´´½¨Íⲿ»òÕßÄÚ²¿Êý¾Ý¿âºÍ±í¸ñ£¬µ«ÊÇÔÚÕâ¸öʾÀýÖУ¬ÐèÒª×ñÊØÄÚ²¿Ä¬ÈÏÉèÖá£Êµ¼ÊÉÏ£¬ÄÚ²¿µÄ ¾ÍÒâζ×Å Hive ´¦ÀíÁËÄÚ²¿´æ´¢µÄÊý¾Ý¿â¡£Çåµ¥ 1 ˵Ã÷ÁË Hive shell µÄÁ÷³Ì¡£

Çåµ¥ 1. ´´½¨Êý¾Ý¿â

$ Hive

Create Database baseball;
Create table baseball.Master
( lahmanID int, playerID int, managerID int, hofID int, birthyear INT,
birthMonth INT, birthDay INT, birthCountry STRING, birthState STRING,
birthCity STRING, deathYear INT, deathMonth INT, deathDay INT,
deathCountry STRING, deathState STRING, deathCity STRING,
nameFirst STRING, nameLast STRING, nameNote STRING, nameGive STRING,
nameNick STRING, weight decimal, height decimal, bats STRING,
throws STRING, debut INT, finalGame INT,
college STRING, lahman40ID INT, lahman45ID INT, retroID INT,
holtzID INT, hbrefID INT )
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' ;

ÆäËûËùÓбíÒ²¶¼×ñÊØÕâ¸ö³ÌÐò¡£ÎªÁ˽«Êý¾Ý¼ÓÔØµ½ Hive ±í£¬½«»áÔٴδò¿ª Hive shell£¬È»ºóÔËÐÐÒÔÏ´úÂ룺

$hive
LOAD DATA LOCAL INPATH Master.csv OVERWRITE INTO TABLE baseball.Master;

ʹÓà Hive ¹¹½¨±ê×¼»¯Êý¾Ý¿â

Õâ¸ö°ôÇòµÄÊý¾Ý¿â»ò¶à»òÉÙÊDZê×¼»¯µÄ£ºÓÐËĸöÖ÷±íºÍ¼¸¸ö¸¨±í¡£ÔÙ´ÎÖØÉ꣬Hive ÊÇÒ»¸ö Schema on Read£¬Òò´ËÄú±ØÐëÍê³ÉÊý¾Ý·ÖÎöºÍ ETL ½×¶ÎµÄ´ó²¿·Ö¹¤×÷£¬ÒòΪûÓд«Í³ RDBMSes ÖеÄË÷Òý»òÕßÒýÓÃÍêÕûÐÔ¡£Èç¹ûÄúÏëҪʹÓÃË÷Òý¹¦ÄÜ£¬ÄÇôÏÂÒ»²½Ó¦¸ÃʹÓÃÀàËÆ HBase µÄ¹¤¾ß¡£Çë²é¿´ Çåµ¥ 2 ÖеĴúÂë¡£

Çåµ¥ 2. ÔËÐÐÒ»¸ö²éѯ

$ HIVE
Use baseball;
Select * from Master;
Select PlayerID from Master;
Select A.PlayerID, B.teamID, B.AB, B.R, B.H, B.2B, B.3B, B.HR, B.RBI
FROM Master A JOIN BATTING B ON A.playerID = B.playerID;

½áÊøÓï

Õâ¾ÍÊÇ Hive µÄÓÅÊÆÒÔ¼°¹¹½¨Êý¾Ý¿âµÄºÃ´¦£ºËüΪ»ìãçµÄÊÀ½ç´´½¨Á˽ṹ¡£ºÍÎÒÃÇϲ»¶ÌÖÂ۵ķǽṹ»¯»ò°ë½á¹¹»¯Êý¾ÝÒ»Ñù£¬Ëü×îÖÕ»¹ÊÇÒªÁ˽âË­¿ÉÒÔ·ÖÎöÊý¾Ý£¬Ë­ÄÜ»ùÓÚËüÔËÐб¨¸æ£¬ÒÔ¼°ÄúÈçºÎÄܹ»ÈÃËü¿ìËÙͶÈëµ½¹¤×÷ÖС£´ó¶àÊýÓû§½« Hive ÊÓΪijÖֺںУºËûÃDz»ÔÚÒâÊý¾ÝÀ´×Ժ䦣¬Ò²²»ÔÚºõÐèÒª×öʲô²ÅÄÜÒÔÕýÈ·¸ñʽ»ñÈ¡Êý¾Ý¡£Ò²²»»áÔÚÒ⼯³É»òÕßÑéÖ¤ÕâЩÊý¾ÝÓжàôÀ§ÄÑ£¬Ö»ÒªÕâЩÊý¾ÝÊǾ«È·µÄ¡£Õâͨ³£Òâζ×ÅÄú±ØÐëÓÐ×éÖ¯ºÍ½á¹¹¡£·ñÔò£¬ÄúµÄÊý¾Ý¿â»á³ÉΪһ¸öÓÀ¾Ã´æ´¢ÎÞÏÞÖÆÊý¾ÝµÄËÀÇø£¬Ã»ÈËÄܹ»»òÕßÏëҪʹÓÃÕâЩÊý¾Ý¡£

½á¹¹¸´ÔÓµÄÊý¾Ý²Ö¿âÒѾ­·ç¹â²»ÔÙ¡£ËäÈ»½üÄêÇé¿öÓÐËùºÃת£¬µ«ÊǸÅÄÊÇÒ»Ñù£ºÕâÊÇÒ»¸öÒµÎñ£¬ÒµÎñÓû§ÏëÒª½á¹û£¬¶ø²»ÊDZà³ÌÂß¼­¡£Õâ¾ÍÊÇÔÚ Hive Öй¹½¨Êý¾Ý¿â»á³ÉΪÕýÈ·¿ª¶ËµÄÔ­Òò¡£

   
3254 ´Îä¯ÀÀ       30
Ïà¹ØÎÄÕÂ

»ùÓÚEAµÄÊý¾Ý¿â½¨Ä£
Êý¾ÝÁ÷½¨Ä££¨EAÖ¸ÄÏ£©
¡°Êý¾Ýºþ¡±£º¸ÅÄî¡¢ÌØÕ÷¡¢¼Ü¹¹Óë°¸Àý
ÔÚÏßÉ̳ÇÊý¾Ý¿âϵͳÉè¼Æ ˼·+Ч¹û
 
Ïà¹ØÎĵµ

GreenplumÊý¾Ý¿â»ù´¡Åàѵ
MySQL5.1ÐÔÄÜÓÅ»¯·½°¸
ijµçÉÌÊý¾ÝÖÐ̨¼Ü¹¹Êµ¼ù
MySQL¸ßÀ©Õ¹¼Ü¹¹Éè¼Æ
Ïà¹Ø¿Î³Ì

Êý¾ÝÖÎÀí¡¢Êý¾Ý¼Ü¹¹¼°Êý¾Ý±ê×¼
MongoDBʵս¿Î³Ì
²¢·¢¡¢´óÈÝÁ¿¡¢¸ßÐÔÄÜÊý¾Ý¿âÉè¼ÆÓëÓÅ»¯
PostgreSQLÊý¾Ý¿âʵսÅàѵ
×îл¼Æ»®
DeepSeek´óÄ£ÐÍÓ¦Óÿª·¢ 6-12[ÏÃÃÅ]
È˹¤ÖÇÄÜ.»úÆ÷ѧϰTensorFlow 6-22[Ö±²¥]
»ùÓÚ UML ºÍEA½øÐзÖÎöÉè¼Æ 6-30[±±¾©]
ǶÈëʽÈí¼þ¼Ü¹¹-¸ß¼¶Êµ¼ù 7-9[±±¾©]
Óû§ÌåÑé¡¢Ò×ÓÃÐÔ²âÊÔÓëÆÀ¹À 7-25[Î÷°²]
ͼÊý¾Ý¿âÓë֪ʶͼÆ× 8-23[±±¾©]

MySQLË÷Òý±³ºóµÄÊý¾Ý½á¹¹
MySQLÐÔÄܵ÷ÓÅÓë¼Ü¹¹Éè¼Æ
SQL ServerÊý¾Ý¿â±¸·ÝÓë»Ö¸´
ÈÃÊý¾Ý¿â·ÉÆðÀ´ 10´óDB2ÓÅ»¯
oracleµÄÁÙʱ±í¿Õ¼äдÂú´ÅÅÌ
Êý¾Ý¿âµÄ¿çƽ̨Éè¼Æ


²¢·¢¡¢´óÈÝÁ¿¡¢¸ßÐÔÄÜÊý¾Ý¿â
¸ß¼¶Êý¾Ý¿â¼Ü¹¹Éè¼ÆÊ¦
HadoopÔ­ÀíÓëʵ¼ù
Oracle Êý¾Ý²Ö¿â
Êý¾Ý²Ö¿âºÍÊý¾ÝÍÚ¾ò
OracleÊý¾Ý¿â¿ª·¢Óë¹ÜÀí


GE Çø¿éÁ´¼¼ÊõÓëʵÏÖÅàѵ
º½Ìì¿Æ¹¤Ä³×Ó¹«Ë¾ Nodejs¸ß¼¶Ó¦Óÿª·¢
ÖÐÊ¢Òæ»ª ׿Խ¹ÜÀíÕß±ØÐë¾ß±¸µÄÎåÏîÄÜÁ¦
ijÐÅÏ¢¼¼Êõ¹«Ë¾ PythonÅàѵ
ij²©²ÊITϵͳ³§ÉÌ Ò×ÓÃÐÔ²âÊÔÓëÆÀ¹À
ÖйúÓÊ´¢ÒøÐÐ ²âÊÔ³ÉÊì¶ÈÄ£Ðͼ¯³É(TMMI)
ÖÐÎïÔº ²úÆ·¾­ÀíÓë²úÆ·¹ÜÀí