±à¼ÍƼö: |
±¾ÎÄÀ´×ÔÓÚcsdn£¬½éÉÜÁËCPUºÍGPUµÄÇø±ð¡¢GPUÊʺϵŤ×÷ÄÚÈÝ£¬Win-10
°²×° TensorFlow-GPUµÈ¡£ |
|
ÏÈÀ´¿´¿´µÚÒ»²¿·Ö
ΪʲôGPU±ÈCPU¸üdiaoÄØ£¿
ÕâÀï¾ÍÐèÒª´ÓËûôµÄÇø±ðÈëÊÖ
ÄÇËûôµÄÇø±ðÊÇÊ²Ã´ÄØ£¿
ÕâÀï¾ÍÐèÒª´ÓËûµÄÔÀí³ö·¢ÁË£¬ÓÉÓÚÆäÉè¼ÆÄ¿±êµÄ²»Í¬£¬ËüÃÇ·Ö±ðÕë¶ÔÁËÁ½ÖÖ²»Í¬µÄÓ¦Óó¡¾°
CPU ÐèÒªºÜÇ¿µÄͨÓÃÐÔ
ΪÁË´¦Àí¸÷ÖÖ²»Í¬µÄÊý¾ÝÀàÐÍ£¬Í¬Ê±ÓÖÒªÂß¼ÅжÏÓÖ»áÒýÈë´óÁ¿µÄ·ÖÖ§Ìø×ªºÍÖжϵĴ¦Àí¡£ÕâЩ¶¼Ê¹µÃCPUµÄÄÚ²¿½á¹¹Òì³£¸´ÔÓ¡£
While GPU Ãæ¶ÔµÄÊÇÀàÐ͸߶ÈͳһµÄ¡¢»¥ÏàÎÞÒÀÀµµÄ´ó¹æÄ£Êý¾ÝºÍ²»ÐèÒª±»´ò¶ÏµÄ´¿¾»µÄ¼ÆËã»·¾³
ÓÚÊǺõ£ºCPUºÍGPU¾Í³ÊÏÖ³ö·Ç³£²»Í¬µÄ¼Ü¹¹£¨¿´Í¼£©

ÏÊÂÌÉ«£º¼ÆËãµ¥ÔªALU(Arithmetic Logic Unit£©
³ÈºìÉ«£º´æ´¢µ¥Ôª£¨cache£©
³È»ÆÉ«£º¿ØÖƵ¥Ôª£¨control£©
GPU£ºÊýÁ¿ÖÚ¶àµÄ¼ÆËãµ¥ÔªºÍ³¬³¤µÄÁ÷Ë®Ïߣ¬Ö»Óмòµ¥µÄ¿ØÖÆÂß¼²¢Ê¡È¥ÁËCache
CPU£º±»CacheÕ¼¾ÝÁË´óÁ¿¿Õ¼ä£¬¶øÇÒ»¹ÓÐÓи´ÔӵĿØÖÆÂß¼ºÍÖî¶àÓÅ»¯µç·¡£
*½á¹û¿ÉÏë¶øÖª£º¿´Õâ¸ö¸üÏêϸµÄͼƬ*

À´£¬Ð¡Ã÷£¬Äã˵Äã¿´³öÊ²Ã´Çø±ðÁË
ÎÒ¿´µ½ÁË»ÆÉ«µÄ¶«Î÷£¬Ò»¸ö´óÒ»¸öС¡£
¾Í¿´²»µ½Éî²ãµÄ¶«Î÷£¿
ÀÏʦ£¬ÎÒ¶öÁË¡£
¹ö³öÈ¥¡£
ÎÒ¸ø´ó¼Ò˵һϰ¡£¡
1.Cache, local memory£º CPU > GPU
2.Threads(Ïß³ÌÊý): GPU > CPU
3.Registers£¨¼Ä´æÆ÷£©: GPU > CPU ¶à¼Ä´æÆ÷¿ÉÒÔÖ§³Ö·Ç³£¶àµÄThread
4.threadÐèÒªÓõ½register,threadÊýÄ¿´óregisterÒ²±ØÐëµÃ¸úןܴó²ÅÐС£
5.SIMD Unit(µ¥Ö¸Áî¶àÊý¾ÝÁ÷,ÒÔͬ²½·½Ê½£¬ÔÚͬһʱ¼äÄÚÖ´ÐÐͬһÌõÖ¸Áî):
GPU > CPU¡£
ÎÄ×ÖºÜÂé·³°É£¬¿ÉÒÔÐÎÏóµÄ¿´[Õâ¸öÊÓÆµ ͦÓÐÒâ˼µÄ]
1.CPUÓÐÇ¿´óµÄALU, ¿ÉÒÔÔÚºÜÉÙµÄʱÖÓÖÜÆÚÄÚÍê³ÉËãÊõ¼ÆË㣬¿ÉÒÔ´ïµ½64bit
Ë«¾«¶È£¬Ö´ÐÐË«¾«¶È¸¡µãÔ´ËãµÄ¼Ó·¨ºÍ³Ë·¨Ö»ÐèÒª1¡«3¸ö[ʱÖÓÖÜÆÚ]
2.CPUµÄʱÖÓÖÜÆÚµÄÆµÂʷdz£¸ß£¬´ïµ½1.532¡«3gigahertz(ǧÕ×HZ,
10µÄ9´Î·½).
ÔÙ¿´¿´GPU

GPUÊÇ»ùÓÚ´óµÄÍÌÍÂÁ¿
ÌØµã£ººÜ¶àµÄALUºÍºÜÉÙµÄcache
»º´æµÄÄ¿µÄ²»ÊDZ£´æºóÃæÐèÒª·ÃÎʵÄÊý¾Ý£¬ÕâµãºÍCPU²»Í¬£¬¶øÊÇΪthreadÌá¸ß·þÎñ
Èç¹ûÓкܶàÏß³ÌÐèÒª·ÃÎÊͬһ¸öÏàͬµÄÊý¾Ý£¿
»º´æ»áºÏ²¢ÕâЩ·ÃÎÊ£¬È»ºóÔÙÈ¥·ÃÎÊdram£¨ÒòΪÐèÒª·ÃÎʵÄÊý¾Ý±£´æÔÚdramÖжø²»ÊÇcacheÀïÃæ£©
»ñÈ¡Êý¾Ýºócache»áת·¢Õâ¸öÊý¾Ý¸ø¶ÔÓ¦µÄỊ̈߳¬Õâ¸öʱºòÊÇÊý¾Ýת·¢µÄ½ÇÉ«£¬ÓÉÓÚÐèÒª·ÃÎÊdram£¬×ÔÈ»»á´øÀ´ÑÓʱµÄÎÊÌâ¡£
GPUµÄ¿ØÖƵ¥Ôª£¨×ó±ß»ÆÉ«ÇøÓò¿é£©¿ÉÒ԰Ѷà¸öµÄ·ÃÎʺϲ¢³ÉÉٵķÃÎÊ¡£
×ܵÄÀ´Ëµ£ºÓÐÒ»¸öÀý×Ó˵µÄºÜºÃ
GPUµÄ¹¤×÷´ó²¿·Ö¾ÍÊÇÕâÑù£¬¼ÆËãÁ¿´ó£¬¶øÇÒÒªÖØ¸´ºÜ¶àºÜ¶à´Î¡£¾ÍÏñÄãÓиö¹¤×÷ÐèÒªË㼸ÒÚ´ÎÒ»°ÙÒÔÄÚ¼Ó¼õ³Ë³ýÒ»Ñù£¬×îºÃµÄ°ì·¨¾ÍÊǹÍÉϼ¸Ê®¸öСѧÉúÒ»ÆðË㣬һÈËËãÒ»²¿·Ö
CPU¾ÍÏñÀϽÌÊÚ£¬»ý·Ö΢·Ö¶¼»áË㣬¾ÍÊǹ¤×ʸߣ¬Ò»¸öÀϽÌÊÚ×ʶ¥¶þÊ®¸öСѧÉú£¬ÄãÒªÊǸ»Ê¿¿µÄã¹ÍÄĸö
CPUºÍGPUÒòΪ×î³õÓÃÀ´´¦ÀíµÄÈÎÎñ¾Í²»Í¬£¬ËùÒÔÉè¼ÆÉÏÓв»Ð¡µÄÇø±ð£¬¶øÄ³Ð©ÈÎÎñºÍGPU×î³õÓÃÀ´½â¾öµÄÎÊÌâ±È½ÏÏàËÆ£¬ËùÒÔÓÃGPUÀ´ËãÁË
GPUµÄÔËËãËÙ¶ÈÈ¡¾öÓÚ¹ÍÁ˶àÉÙСѧÉú£¬CPUµÄÔËËãËÙ¶ÈÈ¡¾öÓÚÇëÁ˶àôÀ÷º¦µÄ½ÌÊÚ¡£½ÌÊÚ´¦Àí¸´ÔÓÈÎÎñµÄÄÜÁ¦ÊÇÄëѹСѧÉúµÄ£¬µ«ÊǶÔÓÚûÄÇô¸´ÔÓµÄÈÎÎñ£¬»¹ÊǶ¥²»×¡È˶ࡣ
µ±È»ÏÖÔÚµÄGPUÒ²ÄÜ×öһЩÉÔ΢¸´ÔӵŤ×÷ÁË£¬Ï൱ÓÚÉý¼¶³É³õÖÐÉú¸ßÖÐÉúµÄˮƽ¡£µ«»¹ÐèÒªCPUÀ´°ÑÊý¾Ýιµ½×ì±ß²ÅÄÜ¿ªÊ¼¸É»î£¬¾¿¾¹»¹ÊÇ¿¿CPUÀ´¹ÜµÄ¡£
GPUÊʺϸÉʲô»î£¿
£¨1£©¼ÆËãÃܼ¯Ð͵ijÌÐò
Ëùν¼ÆËãÃܼ¯ÐÍ(Compute-intensive)µÄ³ÌÐò£¬¾ÍÊÇÆä´ó²¿·ÖÔËÐÐʱ¼ä»¨ÔÚÁ˼ĴæÆ÷ÔËËãÉÏ£¬¼Ä´æÆ÷µÄËٶȺʹ¦ÀíÆ÷µÄËÙ¶ÈÏ൱£¬´Ó¼Ä´æÆ÷¶ÁдÊý¾Ý¼¸ºõûÓÐÑÓʱ¡£
¿ÉÒÔ×öһ϶Աȣ¬¶ÁÄÚ´æµÄÑÓ³Ù´ó¸ÅÊǼ¸°Ù¸öʱÖÓÖÜÆÚ£»¶ÁÓ²Å̵ÄËٶȾͲ»ËµÁË£¬¼´±ãÊÇSSD, ҲʵÔÚÊÇÌ«ÂýÁË¡£
£¨2£©Ò×ÓÚ²¢ÐеijÌÐò¡£
GPUÆäʵÊÇÒ»ÖÖSIMD(Single Instruction Multiple
Data)¼Ü¹¹£¬ ËûÓгɰÙÉÏǧ¸öºË£¬Ã¿Ò»¸öºËÔÚͬһʱ¼ä×îºÃÄÜ×öͬÑùµÄÊÂÇé¡£
¿ÉÄÜÓõ½µÄÁ´½Ó£¨²Î¿¼Á´½Ó£©
RAM
RRAM DRAMÈýÕßÓÐÊ²Ã´Çø±ð£¿
DRAM
µÚ¶þ²¿·Ö£º ²Ù×÷
Win-10 °²×° TensorFlow-GPU
0x00. ÔµÓÉ
Q£ºÎªÊ²Ã´ÒªÐ´£¨ÕâôµÍ¼¶µÄ£©ÅäÖý̳̣¿
A£º£¨Æäʵ²¢²»µÍ¼¶£©£¬¼øÓÚÒԺ󣨻òÐí£©»áÓÐ¶àÆª¹ØÓÚTensorFlowµÄÎÄÕ£¨»¨Ê½ÍÚ¿Ó£©£¬ËùÒÔÔÚÕâÀïÓбØÒª½éÉÜÒ»ÏÂÆä°²×°·½·¨
Q£ºTensorFlowÊÇʲô£¿
A£ºTensorFlow is an Open Source Software Library for
Machine Intelligence
ÓÉGoogle¿ªÔ´µÄÉî¶Èѧϰ¿â£¬¿ÉÒÔ¶Ô¶¨ÒåÔÚ Tensor£¨ÕÅÁ¿£©Éϵĺ¯Êý×Ô¶¯Ç󵼡£
TensorÒâζ×ÅNάÊý×飬Flow£¨Á÷£©Òâζ×Å»ùÓÚÊý¾ÝÁ÷ͼµÄ¼ÆË㣬TensorFlow¼´ÎªÕÅÁ¿´ÓͼµÄÒ»¶ËÁ÷¶¯µ½ÁíÒ»¶Ë¡£
ËüµÄÒ»´óÁÁµãÊÇÖ§³ÖÒì¹¹É豸·Ö²¼Ê½¼ÆË㣬ËüÄܹ»ÔÚ¸÷¸öƽ̨ÉÏ×Ô¶¯ÔËÐÐÄ£ÐÍ£¬´Óµç»°¡¢µ¥¸öCPU/GPUµ½³É°ÙÉÏǧGPU¿¨×é³ÉµÄ·Ö²¼Ê½ÏµÍ³¡£
Ö§³ÖCNN¡¢RNNºÍLSTMËã·¨£¬ÊÇĿǰÔÚImage¡¢NLP×îÁ÷ÐеÄÉî¶ÈÉñ¾ÍøÂçÄ£ÐÍ¡£
Q£ºÎªÊ²Ã´ÒªÑо¿Õâ¸ö£¿
A£ºÉî¶Èѧϰͨ³£Òâζ׎¨Á¢¾ßÓкܶà²ãµÄ´ó¹æÄ£µÄÉñ¾ÍøÂç¡£
³ýÁËÊäÈëX£¬º¯Êý»¹Ê¹ÓÃһϵÁвÎÊý£¬ÆäÖаüÀ¨±êÁ¿Öµ¡¢ÏòÁ¿ÒÔ¼°×î°º¹óµÄ¾ØÕóºÍ¸ß½×ÕÅÁ¿¡£
ÔÚѵÁ·ÍøÂç֮ǰ£¬ÐèÒª¶¨ÒåÒ»¸ö´ú¼Ûº¯Êý£¬³£¼ûµÄ´ú¼Ûº¯Êý°üÀ¨»Ø¹éÎÊÌâµÄ·½²îÒÔ¼°·ÖÀàʱºòµÄ½»²æìØ¡£
ѵÁ·Ê±£¬ÐèÒªÁ¬ÐøµÄ½«¶àÅúÐÂÊäÈëͶÈëÍøÂ磬¶ÔËùÓеIJÎÊýÇ󵼺󣬴úÈë´ú¼Ûº¯Êý£¬´Ó¶ø¸üÐÂÕû¸öÍøÂçÄ£ÐÍ¡£
Õâ¸ö¹ý³ÌÖÐÓÐÁ½¸öÖ÷ÒªµÄÎÊÌ⣺1. ½Ï´óµÄÊý×Ö»òÕßÕÅÁ¿ÔÚÒ»ÆðÏà³Ë°ÙÍò´ÎµÄ´¦Àí£¬Ê¹µÃÕû¸öÄ£ÐÍ´ú¼Û·Ç³£´ó¡£2.
ÊÖ¶¯Ç󵼺Äʱ·Ç³£¾Ã¡£
ËùÒÔTensorFlowµÄ¶Ôº¯Êý×Ô¶¯Çóµ¼ÒÔ¼°·Ö²¼Ê½¼ÆË㣬¿ÉÒÔ°ïÎÒÃǽÚÊ¡ºÜ¶àʱ¼äÀ´ÑµÁ·Ä£ÐÍ¡£
Q£ºËüÓÐʲôÓŵ㣿
A£º1. »ùÓÚpython£¬Ð´µÄºÜ¿ì²¢ÇÒ¾ßÓпɶÁÐÔ£»
2. ÔÚ¶àGPUϵͳÉϵÄÔËÐиüΪ˳³©£»
3. ´úÂë±àÒëЧÂʽϸߣ»
4. ÉçÇø·¢Õ¹µÄ·Ç³£Ñ¸ËÙ²¢ÇÒ»îÔ¾£»
5. Äܹ»Éú³ÉÏÔÊ¾ÍøÂçÍØÆË½á¹¹ºÍÐÔÄܵĿÉÊÓ»¯Í¼¡£
0x01. »·¾³
a. Microsoft Windows [°æ±¾ 10.0.15063]£¨Win 10 x64 Pro
1703 15063.483£©
b. Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 18:41:36)
[MSC v.1900 64 bit (AMD64)] on win32
c. JetBrains Pycharm 2017.2 x64 Professional
d. GeForce GTX 965M
0x02. °²×°
1. °²×°python 36
һ·ÏÂÒ»²½´ò¹³»·¾³±äÁ¿ÉèÖü´¿É¡£²»½¨Òépython 27£¬ÒòΪºÃÏñ²»Ö§³Ö£¬ËùÒÔ×îºóÒ»²½»á±¨Could
not find a version that satisfies the requirement
tensorflow-gpu (from versions: ) No matching distribution
found for tensorflow-gpu
2. ¸ü¸ÄpipĬÈÏÔ´
ĬÈÏÔ´·þÎñÆ÷ÔÚ¹úÍ⣬¹úÄÚÏÂÔØ½ÏÂý£¬ÓбØÒª»»Îª¹úÄÚ°¢ÀïÔ´¡£
¶ÔÓÚWinÀ´Ëµ£¬Ö±½ÓÔÚµ±Ç°Óû§Ä¿Â¼ÏÂн¨Ò»¸öpip.iniÎļþ£¬Àý£ºC:\Users\yuangezhizao\pip.ini
ÄÚÈÝÈçÏ£º
1.[global]
2.index-url = http://mirrors.aliyun.com/pypi/simple/
3.[install]
4.trusted-host=mirrors.aliyun.com
3. Éý¼¶pip
py -2 -m pip install --upgrade pip
ÓÉÓÚÎÒµçÄÔ°²×°ÁËÁ½¸ö°æ±¾£¬ËùÒÔÓà py -2 Ñ¡Ôñ 2 °æ±¾µÄ½âÊÍÆ÷£¬Í¬Àí py -3 ¼´ÊÇÑ¡Ôñ 3
°æ±¾µÄ½âÊÍÆ÷
TensorFlowÓÐÁ½¸ö°æ±¾£ºCPU°æ±¾ºÍGPU°æ±¾¡£
Èç¹ûÄãµÄµçÄÔûÓÐNVIDIAÏÔ¿¨µÄ»°£¬Äã¾Í±ØÐëÑ¡Ôñ°²×°Õâ¸ö°æ±¾£¬²»¹ýÕâ¸ö°æ±¾µÄ°²×°Òª±ÈGPU°æµÄ¼òµ¥£¬¹Ù·½Ò²ÍƼöÏÈÓÃCPU°æµÄÀ´ÌåÑé¡£TensorFlowÔÚGPUÉÏÔËÐÐÒª±ÈCPUÉÏ¿ìºÜ¶à£¬Èç¹ûÄãµÄGPUÄܹ»´ïµ½ÒªÇó¾Í¿ÉÒÔÑ¡Ôñ°²×°GPU°æ¡£GPU°æ±¾ÐèÒªCUDAºÍcuDNNµÄÖ§³Ö£¬Òª°²×°GPU°æ±¾£¬ÐèÈ·ÈÏÏÔ¿¨ÊÇ·ñÖ§³ÖCUDA£¬²é¿´
GPU ÊÇ·ñÖ§³Ö CUDA£¬¼ÆËãÄÜÁ¦´óÓÚ3.5µÄN¿¨Ò»°ã¶¼Ö§³ÖµÄ˵¡¡
Áí£¬ÍøÉ϶ཨÒé°²×°Anaconda£¬ÒòΪÕâ¸ö¼¯³ÉÁËºÜ¶à¿ÆÑ§¼ÆËãËù±ØÐèµÄ¿â£¬Äܹ»±ÜÃâºÜ¶àÒÀÀµÎÊÌ⣬Õâ¸öPycharmµ³¾ÍÏȲ»°²ÁË£¨ÆäʵÎÒ°²Á˵«ÊÇ¿ÉÄÜÊÇÒòΪÎÒÓÃϰ¹ßÁ˸оõûÓÐPycharmÊæ·þ£©
4. °²×° CUDA
Windows¡úx86_64¡ú10¡úexe (local)
ÏÂÔØÈçÏÂÁ½¸öÎļþ£¬°´ÕÕÏȺó˳Ðò°²×°£º
Base Installer Download (1.3 GB)
Patch 2 (Released Jun 26, 2017) Download (43.1 MB)
°²×°ÍêÖ®ºó£¬ÔÚÃüÁîÐÐÊäÈënvcc -V£¬»áÓÐÕý³£»ØÏÔ¡¡
5. °²×° cuDNN
cuDNN¿ÉÒÔÔÚÇ°ÃæGPU¼ÓËÙ»ù´¡ÉÏ´ó¸ÅÔÙÌáÉý1.5±¶µÄËÙ¶È£¬Í¬ÑùÓÉnVIDIA¿ª·¢¡£¹ÙÍø×¢²áÕ˺ţ¬ÏÂÔØ
cuDNN v6.0 Library for Windows 10
ѹËõ°ü£¬½âѹÍ꽫¶ÔÓ¦Îļþ¼Ð£¨bin¡¢include¡¢lib£©¸²¸ÇÖÁCUDAµÄ°²×°Ä¿Â¼£¬¼´C:\Program
Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0£¬È»ºó°ÑC:\Program
Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin¼ÓÈë»·¾³±äÁ¿£¬²¢½«binÎļþ¼ÐÀïµÄcudnn64_6.dllÖØÃüÃûΪcudnn64_5.dll£¨´Ë´¦²Î¿¼
tensorflow/issues/7705£¬Æäʵ»»¾É°æ±¾Ò²¿ÉÒÔ½â¾ö stackoverflow£¬ÒòÎªÖØÏ°²×°°ü½Ï´ó¹Ê²ÉÓÃǰһ·½·¨£©£¬²ÅËãÍê³É¡£
https://developer.nvidia.com/compute/machine-learning/cudnn
/secure/v7.0.5 /prod/9.1_20171129 / cudnn- 9.1- windows10-x64-v7
http://developer2.download.nvidia.com/compute/machine-learning
/cudnn /secure /v7.0.5 /prod /9.1_20171129 /cudnn-9.1-windows10
-x64-v7.zip?ZLrypQyS9qaPi2V24ZffXps- WqZnYaTOsPUaA5O9BY-LV-
bJlHkijvtQkvNn -SPFVTDbAGqc0UhtSt5e70qbF66G4mCzvo9BLs3-fAGYNo0afIsTeQ6YwVbARA1
yzss WExLzEgOm FeGOv7AscZCeepaNlc3 - OdFeUb2s72BF-dXNV8VQx_
u7nc2vgWRQypNmFCTeTXZxo-FpoE-t
»°Ëµ×¢²áÕ˺ÅÒªÇóºÃÂé·³£¬´óСд°üº¬ÌØÊâ·ûºÅÇÒ²»ÉÙÓÚ6λ¡¡
6. pip°²×°TensorFlow-GPU£¨×îºóÒ»²½£©
pip3 install -- upgrade tensorflow-gpu
ÍòÒ»ÔÚÏßpip°²×°Ê§°ÜÁË£¬¾ÍÀëÏß°²×°£¬µ½ http://www.lfd.uci.edu
/~gohlke/pythonlibs/ ÏÂÔØpython µÄwhl °ütensorflow_gpu?1.1.0?cp36?cp36m?win_amd64.whl£¬È»ºóÃüÁîÌáʾ·ûÔËÐÐpip
install < ´Ë´¦Ìîд .whl ËùÔÚλÖà >£¨¿ÉÒÔ½«.whiÎļþÍÏÈëÃüÁîÌáʾ·ûÖм´Éú³ÉÆäλÖã©
0x03. ²âÊÔ
1.#! python3
2.# coding: utf-8
3.import tensorflow as tf
4.hello = tf.constant('Hello, TensorFlow!')
5.sess = tf.Session()
6.print(sess.run(hello)) |
ÎÒµÄÊä³ö½Ï³¤£º
C:\Python36\python.exe
C:/Users /yuangezhizao /PycharmProjects /deeplearning
/helloworld.py
2017- 08- 03 14:53:23.258570: W c:\tf_jenkins
\home\workspace \release-win \m \windows-gpu\py\36
\tensorflow \core \platform \cpu_feature_guard
.cc:45] The TensorFlowlibrary wasn't compiled
to use SSE instructions, but these are available
on your machine and could speed up CPU computations.
2017-08-03 14:53:23.258819: W c:\tf_jenkins \home\workspace
\release-win \m\ windows-gpu\py\36 \tensorflow\
core\platform \cpu_ feature_guard.cc:45] The TensorFlow
library wasn't compiled to use SSE2 instructions,
but these are available on your machine and could
speed up CPU computations.
2017-08-03 14:53:23.259063: W c:\tf_jenkins \home\workspace
\release -win \ m\windows-gpu\py\36 \tensorflow\
core\platform \cpu_feature_ guard.cc:45] The TensorFlow
library wasn't compiled to use SSE3 instructions,
but these are available on your machine and could
speed up CPU computations.
2017-08-03 14:53:23.259307: W c:\tf_jenkins \home\workspace
\ release- win \m\windows-gpu\py\36 \tensorflow
\core \platform \cpu_feature_guard.cc:45] The
TensorFlow library wasn't compiled to use SSE4.1
instructions, but these are available on your
machine and could speed up CPU computations.
2017-08-03 14:53:23.259552: W c:\tf_jenkins \home\workspace
\ release- win \m\windows-gpu\py\36 \tensorflow
\core\platform \ cpu_ feature_guard.cc:45] The
TensorFlow library wasn't compiled to use SSE4.2
instructions, but these are available on your
machine and could speed up CPU computations.
2017-08-03 14:53:23.259790: W c:\tf_jenkins \home\workspace
\ release - win \m\windows-gpu\py \36\tensorflow
\core\platform \ cpu_feature_ guard.cc:45] The
TensorFlow library wasn't compiled to use AVX
instructions, but these are available on your
machine and could speed up CPU computations.
2017-08-03 14:53:23.260028: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py
\36 \ tensorflow\core\platform\cpu_feature_guard.cc:45]
The TensorFlow library wasn't compiled to use
AVX2 instructions, but these are available on
your machine and could speed up CPU computations.
2017-08-03 14:53:23.260264: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py
\36\ tensorflow\core\platform\cpu_feature_guard.cc:45]
The TensorFlow library wasn't compiled to use
FMA instructions, but these are available on your
machine and could speed up CPU computations.
2017-08-03 14:53:24.103495: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py
\36 \t ensorflow\core\common_runtime\gpu\gpu_device.cc:940]
Found device 0 with properties:
name: GeForce GTX 965M
major: 5 minor: 2 memoryClockRate (GHz) 0.9495
pciBusID 0000:01:00.0
Total memory: 2.00GiB
Free memory: 1.64GiB
2017-08-03 14:53:24.103772: I c:\tf_ jenkins\home
\workspace\ release -win \ m\windows-gpu\py\36\
tensorflow\ core\common_ runtime \gpu \gpu_device.cc:961]
DMA: 0
2017-08-03 14:53:24.103900: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\36
\tensorflow \core\common_runtime\gpu\gpu_device.cc:971]
0: Y
2017-08-03 14:53:24.104045: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\36\
tensorflow \core\common_runtime\gpu\gpu_device.cc:1030]
Creating TensorFlow device (/gpu:0) -> (device:
0, name: GeForce GTX 965M, pci bus id: 0000:01:00.0)
b'Hello, TensorFlow!' |
ÕâÀïÖ®ËùÒÔ»á³öºì×ÖÌáʾÊÇÒòΪûÓÐÔÚ±¾»ú±àÒ룬³¢ÊÔ±àÒ루ʵÔÚÊDz»»á¡¡£©£¬ÓÚÊÇÖØÆô½øMacÀï¡¡ δÍê´ýÐø
0x04. ²Î¿¼
http://www.jianshu.com/p/6766fbcd43b9
http://www.jianshu.com/p/c245d46d43f0
http://blog.csdn.net/u010099080/article/details/53418159
http://blog.csdn.net/wx7788250/article/details/60877166
http://www.cnblogs.com/leoking01/p/6913408.html |