| 
                             
                              | 
                                   
                                    | 编辑推荐: |   
                                    | 本文会以惰性加载为例一步步介绍函数式编程中各种概念,所以读者不需要任何函数式编程的基础,只需要对 
                                      Java 8 有些许了解即可。 希望对您的学习有所帮助。 本文来自于微信公众号阿里云云栖号,由火龙果软件Linda编辑、推荐。
 |  |  一 抽象一定会导致代码性能降低? 
                            程序员的梦想就是能写出 “高内聚,低耦合”的代码,但从经验上来看,越抽象的代码往往意味着越低的性能。机器可以直接执行的汇编性能最强,C 
                            语言其次,Java 因为较高的抽象层次导致性能更低。业务系统也受到同样的规律制约,底层的数增删改查接口性能最高,上层业务接口,因为增加了各种业务校验,以及消息发送,导致性能较低。 对性能的顾虑,也制约程序员对于模块更加合理的抽象。 一起来看一个常见的系统抽象,“用户” 是系统中常见的一个实体,为了统一系统中的 “用户” 抽象,我们定义了一个通用领域模型 
                            User,除了用户的 id 外,还含有部门信息,用户的主管等等,这些都是常常在系统中聚合在一起使用的属性: 
                           
                              | public class 
                                User { // 用户 id
 private Long uid;
 // 用户的部门,为了保持示例简单,这里就用普通的字符串
 // 需要远程调用 通讯录系统 获得
 private String department;
 // 用户的主管,为了保持示例简单,这里就用一个 id 表示
 // 需要远程调用 通讯录系统 获得
 private Long supervisor;
 // 用户所持有的权限
 // 需要远程调用 权限系统 获得
 private Set< String> permission;
 }
 |  这看起来非常棒,“用户“常用的属性全部集中到了一个实体里,只要将这个 User 作为方法的参数,这个方法基本就不再需要查询其他用户信息了。但是一旦实施起来就会发现问题,部门和主管信息需要远程调用通讯录系统获得,权限需要远程调用权限系统获得,每次构造 
                            User 都必须付出这两次远程调用的代价,即使有的信息没有用到。比如下面的方法就展示了这种情况(判断一个用户是否是另一个用户的主管): 
                           
                              | public boolean 
                                isSupervisor(User u1, User u2) { return Objects.equals(u1.getSupervisor(), u2.getUid());
 }
 |  为了能在上面这个方法参数中使用通用 User 实体,必须付出额外的代价:远程调用获得完全用不到的权限信息,如果权限系统出现了问题,还会影响无关接口的稳定性。 想到这里我们可能就想要放弃通用实体的方案了,让裸露的 uid 弥漫在系统中,在系统各处散落用户信息查询代码。 其实稍作改进就可以继续使用上面的抽象,只需要将 department, supervisor 和 
                            permission 全部变成惰性加载的字段,在需要的时候才进行外部调用获得,这样做有非常多的好处: 业务建模只需要考虑贴合业务,而不需要考虑底层的性能问题,真正实现业务层和物理层的解耦 业务逻辑与外部调用分离,无论外部接口如何变化,我们总是有一层适配层保证核心逻辑的稳定 业务逻辑看起来就是纯粹的实体操作,易于编写单元测试,保障核心逻辑的正确性 但是在实践的过程中常会遇到一些问题,本文就结合 Java 以及函数式编程的一些技巧,一起来实现一个惰性加载工具类。 二 严格与惰性:Java 8 的 Supplier 的本质 Java 8 引入了全新的函数式接口 Supplier,从老 Java 程序员的角度理解,它不过就是一个可以获取任意值的接口而已,Lambda 
                            不过是这种接口实现类的语法糖。这是站在语言角度而不是计算角度的理解。当你了解了严格(strict)与惰性(lazy)的区别之后,可能会有更加接近计算本质的看法。 因为 Java 和 C 都是严格的编程语言,所以我们习惯了变量在定义的地方就完成了计算。事实上,还有另外一个编程语言流派,它们是在变量使用的时候才进行计算的,比如函数式编程语言 
                            Haskell。 
 所以 Supplier 的本质是在 Java 语言中引入了惰性计算的机制,为了在 Java 中实现等价的惰性计算,可以这么写: 
                           
                              | Supplier< 
                                Integer> a = () -> 10 + 1; int b = a.get() + 1;
 |  三 Supplier 的进一步优化:Lazy Supplier 还存在一个问题,就是每次通过 get 获取值时都会重新进行计算,真正的惰性计算应该在第一次 
                            get 后把值缓存下来。只要对 Supplier 稍作包装即可: 
                           
                              | /** * 为了方便与标准的 Java 函数式接口交互,Lazy 也实现了 Supplier
 */
 public class Lazy< T> implements Supplier< 
                                T> {
  private final Supplier< ? extends T> 
                                  supplier;  // 利用 value 属性缓存 supplier 计算后的值private T value;
  private Lazy(Supplier< ? extends T> 
                                  supplier) {this.supplier = supplier;
 }
  public static < T> Lazy< T> of(Supplier< 
                                  ? extends T> supplier) {return new Lazy< >(supplier);
 }
  public T get() {if (value == null) {
 T newValue = supplier.get();
  if (newValue == null) {throw new IllegalStateException("Lazy value 
                                  can not be null!");
 }
  value = newValue;}
  return value;}
 }
 |    通过 Lazy 来写之前的惰性计算代码: 
                           
                              | Lazy< Integer> 
                                a = Lazy.of(() -> 10 + 1); int b = a.get() + 1;
 // get 不会再重新计算, 直接用缓存的值
 int c = a.get();
 |  通过这个惰性加载工具类来优化我们之前的通用用户实体: 
                           
                              | public class 
                                User { // 用户 id
 private Long uid;
 // 用户的部门,为了保持示例简单,这里就用普通的字符串
 // 需要远程调用 通讯录系统 获得
 private Lazy< String> department;
 // 用户的主管,为了保持示例简单,这里就用一个 id 表示
 // 需要远程调用 通讯录系统 获得
 private Lazy< Long> supervisor;
 // 用户所含有的权限
 // 需要远程调用 权限系统 获得
 private Lazy< Set< String>> permission;
  public Long getUid() {return uid;
 }
  public void setUid(Long uid) {this.uid = uid;
 }
  public String getDepartment() {return department.get();
 }
  /*** 因为 department 是一个惰性加载的属性,所以 set 方法必须传入计算函数,而不是具体值
 */
 public void setDepartment(Lazy< String> 
                                  department) {
 this.department = department;
 }
 // ... 后面类似的省略
 }
 |    
                           
                              | Long uid = 1L; User user = new User();
 user.setUid(uid);
 // departmentService 是一个rpc调用
 user.setDepartment(Lazy.of(() -> departmentService.getDepartment(uid)));
 // ....
 |  这看起来还不错,但当你继续深入使用时会发现一些问题:用户的两个属性部门和主管是有相关性,需要通过 
                            rpc 接口获得用户部门,然后通过另一个 rpc 接口根据部门获得主管。代码如下: 
                           
                              | String department 
                                = departmentService.getDepartment(uid); Long supervisor = SupervisorService.getSupervisor(department);
 |    但是现在 department 不再是一个计算好的值了,而是一个惰性计算的 Lazy 对象,上面的代码又应该怎么写呢?"函子" 
                            就是用来解决这个问题的 四 Lazy 实现函子(Functor) 快速理解:类似 Java 中的 stream api 或者 Optional 中的 map 方法。函子可以理解为一个接口,而 
                            map 可以理解为接口中的方法。 1 函子的计算对象 Java 中的 Collection< T>,Optional< T>,以及我们刚刚实现 
                            Lazy< T>,都有一个共同特点,就是他们都有且仅有一个泛型参数,我们在这篇文章中暂且称其为盒子,记做 
                            Box< T>,因为他们都好像一个万能的容器,可以任意类型打包进去。 
 2 函子的定义 函子运算可以将一个 T 映射到 S 的 function 应用到 Box< T> 上,让其成为 
                            Box< S>,一个将 Box 中的数字转换为字符串的例子如下: 
 在盒子中装的是类型,而不是 1 和 "1" 的原因是,盒子中不一定是单个值,比如集合,甚至是更加复杂的多值映射关系。 需要注意的是,并不是随便定义一个签名满足 Box< S> map(Function< 
                            T,S> function) 就能让 Box< T> 成为函子的,下面就是一个反例: 
                           
                              | // 反例,不能成为函子,因为这个方法没有在盒子中如实反映 
                                function 的映射关系 public Box< S> map(Function< T,S> 
                                function) {
 return new Box< >(null);
 }
 |    所以函子是比 map 方法更加严格的定义,他还要求 map 满足如下的定律,称为 函子定律(定律的本质就是保障 
                            map 方法能如实反映参数 function 定义的映射关系): 单位元律:Box< T> 在应用了恒等函数后,值不会改变,即 box.equals(box.map(Function.identity()))始终成立(这里的 
                            equals 只是想表达的一个数学上相等的含义) 复合律:假设有两个函数 f1 和 f2,map(x -> f2(f1(x))) 和 map(f1).map(f2) 
                            始终等价 很显然 Lazy 是满足上面两个定律的。 3 Lazy 函子 虽然介绍了这么多理论,实现却非常简单: 
                           
                              | public < 
                                S> Lazy< S> map(Function< ? super 
                                T, ? extends S> function) { return Lazy.of(() -> function.apply(get()));
 }
 |    可以很容易地证明它是满足函子定律的。 通过 map 我们很容易解决之前遇到的难题,map 中传入的函数可以在假设部门信息已经获取到的情况下进行运算: 
                           
                              | Lazy< String> 
                                departmentLazy = Lazy.of(() -> departmentService.getDepartment(uid)); Lazy< Long> supervisorLazy = departmentLazy.map(
 department -> SupervisorService.getSupervisor(department)
 );
 |    4 遇到了更加棘手的情况 我们现在不仅可以构造惰性的值,还可以用一个惰性值计算另一个惰性值,看上去很完美。但是当你进一步深入使用的时候,又发现了更加棘手的问题。 我现在需要部门和主管两个参数来调用权限系统来获得权限,而部门和主管这两个值都是惰性的值。先用嵌套 
                            map 来试一下: 
                           
                              | Lazy< Lazy< 
                                Set< String>>> permissions = departmentLazy.map(department 
                                -> supervisorLazy.map(supervisor -> getPermissions(department, 
                                supervisor))
 );
 |    返回值的类型好像有点奇怪,我们期待得到的是 Lazy< Set< String>>,这里得到的却多了一层变成 
                            Lazy< Lazy< Set< String>>>。而且随着你嵌套 
                            map 层数增加,Lazy 的泛型层次也会同样增加,三参数的例子如下: 
                           
                              | Lazy< 
                                  Long> param1Lazy = Lazy.of(() -> 2L);  Lazy< Long> param2Lazy 
                                  = Lazy.of(() -> 2L);  Lazy< Long> param3Lazy 
                                  = Lazy.of(() -> 2L);  Lazy< Lazy< Lazy< 
                                  Long>>> result = param1Lazy.map(param1 
                                  ->  param2Lazy.map(param2 ->  param3Lazy.map(param3 -> 
                                  param1 + param2 + param3)  )  ); |    这个就需要下面的单子运算来解决了。 五 Lazy 实现单子 (Monad) 快速理解:和 Java stream api 以及 Optional 中的 flatmap 功能类似 1 单子的定义 单子和函子的重大区别在于接收的函数,函子的函数一般返回的是原生的值,而单子的函数返回却是一个盒装的值。下图中的 
                            function 如果用 map 而不是 flatmap 的话,就会导致结果变成一个俄罗斯套娃--两层盒子。 
 单子当然也有单子定律,但是比函子定律要复杂些,这里就不做阐释了,他的作用和函子定律也是类似,确保 
                            flatmap 能够如实反映 function 的映射关系。 2 Lazy 单子 实现同样很简单: 
                           
                              | public < 
                                S> Lazy< S> flatMap(Function< ? super 
                                T, Lazy< ? extends S>> function) { return Lazy.of(() -> function.apply(get()).get());
 }
 |    利用 flatmap 解决之前遇到的问题: 
                           
                              | Lazy< 
                                  Set< String>> permissions = departmentLazy.flatMap(department 
                                  ->  supervisorLazy.map(supervisor 
                                  -> getPermissions(department, supervisor))  ); |    三参数的情况: 
                           
                              | Lazy< Long> 
                                param1Lazy = Lazy.of(() -> 2L); Lazy< Long> param2Lazy = Lazy.of(() -> 
                                2L);
 Lazy< Long> param3Lazy = Lazy.of(() -> 
                                2L);
 Lazy< Long> result = param1Lazy.flatMap(param1 
                                ->
 param2Lazy.flatMap(param2 ->
 param3Lazy.map(param3 -> param1 + param2 + 
                                param3)
 )
 );
 |    其中的规律就是,最后一次取值用 map,其他都用 flatmap。 3 题外话:函数式语言中的单子语法糖 看了上面的例子你一定会觉得惰性计算好麻烦,每次为了取里面的惰性值都要经历多次的 flatmap 与 
                            map。这其实是 Java 没有原生支持函数式编程而做的妥协之举,Haskell 中就支持用 do 
                            记法简化 Monad 的运算,上面三参数的例子如果用 Haskell 则写做: 
                           
                              | do param1 < - param1Lazy
 param2 < - param2Lazy
 param3 < - param3Lazy
 -- 注释: do 记法中 return 的含义和 Java 完全不一样
 -- 它表示将值打包进盒子里,
 -- 等价的 Java 写法是 Lazy.of(() -> param1 + param2 
                                + param3)
 return param1 + param2 + param3
 |    Java 中虽然没有语法糖,但是上帝关了一扇门,就会打开一扇窗。在 Java 中可以清晰地看出每一步在做什么,理解其中的原理,如果你读过了本文之前的内容,肯定能明白这个 
                            do 记法就是不停地在做 flatmap 。 六 Lazy 的最终代码 
                            目前为止,我们写的 Lazy 代码如下: 
                           
                              | public class 
                                Lazy< T> implements Supplier< T> {  private final Supplier< ? extends T> 
                                  supplier;  private T value;  private Lazy(Supplier< ? extends T> 
                                  supplier) {this.supplier = supplier;
 }
  public static < T> Lazy< T> of(Supplier< 
                                  ? extends T> supplier) {return new Lazy< >(supplier);
 }
  public T get() {if (value == null) {
 T newValue = supplier.get();
  if (newValue == null) {throw new IllegalStateException("Lazy value 
                                  can not be null!");
 }
  value = newValue;}
  return value;}
  public < S> Lazy< S> map(Function< 
                                  ? super T, ? extends S> function) {return Lazy.of(() -> function.apply(get()));
 }
  public < S> Lazy< S> flatMap(Function< 
                                  ? super T, Lazy< ? extends S>> function) 
                                  {return Lazy.of(() -> function.apply(get()).get());
 }
 }
 |    七 构造一个能够自动优化性能的实体 
                            利用 Lazy 我们写一个构造通用 User 实体的工厂: 
                           
                              | @Component public class UserFactory {
  // 部门服务, rpc 接口@Resource
 private DepartmentService departmentService;
  // 主管服务, rpc 接口@Resource
 private SupervisorService supervisorService;
  // 权限服务, rpc 接口@Resource
 private PermissionService permissionService;
  public User buildUser(long uid) {Lazy< String> departmentLazy = Lazy.of(() 
                                  -> departmentService.getDepartment(uid));
 // 通过部门获得主管
 // department -> supervisor
 Lazy< Long> supervisorLazy = departmentLazy.map(
 department -> SupervisorService.getSupervisor(department)
 );
 // 通过部门和主管获得权限
 // department, supervisor -> permission
 Lazy< Set< String>> permissionsLazy 
                                  = departmentLazy.flatMap(department ->
 supervisorLazy.map(
 supervisor -> permissionService.getPermissions(department, 
                                  supervisor)
 )
 );
  User user = new User();user.setUid(uid);
 user.setDepartment(departmentLazy);
 user.setSupervisor(supervisorLazy);
 user.setPermissions(permissionsLazy);
 }
 }
 |    工厂类就是在构造一颗求值树,通过工厂类可以清晰地看出 User 各个属性间的求值依赖关系,同时 User 
                            对象能够在运行时自动地优化性能,一旦某个节点被求值,路径上的所有属性的值都会被缓存。 
 八 异常处理 虽然我们通过惰性让 user.getDepartment() 仿佛是一次纯内存操作,但是他实际上还是一次远程调用,所以可能出现各种出乎意料的异常,比如超时等等。 异常处理肯定不能交给业务逻辑,这样会影响业务逻辑的纯粹性,让我们前功尽弃。比较理想的方式是交给惰性值的加载逻辑 
                            Supplier。在 Supllier 的计算逻辑中就充分考虑各种异常情况,重试或者抛出异常。虽然抛出异常可能不是那么“函数式”,但是比较贴近 
                            Java 的编程习惯,而且在关键的值获取不到时就应该通过异常阻断业务逻辑的运行。 九 总结 利用本文方法构造的实体,可以将业务建模上需要的属性全部放置进去,业务建模只需要考虑贴合业务,而不需要考虑底层的性能问题,真正实现业务层和物理层的解耦。 同时 UserFactory 本质上就是一个外部接口的适配层,一旦外部接口发生变化,只需要修改适配层即可,能够保护核心业务代码的稳定。 业务核心代码因为外部调用大大减少,代码更加接近纯粹的运算,因而易于书写单元测试,通过单元测试能够保证核心代码的稳定且不会出错。 十 题外话:Java 中缺失的柯里化与应用函子 仔细想想,刚刚做了这么多,目的就是一个,让签名为 C f(A,B) 的函数可以无需修改地应用到盒装类型 
                            Box< A>和 Box< B> 上,并且产生一个 Box< C>,在函数式语言中有更加方便的方法,那就是应用函子。 应用函子概念上非常简单,就是将盒装的函数应用到盒装的值上,最后得到一个盒装的值,在 Lazy 中可以这么实现: 
                           
                              | // 注意,这里的 function 
                                是装在 lazy 里面的 public < S> Lazy< S> apply(Lazy< 
                                Function< ? super T, ? extends S>> function) 
                                {
 return Lazy.of(() -> function.get().apply(get()));
 }
 |     不过在 Java 中实现这个并没有什么用,因为 Java 不支持柯里化。 柯里化允许我们将函数的几个参数固定下来变成一个新的函数,假如函数签名为 f(a,b),支持柯里化的语言允许直接 
                            f(a) 进行调用,此时返回值是一个只接收 b 的函数。 在支持柯里化的情况下,只需要连续的几次应用函子,就可以将普通的函数应用在盒装类型上了,举个 Haskell 
                            的例子如下(< *> 是 Haskell 中应用函子的语法糖, f 是个签名为 c f(a, 
                            b) 的函数,语法不完全正确,只是表达个意思): 
                           
                              | -- 注释: 结果为 box 
                                c box f < *> box a < *> box b
 |  |