1. Kmeans
Êý¾Ý£º×Ô¼º²úÉúµÄÈýάÊý¾Ý£¬·Ö±ðÎ§ÈÆÕý·½ÐεÄ8¸ö¶¥µã
{0, 0, 0}, {0, 10, 0}, {0, 0, 10}, {0, 10, 10},
{10, 0, 0}, {10, 0, 10}, {10, 10, 0}, {10, 10, 10}


³ÌÐòÂß¼£º
¶ÁÈ¡HDFSÉϵÄblockµ½Äڴ棬ÿ¸öblockת»¯ÎªRDD£¬ÀïÃæ°üº¬vector¡£
È»ºó¶ÔRDD½øÐÐmap²Ù×÷£¬³éȡÿ¸övector£¨point£©¶ÔÓ¦µÄÀàºÅ£¬Êä³ö£¨K,V£©Îª£¨class£¬£¨Point£¬1£©£©£¬×é³ÉеÄRDD¡£
È»ºóÔÙreduce֮ǰ£¬¶Ôÿ¸öеÄRDD½øÐÐcombine£¬ÔÚRDDÄÚ²¿Ëã³öÿ¸öclassµÄÖÐÐĺ͡£Ê¹µÃÿ¸öRDDµÄÊä³öÖ»ÓÐ×î¶àK¸öKV¶Ô¡£
×îºó½øÐÐreduceµÃµ½ÐµÄRDD£¨ÄÚÈݵÄKeyÊÇclass£¬ValueÊÇÖÐÐĺͣ¬ÔÙ¾¹ýmapºóµÃµ½×îºóµÄÖÐÐÄ¡£
ÏÈÉÏ´«µ½HDFSÉÏ£¬È»ºóÔÚMasterÉÏÔËÐÐ
root@master:/opt/spark# ./run spark.examples.SparkKMeans
master@master:5050 hdfs://master:9000/user/LijieXu/Kmeans/Square-10GB.txt 8 2.0 |
µü´úÖ´ÐÐKmeansËã·¨¡£
Ò»¹²160¸ötask¡££¨160 * 64MB = 10GB£©
ÀûÓÃÁË32¸öCPU cores£¬18.9GBµÄÄÚ´æ¡£
ÿ¸ö»úÆ÷µÄÄÚ´æÏûºÄΪ4.5GB £¨¹²40GB£©£¨±¾ÉípointsÊý¾Ý10GB*2£¬MapºóÖмäÊý¾Ý(K,
V) => (int, (vector, 1)) £¨´ó¸Å10GB£©

×îºó½á¹û£º
0.505246194 s
Final centers: Map(5 -> (13.997101228817169,
9.208875044622895, -2.494072457488311), 8 ->
(-2.33522333047955, 9.128892414676326, 1.7923150585737604),
7 -> (8.658031587043952, 2.162306996983008,
17.670646829079146), 3 -> (11.530154433698268,
0.17834347219956842, 9.224352885937776), 4 ->
(12.722903153986868, 8.812883284216143, 0.6564509961064319),
1 -> (6.458644369071984, 11.345681702383024,
7.041924994173552), 6 -> (12.887793408866614,
-1.5189406469928937, 9.526393664105957), 2 ->
(2.3345459304412164, 2.0173098597285533, 1.4772489989976143))
|
50MB/s 10GB => 3.5min
10MB/s 10GB => 15min |
ÔÚ20GBµÄÊý¾ÝÉϲâÊÔ

ÔËÐвâÊÔÃüÁ
root@master:/opt/spark# ./run spark.examples.SparkKMeans master@master:5050
hdfs://master:9000/user/LijieXu/Kmeans/Square-20GB.txt 8 2.0 | tee mylogs/sqaure-20GB-kmeans.log |
µÃµ½¾ÛÀà½á¹û£º
Final centers: Map(5 -> (-0.47785701742763115, -1.5901830956323306,
-0.18453046159033773),
8 -> (1.1073911553593858, 9.051671594514225, -0.44722211311446924),
7 -> (1.4960397239284795, 10.173412443492643, -1.7932911100570954),
3 -> (-1.4771114031182642, 9.046878176063172, -2.4747981387714444),
4 -> (-0.2796747780312184, 0.06910629855122015, 10.268115903887612),
1 -> (10.467618592186486, -1.168580362309453, -1.0462842137817263),
6 -> (0.7569895433952736, 0.8615441990490469, 9.552726007309518),
2 -> (10.807948500515304, -0.5368803187391366, 0.04258123037074164)) |
»ù±¾¾ÍÊÇ8¸öÖÐÐĵã
ÄÚ´æÏûºÄ£º£¨Ã¿¸ö½Úµã´óÔ¼5.8GB£©£¬¹²50GB×óÓÒ¡£

ÄÚ´æ·ÖÎö£º
20GBÔʼÊý¾Ý£¬20GBµÄMapÊä³ö

12/06/05 11:11:08 INFO spark.CacheTracker: Looking for RDD partition 2:302
12/06/05 11:11:08 INFO spark.CacheTracker: Found
partition in cache!
|
ÔÚ20GBµÄÊý¾ÝÉϲâÊÔ£¨µü´ú¸ü¶àµÄ´ÎÊý£©
root@master:/opt/spark# ./run spark.examples.SparkKMeans master@master:5050 hdfs://master:900
0/user/LijieXu/Kmeans/Square-20GB.txt 8 0.8
|
TaskÊýÄ¿£º320
ʱ¼ä£º

µü´úÂÖÊý¶ÔÄÚ´æÈÝÁ¿µÄÓ°Ï죺

»ù±¾Ã»ÓÐʲôӰÏ죬Ö÷ÒªÄÚ´æÏûºÄ£º20GBµÄÊäÈëÊý¾ÝRDD£¬20GBµÄÖмäÊý¾Ý¡£
Final centers: Map(5 -> (-4.728089224526789E-5, 3.17334874733142E-5, -2.0605806380414582E-4),
8 -> (1.1841686358289191E-4, 10.000062966002101, 9.999933240005394), 7 -> (9.999976672588097,
10.000199556926772, -2.0695123602840933E-4),
3 -> (-1.3506815993198176E-4, 9.999948270638338, 2.328148782609023E-5),
4 -> (3.2493629851483764E-4, -7.892413981250518E-5, 10.00002515017671), 1 -> (10.00004313126956, 7.431996896171192E-6,
7.590402882208648E-5), 6 -> (9.999982611661382, 10.000144597573051, 10.000037734639696),
2 -> (9.999958673426654, -1.1917651103354863E-4, 9.99990217533504)) |
½á¹û¿ÉÊÓ»¯

2. HdfsTest
²âÊÔÂß¼£º
package spark.examples
import spark._
object HdfsTest {
def main(args: Array[String]) {
val sc = new SparkContext(args(0), "HdfsTest")
val file = sc.textFile(args(1))
val mapped = file.map(s => s.length).cache()
for (iter <- 1 to 10) {
val start = System.currentTimeMillis()
for (x <- mapped) { x + 2 }
// println("Processing: " + x)
val end = System.currentTimeMillis()
println("Iteration " + iter + "
took " + (end-start) + " ms")
}
}
}
|
Ê×ÏÈÈ¥HDFSÉ϶Áȡһ¸öÎı¾Îļþ±£´æÔÚfile
ÔٴμÆËãfileÖÐÿÐеÄ×Ö·ûÊý£¬±£´æÔÚÄÚ´æRDDµÄmappedÖÐ
È»ºó¶ÁÈ¡mappedÖеÄÿһ¸ö×Ö·ûÊý£¬½«Æä¼Ó2£¬¼ÆËã¶ÁÈ¡+Ïà¼ÓµÄºÄʱ
Ö»ÓÐmap£¬Ã»ÓÐreduce¡£
²âÊÔ10GBµÄWiki
ʵ¼Ê²âÊÔµÄÊÇRDDµÄ¶ÁÈ¡ÐÔÄÜ¡£
root@master:/opt/spark# ./run spark.examples.HdfsTest master@master:5050
hdfs://master:9000:/user/LijieXu/Wikipedia/txt/enwiki-20110405.txt |
²âÊÔ½á¹û£º
Iteration 1 took 12900 ms = 12s
Iteration 2 took 388 ms
Iteration 3 took 472 ms
Iteration 4 took 490 ms
Iteration 5 took 459 ms
Iteration 6 took 492 ms
Iteration 7 took 480 ms
Iteration 8 took 501 ms
Iteration 9 took 479 ms
Iteration 10 took 432 ms
|
ÿ¸önodeµÄÄÚ´æÏûºÄΪ2.7GB £¨¹²9.4GB * 3£©

ʵ¼Ê²âÊÔµÄÊÇRDDµÄ¶ÁÈ¡ÐÔÄÜ¡£
root@master:/opt/spark# ./run spark.examples.HdfsTest master@master:5050
hdfs://master:9000/user/LijieXu/Wikipedia/txt/enwiki-20110405.txt |
²âÊÔ90GBµÄRandomTextÊý¾Ý
root@master:/opt/spark# ./run spark.examples.HdfsTest master@master:5050
hdfs://master:9000/user/LijieXu/RandomText90GB/RandomText90GB |
ºÄʱ£º

ÄÚ´æ×ÜÏûºÄ30GB×óÓÒ¡£
µ¥¸ö½ÚµãµÄ×ÊÔ´ÏûºÄ£º

3. ²âÊÔWordCount
д³ÌÐò£º
import spark.SparkContext
import SparkContext._
object WordCount {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println("Usage: wordcount <master>
<jar>")
System.exit(1)
}
val sp = new SparkContext(args(0), "wordcount",
"/opt/spark", List(args(1)))
val file = sp.textFile("hdfs://master:9000/user/LijieXu/Wikipedia/txt/enwiki-20110405.txt");
val counts = file.flatMap(line => line.split("
")).map(word => (word, 1)).reduceByKey(_
+ _)
counts.saveAsTextFile("hdfs://master:9000/user/Output/WikiResult3")
}
}
|
´ò°ü³ÉmySpark.jar£¬ÉÏ´«µ½MasterµÄ/opt/spark/newProgram¡£
ÔËÐгÌÐò£º
root@master:/opt/spark# ./run -cp newProgram/mySpark.jar WordCount master@master:5050 newProgram/mySpark.jar |
Mesos×Ô¶¯½«jar¿½±´µ½Ö´Ðнڵ㣬ȻºóÖ´ÐС£
ÄÚ´æÏûºÄ£º£¨10GBÊäÈëfile + 10GBµÄflatMap + 15GBµÄMapÖмä½á¹û£¨word£¬1£©£©
»¹Óв¿·ÖÄÚ´æ²»ÖªµÀ·ÖÅäµ½ÄÄÀïÁË¡£
ºÄʱ£º50 sec£¨Î´¾¹ýÅÅÐò£©
Hadoop WordCountºÄʱ£º120 secµ½140 sec
½á¹ûδÅÅÐò
µ¥¸ö½Úµã£º

Hadoop²âÊÔ
Kmeans
ÔËÐÐMahoutÀïµÄKmeans
root@master:/opt/mahout-distribution-0.6# bin/mahout org.apache.mahout.clustering.
syntheticcontrol.kmeans.Job -Dmapred.reduce.tasks=
36 -i /user/LijieXu/Kmeans/Square-20GB.txt -o output -t1 3 -t2 1.5 -cd 0.8 -k 8 -x 6 |
ÔÚÔËÐУ¨320¸ömap£¬1¸öreduce£©
Canopy Driver running buildClusters over input: output/data
ʱij¸öslaveµÄ×ÊÔ´ÏûºÄÇé¿ö


Completed Jobs

ÔËÐжà´Î10GB¡¢20GBÉϵÄKmeans£¬×ÊÔ´ÏûºÄ


Hadoop WordCount²âÊÔ


Spark½»»¥Ê½ÔËÐÐ
½øÈëMasterµÄ/opt/spark
ÔËÐÐ
MASTER=master@master:5050 ./spark-shell |
´ò¿ªMesos°æ±¾µÄspark
ÔÚmaster:8080¿ÉÒÔ¿´µ½framework
Active Frameworks

scala> val file = sc.textFile("hdfs://master:9000/user/LijieXu/Wikipedia/txt/enwiki-20110405.txt")
scala> file.first
scala> val words = file.map(_.split(' ')).filter(_.size
< 100) //µÃµ½RDD[Array[String]]
scala> words.cache
scala> words.filter(_.contains("Beijing")).count
12/06/06 22:12:33 INFO SparkContext: Job finished
in 10.862765819 s
res1: Long = 855
scala> words.filter(_.contains("Beijing")).count
12/06/06 22:12:52 INFO SparkContext: Job finished
in 0.71051464 s
res2: Long = 855
scala> words.filter(_.contains("Shanghai")).count
12/06/06 22:13:23 INFO SparkContext: Job finished
in 0.667734427 s
res3: Long = 614
scala> words.filter(_.contains("Guangzhou")).count
12/06/06 22:13:42 INFO SparkContext: Job finished
in 0.800617719 s
res4: Long = 134
|
ÓÉÓÚGCµÄÎÊÌ⣬²»ÄÜcacheºÜ´óµÄÊý¾Ý¼¯¡£ |