您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 Code iProcess 课程 认证 咨询 工具 火云堂 讲座吧   成长之路  
会员   
 
   
 
  
每天15篇文章
不仅获得谋生技能
更可以追随信仰
 
     
   
 订阅
  捐助
基于 FPGA 的图像边缘检测
 
448 次浏览     评价:  
 2018-2-12 
 
编辑推荐:
本文来自于博客园,实现图像的边缘检测功能。

目录

1.mif文件的制作

2.调用 ip 核生成rom以及在 questasim 仿真注意问题

3.灰度处理

4.均值滤波:重点是3*3 像素阵列的生成

5.sobel边缘检测

6.图片的显示

7.结果展示

mif文件的制作

受资源限制,将图片像素定为 160 * 120,将图片数据制成 mif 文件,对 rom ip 核进行初始化。mif文件的制作方法网上有好多办法,因此就不再叙述了,重点说mif文件的格式。

1、mif文件的格式为:

1 WIDTH=16 ; //数据位宽
2 DEPTH=19200 ; // rom 深度即图片像素点的个数
3 ADDRESS_RADIX=UNS ; //地址数据格式
4 DATA_RADIX=BIN ; //数据格式
5 CONTENT
6 BEGIN
7 0:1010110011010000 ; // 地址 :数据 ;注意格式要和上面定义的保持统一
8 1:1010110011010000 ;
9 2:1010010010110000 ;
10 ......
11 19198:1110011011111001 ;
12 19199:1110011011011000 ;
13 END;

调用ip 核生成 rom 以及在 questasim 仿真注意问题

这部分内容已经在上篇博文中详细描述过,详情请见http://www.cnblogs.com/aslmer/p/5780107.html

灰度处理

任何颜色都由红、绿、蓝三原色组成,假如原来某点的颜色为( R,G,B )那么,我们可以通过下面几种方法,将其转换为灰度:

1.浮点算法:Gray=0.299R+0.587G+0.114B

2.平均值法:Gray=(R+G+B)/3;

3.仅取单色(如绿色):Gray=G;

将计算出来的Gray值同时赋值给 RGB 三个通道即RGB为(Gray,Gray,Gray),此时显示的就是灰度图。通过观察调色板就能看明了。 通过观察可知,当RGB三个通道的值相同时即为灰色,Gray的值越大,颜色越接近白色,反之越接近黑色(这是我自己的理解,不严谨错误之处请大神指正)。

这是在线调色板网址,可以进去自己研究一下。http://tool.chinaz.com/tools/selectcolor.aspx

此次我采用是浮点算法来实现灰度图的,我的图片数据是RGB565 格式 ,

难点: 如何进行浮点运算。

思路:先将数据放大,然后再缩小。

例如:

Gray=0.299R+0.587G+0.114B转化为 Gray=(77R+150G+29B)>>8 即可,这里有一个技巧,若 a 为 16 位即 a [15:0],那么 a>>8 与 a [15:8]是一样的。

核心代码如下:

always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
red_r1 <= 0 ;
green_r1 <= 0 ;
blue_r1 <= 0 ;
end
else begin
red_r1 <= red * 77 ; //放大后的值
green_r1 <= green * 150;
blue_r1 <= blue * 29 ;
end
end

always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
Gray <= 0; // 三个数之和
end
else begin
Gray <= red_r1 + green_r1 + blue_r1;
end
end

always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
post_data_in <= 0; //输出的灰度数据
end
else begin
post_data_in <= { Gray[13:9], Gray[13:8], Gray[13:9] };//将Gray值赋值给RGB三个通道
end
end

均值滤波

均值滤波的原理

http : // blog . csdn . net / hhygcy / article / details / 4325304 (此处引用 hhygcy 的文章)

难点:如何生成 3*3 的像素阵列。

我们可以利用 ip 核生成移位寄存器 ,方法与 ip 核 生成 rom 一样,详情见目录 2 因此不再赘述 。

仿真波形如下 row_1 , row_2 , row_3 是指图像的第一、二、三行的数据,Per_href 是行有效信号(受VGA时序的启发,从 rom 中读取数据时设计了行有效和场有效的控制信号,事半功倍,有了利于仿真查错和数据的控制)。从 3 开始就出现了3*3 的像素阵列,这时候就可以求取周围 8 个像素点的平均值,进行均值滤波。

下面这个图是我自己画的 FPGA 如何将矩阵数据处理成并行的像素点,可以结合下面的代码好好理解,这也是精华所在。

正方形红框框起来的是第一个完整的 3*3 矩阵,长方形红框框起来的是并行的像素点,在此基础上就可以求得平均值,进行均值滤波。

从下图也能看到 3*3 矩阵从左往右滑动。

第一个3*3 阵列。

0 1 2 -- > p11 p12 p13

3 4 5 -- > p21 p22 p23

6 7 8 -- > p31 p32 p33

核心代码如下:

reg [5:0]p_11,p_12,p_13; // 3 * 3

卷积核中的像素点
reg [5:0]p_21,p_22,p_23;
reg [5:0]p_31,p_32,p_33;
reg [8:0]mean_value_add1,mean_value_add2,

mean_value_add3;//每一行之和


always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
{p_11,p_12,p_13} <= {5'b0,5'b0,5'b0} ;
{p_21,p_22,p_23} <= {15'b0,15'b0,15'b0};
{p_31,p_32,p_33} <= {15'b0,15'b0,15'b0};
end
else begin
if(per_href_ff0==1&&flag_do==1)begin
{p_11,p_12,p_13}<={p_12,p_13,row_1};
{p_21,p_22,p_23}<={p_22,p_23,row_2};
{p_31,p_32,p_33}<={p_32,p_33,row_3};
end
else begin
{p_11,p_12,p_13}<={5'b0,5'b0,5'b0};
{p_21,p_22,p_23}<={5'b0,5'b0,5'b0}
{p_31,p_32,p_33}<={5'b0,5'b0,5'b0}
end
end
end

always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
mean_value_add1<=0;
mean_value_add2<=0;
mean_value_add3<=0;
end
else if(per_href_ff1)begin
mean_value_add1<=p_11+p_12+p_13;
mean_value_add2<=p_21+ 0 +p_23;
mean_value_add3<=p_31+p_32+p_33;
end
end

wire [8:0]mean_value;//8位数之和
wire [5:0]fin_y_data; //平均数,除以8,

相当于左移三位。

assign mean_value=mean_value_add1+mean_value_

add2+mean_value_add3;
assign fin_y_data=mean_value[8:3];

sobel 边缘检测

边缘检测的原理

该算子包含两组 3x3 的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。A代表原始图像的 3*3 像素阵列,Gx及Gy分别代表经横向及纵向边缘检测的图像,其公式如下:

图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。

如果梯度G大于某一阀值则认为该点(x,y)为边缘点。

用的是 边缘检测算法。

难点:(1)掌握了 3*3 像素阵列,Gx 与 Gy 就很好计算了 (注意问题:为了避免计算过程中出现负值,所以将正负值分开单独计算,具体见代码)

(2)G的计算需要开平方,如何进行开平方运算

Quartus 提供了开平方 ip 核,因此我们直接调用就好了 。

代码:

reg [8:0] p_x_data ,p_y_data ; // x 和 y 的正值之和
reg [8:0] n_x_data ,n_y_data ; // x 和 y 的负值之和
reg [8:0] gx_data ,gy_data ; //最终结果

always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
p_x_data <=0;
n_x_data <=0;
gx_data <=0;
end
else if(per_href_ff1==1) begin
p_x_data <= p_13 + (p_23<<1) + p_33 ;
n_x_data <= p_11 + (p_12<<1 )+ p_13 ;
gx_data <= (p_x_data >=n_x_data)? p_x_

data - n_x_data : n_x_data - p_x_data ;
end
else begin
p_x_data<=0;
n_x_data<=0;
gx_data <=0;
end
end

always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
p_y_data <=0;
n_y_data <=0;
gy_data <=0;
end
else if(per_href_ff1==1) begin
p_y_data <= p_11 + (p_12<<1) + p_13 ;
n_y_data <= p_31 + (p_32<<1) + p_33 ;
gy_data <= (p_y_data >=n_y_data)? p_y_data

- n_y_data : n_y_data - p_y_data ;
end
else begin
p_y_data <=0;
n_y_data <=0;
gy_data <=0;
end
end

//求平方和,调用ip核开平方
reg [16:0] gxy; // Gx 与 Gy 的平方和
always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
gxy<=0;
end
else begin
gxy<= gy_data* gy_data + gx_data* gx_data ;
end
end

wire [8:0] squart_out ;
altsquart u1_altsquart ( //例化开平方的ip核
.radical (gxy),
.q (squart_out), //输出的结果
.remainder()
);

//与阈值进行比较
reg [15:0] post_y_data_r;
always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
post_y_data_r<=16'h00;
end
else if(squart_out>=threshold)
post_y_data_r<=16'h00 ;
else
post_y_data_r<=16'hffff ;

end

图片的显示

本来是想用 VGA 来显示图片的,由于条件的限制没能实现,最终只能将处理完的数据输出保存在 .txt 文件中,然后借助好友写的网页进行显示。

难点:(1) 如何将数据流输出保存到 .txt 文件中。

(2) 网页的使用及注意事项

在testbench里加入下面所示代码即可将图片数据保存到 .txt 文本

代码如下:

integer w_file;
initial
w_file = $fopen("data_out_3.txt"); //保存数据的文件名

always @(posedge clk or negedge rst_n)
begin
if(flag_write==1&&post_href==1)//根据自己的需求定义
$fdisplay(w_file,"%b",post_y_data);
end

网页的界面如下,将参数设置好以后就可以显示图片。

下载链接 http : // files .cnblogs .com / files / aslmer / aggregrate . zip

注意:由于此网站是量身定做的,所以只能显示数据格式为RGB565的16位二进制的数才能正确显示,注意不能有分号,正确格式示例如下,必须严格遵守

结果展示

小结:均值滤波处理后的图片有明显的黑边,产生这一现象的原因就是生成 3*3 像素矩阵和取像素值时数据有损失造成的,但是这也是可以优化的,后续我会继续努力不断完善。本次只是简单对一幅图像进行边缘检测,我的后续目标是实现图片的实时处理,这又需要学习很多东西了,SDRAM、摄像头驱动等等等,越学习越发现自己知道的实在是太少了,永远在路上,学无止境。希望我的分享能够帮助一些和我一样热爱 FPGA 图像处理的朋友。

 

   
449 次浏览  评价: 差  订阅 捐助
 
相关文章

云计算的架构
对云计算服务模型
云计算核心技术剖析
了解云计算的漏洞
 
相关文档

云计算简介
云计算简介与云安全
下一代网络计算--云计算
软浅析云计算
 
相关课程

云计算原理与应用
云计算应用与开发
CMMI体系与实践
基于CMMI标准的软件质量保证
每天2个文档/视频
扫描微信二维码订阅
订阅技术月刊
获得每月300个技术资源
 
 

关于我们 | 联系我们 | 京ICP备10020922号 京公海网安备110108001071号