Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
CPUºÍGPUµÄÇø±ð¡¢¹¤×÷Ô­Àí¡¢¼°ÈçºÎtensorflow-GPU°²×°µÈ²Ù×÷
 
  11419  次浏览      29
 2018-9-3
 
±à¼­ÍƼö:
±¾ÎÄÀ´×ÔÓÚcsdn£¬½éÉÜÁËCPUºÍGPUµÄÇø±ð¡¢GPUÊʺϵŤ×÷ÄÚÈÝ£¬Win-10 °²×° TensorFlow-GPUµÈ¡£

ÏÈÀ´¿´¿´µÚÒ»²¿·Ö

ΪʲôGPU±ÈCPU¸üdiaoÄØ£¿

ÕâÀï¾ÍÐèÒª´ÓËûôµÄÇø±ðÈëÊÖ

ÄÇËûôµÄÇø±ðÊÇÊ²Ã´ÄØ£¿

ÕâÀï¾ÍÐèÒª´ÓËûµÄÔ­Àí³ö·¢ÁË£¬ÓÉÓÚÆäÉè¼ÆÄ¿±êµÄ²»Í¬£¬ËüÃÇ·Ö±ðÕë¶ÔÁËÁ½ÖÖ²»Í¬µÄÓ¦Óó¡¾°

CPU ÐèÒªºÜÇ¿µÄͨÓÃÐÔ

ΪÁË´¦Àí¸÷ÖÖ²»Í¬µÄÊý¾ÝÀàÐÍ£¬Í¬Ê±ÓÖÒªÂß¼­ÅжÏÓÖ»áÒýÈë´óÁ¿µÄ·ÖÖ§Ìø×ªºÍÖжϵĴ¦Àí¡£ÕâЩ¶¼Ê¹µÃCPUµÄÄÚ²¿½á¹¹Òì³£¸´ÔÓ¡£

While GPU Ãæ¶ÔµÄÊÇÀàÐ͸߶ÈͳһµÄ¡¢»¥ÏàÎÞÒÀÀµµÄ´ó¹æÄ£Êý¾ÝºÍ²»ÐèÒª±»´ò¶ÏµÄ´¿¾»µÄ¼ÆËã»·¾³

ÓÚÊǺõ£ºCPUºÍGPU¾Í³ÊÏÖ³ö·Ç³£²»Í¬µÄ¼Ü¹¹£¨¿´Í¼£©

ÏÊÂÌÉ«£º¼ÆËãµ¥ÔªALU(Arithmetic Logic Unit£©

³ÈºìÉ«£º´æ´¢µ¥Ôª£¨cache£©

³È»ÆÉ«£º¿ØÖƵ¥Ôª£¨control£©

GPU£ºÊýÁ¿ÖÚ¶àµÄ¼ÆËãµ¥ÔªºÍ³¬³¤µÄÁ÷Ë®Ïߣ¬Ö»Óмòµ¥µÄ¿ØÖÆÂß¼­²¢Ê¡È¥ÁËCache

CPU£º±»CacheÕ¼¾ÝÁË´óÁ¿¿Õ¼ä£¬¶øÇÒ»¹ÓÐÓи´ÔӵĿØÖÆÂß¼­ºÍÖî¶àÓÅ»¯µç·¡£

*½á¹û¿ÉÏë¶øÖª£º¿´Õâ¸ö¸üÏêϸµÄͼƬ*

À´£¬Ð¡Ã÷£¬Äã˵Äã¿´³öÊ²Ã´Çø±ðÁË

ÎÒ¿´µ½ÁË»ÆÉ«µÄ¶«Î÷£¬Ò»¸ö´óÒ»¸öС¡£

¾Í¿´²»µ½Éî²ãµÄ¶«Î÷£¿

ÀÏʦ£¬ÎÒ¶öÁË¡£

¹ö³öÈ¥¡£

ÎÒ¸ø´ó¼Ò˵һϰ¡£¡

1.Cache, local memory£º CPU > GPU

2.Threads(Ïß³ÌÊý): GPU > CPU

3.Registers£¨¼Ä´æÆ÷£©: GPU > CPU ¶à¼Ä´æÆ÷¿ÉÒÔÖ§³Ö·Ç³£¶àµÄThread

4.threadÐèÒªÓõ½register,threadÊýÄ¿´óregisterÒ²±ØÐëµÃ¸úןܴó²ÅÐС£

5.SIMD Unit(µ¥Ö¸Áî¶àÊý¾ÝÁ÷,ÒÔͬ²½·½Ê½£¬ÔÚͬһʱ¼äÄÚÖ´ÐÐͬһÌõÖ¸Áî): GPU > CPU¡£

ÎÄ×ÖºÜÂé·³°É£¬¿ÉÒÔÐÎÏóµÄ¿´[Õâ¸öÊÓÆµ ͦÓÐÒâ˼µÄ]

1.CPUÓÐÇ¿´óµÄALU, ¿ÉÒÔÔÚºÜÉÙµÄʱÖÓÖÜÆÚÄÚÍê³ÉËãÊõ¼ÆË㣬¿ÉÒÔ´ïµ½64bit

Ë«¾«¶È£¬Ö´ÐÐË«¾«¶È¸¡µãÔ´ËãµÄ¼Ó·¨ºÍ³Ë·¨Ö»ÐèÒª1¡«3¸ö[ʱÖÓÖÜÆÚ]

2.CPUµÄʱÖÓÖÜÆÚµÄÆµÂʷdz£¸ß£¬´ïµ½1.532¡«3gigahertz(ǧÕ×HZ, 10µÄ9´Î·½).

ÔÙ¿´¿´GPU

GPUÊÇ»ùÓÚ´óµÄÍÌÍÂÁ¿

ÌØµã£ººÜ¶àµÄALUºÍºÜÉÙµÄcache

»º´æµÄÄ¿µÄ²»ÊDZ£´æºóÃæÐèÒª·ÃÎʵÄÊý¾Ý£¬ÕâµãºÍCPU²»Í¬£¬¶øÊÇΪthreadÌá¸ß·þÎñ

Èç¹ûÓкܶàÏß³ÌÐèÒª·ÃÎÊͬһ¸öÏàͬµÄÊý¾Ý£¿

»º´æ»áºÏ²¢ÕâЩ·ÃÎÊ£¬È»ºóÔÙÈ¥·ÃÎÊdram£¨ÒòΪÐèÒª·ÃÎʵÄÊý¾Ý±£´æÔÚdramÖжø²»ÊÇcacheÀïÃæ£©

»ñÈ¡Êý¾Ýºócache»áת·¢Õâ¸öÊý¾Ý¸ø¶ÔÓ¦µÄỊ̈߳¬Õâ¸öʱºòÊÇÊý¾Ýת·¢µÄ½ÇÉ«£¬ÓÉÓÚÐèÒª·ÃÎÊdram£¬×ÔÈ»»á´øÀ´ÑÓʱµÄÎÊÌâ¡£

GPUµÄ¿ØÖƵ¥Ôª£¨×ó±ß»ÆÉ«ÇøÓò¿é£©¿ÉÒ԰Ѷà¸öµÄ·ÃÎʺϲ¢³ÉÉٵķÃÎÊ¡£

×ܵÄÀ´Ëµ£ºÓÐÒ»¸öÀý×Ó˵µÄºÜºÃ

GPUµÄ¹¤×÷´ó²¿·Ö¾ÍÊÇÕâÑù£¬¼ÆËãÁ¿´ó£¬¶øÇÒÒªÖØ¸´ºÜ¶àºÜ¶à´Î¡£¾ÍÏñÄãÓиö¹¤×÷ÐèÒªË㼸ÒÚ´ÎÒ»°ÙÒÔÄÚ¼Ó¼õ³Ë³ýÒ»Ñù£¬×îºÃµÄ°ì·¨¾ÍÊǹÍÉϼ¸Ê®¸öСѧÉúÒ»ÆðË㣬һÈËËãÒ»²¿·Ö

CPU¾ÍÏñÀϽÌÊÚ£¬»ý·Ö΢·Ö¶¼»áË㣬¾ÍÊǹ¤×ʸߣ¬Ò»¸öÀϽÌÊÚ×ʶ¥¶þÊ®¸öСѧÉú£¬ÄãÒªÊǸ»Ê¿¿µÄã¹ÍÄĸö

CPUºÍGPUÒòΪ×î³õÓÃÀ´´¦ÀíµÄÈÎÎñ¾Í²»Í¬£¬ËùÒÔÉè¼ÆÉÏÓв»Ð¡µÄÇø±ð£¬¶øÄ³Ð©ÈÎÎñºÍGPU×î³õÓÃÀ´½â¾öµÄÎÊÌâ±È½ÏÏàËÆ£¬ËùÒÔÓÃGPUÀ´ËãÁË

GPUµÄÔËËãËÙ¶ÈÈ¡¾öÓÚ¹ÍÁ˶àÉÙСѧÉú£¬CPUµÄÔËËãËÙ¶ÈÈ¡¾öÓÚÇëÁ˶àôÀ÷º¦µÄ½ÌÊÚ¡£½ÌÊÚ´¦Àí¸´ÔÓÈÎÎñµÄÄÜÁ¦ÊÇÄëѹСѧÉúµÄ£¬µ«ÊǶÔÓÚûÄÇô¸´ÔÓµÄÈÎÎñ£¬»¹ÊǶ¥²»×¡È˶ࡣ

µ±È»ÏÖÔÚµÄGPUÒ²ÄÜ×öһЩÉÔ΢¸´ÔӵŤ×÷ÁË£¬Ï൱ÓÚÉý¼¶³É³õÖÐÉú¸ßÖÐÉúµÄˮƽ¡£µ«»¹ÐèÒªCPUÀ´°ÑÊý¾Ýιµ½×ì±ß²ÅÄÜ¿ªÊ¼¸É»î£¬¾¿¾¹»¹ÊÇ¿¿CPUÀ´¹ÜµÄ¡£

GPUÊʺϸÉʲô»î£¿

£¨1£©¼ÆËãÃܼ¯Ð͵ijÌÐò

Ëùν¼ÆËãÃܼ¯ÐÍ(Compute-intensive)µÄ³ÌÐò£¬¾ÍÊÇÆä´ó²¿·ÖÔËÐÐʱ¼ä»¨ÔÚÁ˼ĴæÆ÷ÔËËãÉÏ£¬¼Ä´æÆ÷µÄËٶȺʹ¦ÀíÆ÷µÄËÙ¶ÈÏ൱£¬´Ó¼Ä´æÆ÷¶ÁдÊý¾Ý¼¸ºõûÓÐÑÓʱ¡£

¿ÉÒÔ×öһ϶Աȣ¬¶ÁÄÚ´æµÄÑÓ³Ù´ó¸ÅÊǼ¸°Ù¸öʱÖÓÖÜÆÚ£»¶ÁÓ²Å̵ÄËٶȾͲ»ËµÁË£¬¼´±ãÊÇSSD, ҲʵÔÚÊÇÌ«ÂýÁË¡£

£¨2£©Ò×ÓÚ²¢ÐеijÌÐò¡£

GPUÆäʵÊÇÒ»ÖÖSIMD(Single Instruction Multiple Data)¼Ü¹¹£¬ ËûÓгɰÙÉÏǧ¸öºË£¬Ã¿Ò»¸öºËÔÚͬһʱ¼ä×îºÃÄÜ×öͬÑùµÄÊÂÇé¡£

¿ÉÄÜÓõ½µÄÁ´½Ó£¨²Î¿¼Á´½Ó£©

RAM RRAM DRAMÈýÕßÓÐÊ²Ã´Çø±ð£¿

DRAM

µÚ¶þ²¿·Ö£º ²Ù×÷

Win-10 °²×° TensorFlow-GPU

0x00. ÔµÓÉ

Q£ºÎªÊ²Ã´ÒªÐ´£¨ÕâôµÍ¼¶µÄ£©ÅäÖý̳̣¿

A£º£¨Æäʵ²¢²»µÍ¼¶£©£¬¼øÓÚÒԺ󣨻òÐí£©»áÓÐ¶àÆª¹ØÓÚTensorFlowµÄÎÄÕ£¨»¨Ê½ÍÚ¿Ó£©£¬ËùÒÔÔÚÕâÀïÓбØÒª½éÉÜÒ»ÏÂÆä°²×°·½·¨

Q£ºTensorFlowÊÇʲô£¿

A£ºTensorFlow is an Open Source Software Library for Machine Intelligence

ÓÉGoogle¿ªÔ´µÄÉî¶Èѧϰ¿â£¬¿ÉÒÔ¶Ô¶¨ÒåÔÚ Tensor£¨ÕÅÁ¿£©Éϵĺ¯Êý×Ô¶¯Ç󵼡£

TensorÒâζ×ÅNάÊý×飬Flow£¨Á÷£©Òâζ×Å»ùÓÚÊý¾ÝÁ÷ͼµÄ¼ÆË㣬TensorFlow¼´ÎªÕÅÁ¿´ÓͼµÄÒ»¶ËÁ÷¶¯µ½ÁíÒ»¶Ë¡£

ËüµÄÒ»´óÁÁµãÊÇÖ§³ÖÒì¹¹É豸·Ö²¼Ê½¼ÆË㣬ËüÄܹ»ÔÚ¸÷¸öƽ̨ÉÏ×Ô¶¯ÔËÐÐÄ£ÐÍ£¬´Óµç»°¡¢µ¥¸öCPU/GPUµ½³É°ÙÉÏǧGPU¿¨×é³ÉµÄ·Ö²¼Ê½ÏµÍ³¡£

Ö§³ÖCNN¡¢RNNºÍLSTMËã·¨£¬ÊÇĿǰÔÚImage¡¢NLP×îÁ÷ÐеÄÉî¶ÈÉñ¾­ÍøÂçÄ£ÐÍ¡£

Q£ºÎªÊ²Ã´ÒªÑо¿Õâ¸ö£¿

A£ºÉî¶Èѧϰͨ³£Òâζ׎¨Á¢¾ßÓкܶà²ãµÄ´ó¹æÄ£µÄÉñ¾­ÍøÂç¡£

³ýÁËÊäÈëX£¬º¯Êý»¹Ê¹ÓÃһϵÁвÎÊý£¬ÆäÖаüÀ¨±êÁ¿Öµ¡¢ÏòÁ¿ÒÔ¼°×î°º¹óµÄ¾ØÕóºÍ¸ß½×ÕÅÁ¿¡£

ÔÚѵÁ·ÍøÂç֮ǰ£¬ÐèÒª¶¨ÒåÒ»¸ö´ú¼Ûº¯Êý£¬³£¼ûµÄ´ú¼Ûº¯Êý°üÀ¨»Ø¹éÎÊÌâµÄ·½²îÒÔ¼°·ÖÀàʱºòµÄ½»²æìØ¡£

ѵÁ·Ê±£¬ÐèÒªÁ¬ÐøµÄ½«¶àÅúÐÂÊäÈëͶÈëÍøÂ磬¶ÔËùÓеIJÎÊýÇ󵼺󣬴úÈë´ú¼Ûº¯Êý£¬´Ó¶ø¸üÐÂÕû¸öÍøÂçÄ£ÐÍ¡£

Õâ¸ö¹ý³ÌÖÐÓÐÁ½¸öÖ÷ÒªµÄÎÊÌ⣺1. ½Ï´óµÄÊý×Ö»òÕßÕÅÁ¿ÔÚÒ»ÆðÏà³Ë°ÙÍò´ÎµÄ´¦Àí£¬Ê¹µÃÕû¸öÄ£ÐÍ´ú¼Û·Ç³£´ó¡£2. ÊÖ¶¯Ç󵼺Äʱ·Ç³£¾Ã¡£

ËùÒÔTensorFlowµÄ¶Ôº¯Êý×Ô¶¯Çóµ¼ÒÔ¼°·Ö²¼Ê½¼ÆË㣬¿ÉÒÔ°ïÎÒÃǽÚÊ¡ºÜ¶àʱ¼äÀ´ÑµÁ·Ä£ÐÍ¡£

Q£ºËüÓÐʲôÓŵ㣿

A£º1. »ùÓÚpython£¬Ð´µÄºÜ¿ì²¢ÇÒ¾ßÓпɶÁÐÔ£»

2. ÔÚ¶àGPUϵͳÉϵÄÔËÐиüΪ˳³©£»

3. ´úÂë±àÒëЧÂʽϸߣ»

4. ÉçÇø·¢Õ¹µÄ·Ç³£Ñ¸ËÙ²¢ÇÒ»îÔ¾£»

5. Äܹ»Éú³ÉÏÔÊ¾ÍøÂçÍØÆË½á¹¹ºÍÐÔÄܵĿÉÊÓ»¯Í¼¡£

0x01. »·¾³

a. Microsoft Windows [°æ±¾ 10.0.15063]£¨Win 10 x64 Pro 1703 15063.483£©

b. Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 18:41:36) [MSC v.1900 64 bit (AMD64)] on win32

c. JetBrains Pycharm 2017.2 x64 Professional

d. GeForce GTX 965M

0x02. °²×°

1. °²×°python 36

һ·ÏÂÒ»²½´ò¹³»·¾³±äÁ¿ÉèÖü´¿É¡£²»½¨Òépython 27£¬ÒòΪºÃÏñ²»Ö§³Ö£¬ËùÒÔ×îºóÒ»²½»á±¨Could not find a version that satisfies the requirement tensorflow-gpu (from versions: ) No matching distribution found for tensorflow-gpu

2. ¸ü¸ÄpipĬÈÏÔ´

ĬÈÏÔ´·þÎñÆ÷ÔÚ¹úÍ⣬¹úÄÚÏÂÔØ½ÏÂý£¬ÓбØÒª»»Îª¹úÄÚ°¢ÀïÔ´¡£

¶ÔÓÚWinÀ´Ëµ£¬Ö±½ÓÔÚµ±Ç°Óû§Ä¿Â¼ÏÂн¨Ò»¸öpip.iniÎļþ£¬Àý£ºC:\Users\yuangezhizao\pip.ini

ÄÚÈÝÈçÏ£º

1.[global]

2.index-url = http://mirrors.aliyun.com/pypi/simple/

3.[install]

4.trusted-host=mirrors.aliyun.com

3. Éý¼¶pip

py -2 -m pip install --upgrade pip

ÓÉÓÚÎÒµçÄÔ°²×°ÁËÁ½¸ö°æ±¾£¬ËùÒÔÓà py -2 Ñ¡Ôñ 2 °æ±¾µÄ½âÊÍÆ÷£¬Í¬Àí py -3 ¼´ÊÇÑ¡Ôñ 3 °æ±¾µÄ½âÊÍÆ÷

TensorFlowÓÐÁ½¸ö°æ±¾£ºCPU°æ±¾ºÍGPU°æ±¾¡£

Èç¹ûÄãµÄµçÄÔûÓÐNVIDIAÏÔ¿¨µÄ»°£¬Äã¾Í±ØÐëÑ¡Ôñ°²×°Õâ¸ö°æ±¾£¬²»¹ýÕâ¸ö°æ±¾µÄ°²×°Òª±ÈGPU°æµÄ¼òµ¥£¬¹Ù·½Ò²ÍƼöÏÈÓÃCPU°æµÄÀ´ÌåÑé¡£TensorFlowÔÚGPUÉÏÔËÐÐÒª±ÈCPUÉÏ¿ìºÜ¶à£¬Èç¹ûÄãµÄGPUÄܹ»´ïµ½ÒªÇó¾Í¿ÉÒÔÑ¡Ôñ°²×°GPU°æ¡£GPU°æ±¾ÐèÒªCUDAºÍcuDNNµÄÖ§³Ö£¬Òª°²×°GPU°æ±¾£¬ÐèÈ·ÈÏÏÔ¿¨ÊÇ·ñÖ§³ÖCUDA£¬²é¿´ GPU ÊÇ·ñÖ§³Ö CUDA£¬¼ÆËãÄÜÁ¦´óÓÚ3.5µÄN¿¨Ò»°ã¶¼Ö§³ÖµÄ˵¡­¡­

Áí£¬ÍøÉ϶ཨÒé°²×°Anaconda£¬ÒòΪÕâ¸ö¼¯³ÉÁËºÜ¶à¿ÆÑ§¼ÆËãËù±ØÐèµÄ¿â£¬Äܹ»±ÜÃâºÜ¶àÒÀÀµÎÊÌ⣬Õâ¸öPycharmµ³¾ÍÏȲ»°²ÁË£¨ÆäʵÎÒ°²Á˵«ÊÇ¿ÉÄÜÊÇÒòΪÎÒÓÃϰ¹ßÁ˸оõûÓÐPycharmÊæ·þ£©

4. °²×° CUDA

Windows¡úx86_64¡ú10¡úexe (local)

ÏÂÔØÈçÏÂÁ½¸öÎļþ£¬°´ÕÕÏȺó˳Ðò°²×°£º

Base Installer Download (1.3 GB)

Patch 2 (Released Jun 26, 2017) Download (43.1 MB)

°²×°ÍêÖ®ºó£¬ÔÚÃüÁîÐÐÊäÈënvcc -V£¬»áÓÐÕý³£»ØÏÔ¡­¡­

5. °²×° cuDNN

cuDNN¿ÉÒÔÔÚÇ°ÃæGPU¼ÓËÙ»ù´¡ÉÏ´ó¸ÅÔÙÌáÉý1.5±¶µÄËÙ¶È£¬Í¬ÑùÓÉnVIDIA¿ª·¢¡£¹ÙÍø×¢²áÕ˺ţ¬ÏÂÔØ cuDNN v6.0 Library for Windows 10

ѹËõ°ü£¬½âѹÍ꽫¶ÔÓ¦Îļþ¼Ð£¨bin¡¢include¡¢lib£©¸²¸ÇÖÁCUDAµÄ°²×°Ä¿Â¼£¬¼´C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0£¬È»ºó°ÑC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin¼ÓÈë»·¾³±äÁ¿£¬²¢½«binÎļþ¼ÐÀïµÄcudnn64_6.dllÖØÃüÃûΪcudnn64_5.dll£¨´Ë´¦²Î¿¼ tensorflow/issues/7705£¬Æäʵ»»¾É°æ±¾Ò²¿ÉÒÔ½â¾ö stackoverflow£¬ÒòÎªÖØÏ°²×°°ü½Ï´ó¹Ê²ÉÓÃǰһ·½·¨£©£¬²ÅËãÍê³É¡£

https://developer.nvidia.com/compute/machine-learning/cudnn /secure/v7.0.5 /prod/9.1_20171129 / cudnn- 9.1- windows10-x64-v7

http://developer2.download.nvidia.com/compute/machine-learning /cudnn /secure /v7.0.5 /prod /9.1_20171129 /cudnn-9.1-windows10 -x64-v7.zip?ZLrypQyS9qaPi2V24ZffXps- WqZnYaTOsPUaA5O9BY-LV- bJlHkijvtQkvNn -SPFVTDbAGqc0UhtSt5e70qbF66G4mCzvo9BLs3-fAGYNo0afIsTeQ6YwVbARA1 yzss WExLzEgOm FeGOv7AscZCeepaNlc3 - OdFeUb2s72BF-dXNV8VQx_ u7nc2vgWRQypNmFCTeTXZxo-FpoE-t

»°Ëµ×¢²áÕ˺ÅÒªÇóºÃÂé·³£¬´óСд°üº¬ÌØÊâ·ûºÅÇÒ²»ÉÙÓÚ6λ¡­¡­

6. pip°²×°TensorFlow-GPU£¨×îºóÒ»²½£©

pip3 install -- upgrade tensorflow-gpu

ÍòÒ»ÔÚÏßpip°²×°Ê§°ÜÁË£¬¾ÍÀëÏß°²×°£¬µ½ http://www.lfd.uci.edu /~gohlke/pythonlibs/ ÏÂÔØpython µÄwhl °ütensorflow_gpu?1.1.0?cp36?cp36m?win_amd64.whl£¬È»ºóÃüÁîÌáʾ·ûÔËÐÐpip install < ´Ë´¦Ìîд .whl ËùÔÚλÖà >£¨¿ÉÒÔ½«.whiÎļþÍÏÈëÃüÁîÌáʾ·ûÖм´Éú³ÉÆäλÖã©

0x03. ²âÊÔ

1.#! python3
2.# coding: utf-8
3.import tensorflow as tf
4.hello = tf.constant('Hello, TensorFlow!')
5.sess = tf.Session()
6.print(sess.run(hello))

ÎÒµÄÊä³ö½Ï³¤£º

C:\Python36\python.exe C:/Users /yuangezhizao /PycharmProjects /deeplearning /helloworld.py
2017- 08- 03 14:53:23.258570: W c:\tf_jenkins \home\workspace \release-win \m \windows-gpu\py\36 \tensorflow \core \platform \cpu_feature_guard .cc:45] The TensorFlowlibrary wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
2017-08-03 14:53:23.258819: W c:\tf_jenkins \home\workspace \release-win \m\ windows-gpu\py\36 \tensorflow\ core\platform \cpu_ feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-03 14:53:23.259063: W c:\tf_jenkins \home\workspace \release -win \ m\windows-gpu\py\36 \tensorflow\ core\platform \cpu_feature_ guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-03 14:53:23.259307: W c:\tf_jenkins \home\workspace \ release- win \m\windows-gpu\py\36 \tensorflow \core \platform \cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-03 14:53:23.259552: W c:\tf_jenkins \home\workspace \ release- win \m\windows-gpu\py\36 \tensorflow \core\platform \ cpu_ feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-03 14:53:23.259790: W c:\tf_jenkins \home\workspace \ release - win \m\windows-gpu\py \36\tensorflow \core\platform \ cpu_feature_ guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-08-03 14:53:23.260028: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py \36 \ tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-03 14:53:23.260264: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py \36\ tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-08-03 14:53:24.103495: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py \36 \t ensorflow\core\common_runtime\gpu\gpu_device.cc:940] Found device 0 with properties:
name: GeForce GTX 965M
major: 5 minor: 2 memoryClockRate (GHz) 0.9495
pciBusID 0000:01:00.0
Total memory: 2.00GiB
Free memory: 1.64GiB
2017-08-03 14:53:24.103772: I c:\tf_ jenkins\home \workspace\ release -win \ m\windows-gpu\py\36\ tensorflow\ core\common_ runtime \gpu \gpu_device.cc:961] DMA: 0
2017-08-03 14:53:24.103900: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\36 \tensorflow \core\common_runtime\gpu\gpu_device.cc:971] 0: Y
2017-08-03 14:53:24.104045: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\36\ tensorflow \core\common_runtime\gpu\gpu_device.cc:1030] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 965M, pci bus id: 0000:01:00.0)
b'Hello, TensorFlow!'

ÕâÀïÖ®ËùÒÔ»á³öºì×ÖÌáʾÊÇÒòΪûÓÐÔÚ±¾»ú±àÒ룬³¢ÊÔ±àÒ루ʵÔÚÊDz»»á¡­¡­£©£¬ÓÚÊÇÖØÆô½øMacÀï¡­¡­ δÍê´ýÐø

0x04. ²Î¿¼

http://www.jianshu.com/p/6766fbcd43b9

http://www.jianshu.com/p/c245d46d43f0

http://blog.csdn.net/u010099080/article/details/53418159

http://blog.csdn.net/wx7788250/article/details/60877166

http://www.cnblogs.com/leoking01/p/6913408.html

   
11419 ´Îä¯ÀÀ       29
 
Ïà¹ØÎÄÕÂ

ÔÆ¼ÆËãµÄ¼Ü¹¹
¶ÔÔÆ¼ÆËã·þÎñÄ£ÐÍ
ÔÆ¼ÆËãºËÐļ¼ÊõÆÊÎö
Á˽âÔÆ¼ÆËãµÄ©¶´
 
Ïà¹ØÎĵµ

ÔÆ¼ÆËã¼ò½é
ÔÆ¼ÆËã¼ò½éÓëÔÆ°²È«
ÏÂÒ»´úÍøÂç¼ÆËã--ÔÆ¼ÆËã
ÈídzÎöÔÆ¼ÆËã
 
Ïà¹Ø¿Î³Ì

ÔÆ¼ÆËãÔ­ÀíÓëÓ¦ÓÃ
ÔÆ¼ÆËãÓ¦ÓÃÓ뿪·¢
CMMIÌåϵÓëʵ¼ù
»ùÓÚCMMI±ê×¼µÄÈí¼þÖÊÁ¿±£Ö¤