¼ò½é
ͨ³£À´Ëµ£¬Python²»ÊÇÒ»ÖÖ¸ßÐÔÄܵÄÓïÑÔ£¬ÔÚijÖÖÒâÒåÉÏ£¬ÕâÖÖ˵·¨ÊÇÕæµÄ¡£µ«ÊÇ£¬Ëæ×ÅÒÔNumpyΪÖÐÐĵÄÊýѧºÍ¿ÆÑ§Èí¼þ°üµÄÉú̬ȦµÄ·¢Õ¹£¬´ïµ½ºÏÀíµÄÐÔÄܲ»»áÌ«À§ÄÑ¡£
µ±ÐÔÄܳÉΪÎÊÌâʱ£¬ÔËÐÐʱ¼äͨ³£Óɼ¸¸öº¯Êý¾ö¶¨¡£ÓÃCÖØÐ´ÕâЩº¯Êý£¬Í¨³£Äܼ«´óµÄÌáÉýÐÔÄÜ¡£
ÔÚ±¾ÏµÁеĵÚÒ»²¿·ÖÖУ¬ÎÒÃÇÀ´¿´¿´ÈçºÎʹÓÃNumPyµÄC APIÀ´±àдCÓïÑÔµÄPythonÀ©Õ¹£¬ÒÔ¸ÄÉÆÄ£Ð͵ÄÐÔÄÜ¡£ÔÚÒÔºóµÄÎÄÕÂÖУ¬ÎÒÃǽ«ÔÚÕâÀïÌá³öÎÒÃǵĽâ¾ö·½°¸£¬ÒÔ½øÒ»²½ÌáÉýÆäÐÔÄÜ¡£
Îļþ
ÕâÆªÎÄÕÂÖÐËùÉæ¼°µÄÎļþ¿ÉÒÔÔÚGithubÉÏ»ñµÃ¡£
Ä£Äâ
×÷ΪÕâ¸öÁ·Ï°µÄÆðµã£¬ÎÒÃǽ«ÔÚÏñÖØÁ¦µÄÁ¦µÄ×÷ÓÃÏÂΪNÌåÀ´¿¼ÂǶþάNÌåµÄÄ£Äâ¡£
ÒÔÏÂÊǽ«ÓÃÓÚ´æ´¢ÎÒÃÇÊÀ½çµÄ״̬£¬ÒÔ¼°Ò»Ð©ÁÙʱ±äÁ¿µÄÀà¡£
# lib/sim.py class World(object): """World is a structure that holds the state of N bodies and additional variables. threads : (int) The number of threads to use for multithreaded implementations. STATE OF THE WORLD: N : (int) The number of bodies in the simulation. m : (1D ndarray) The mass of each body. r : (2D ndarray) The position of each body. v : (2D ndarray) The velocity of each body. F : (2D ndarray) The force on each body. TEMPORARY VARIABLES: Ft : (3D ndarray) A 2D force array for each thread's local storage. s : (2D ndarray) The vectors from one body to all others. s3 : (1D ndarray) The norm of each s vector. NOTE: Ft is used by parallel algorithms for thread-local storage. s and s3 are only used by the Python implementation. """ def __init__(self, N, threads=1, m_min=1, m_max=30.0, r_max=50.0, v_max=4.0, dt=1e-3): self.threads = threads self.N = N self.m = np.random.uniform(m_min, m_max, N) self.r = np.random.uniform(-r_max, r_max, (N, 2)) self.v = np.random.uniform(-v_max, v_max, (N, 2)) self.F = np.zeros_like(self.r) self.Ft = np.zeros((threads, N, 2)) self.s = np.zeros_like(self.r) self.s3 = np.zeros_like(self.m) self.dt = dt |
ÔÚ¿ªÊ¼Ä£Äâʱ£¬NÌå±»Ëæ»ú·ÖÅäÖÊÁ¿m£¬Î»ÖÃrºÍËÙ¶Èv¡£¶ÔÓÚÿ¸öʱ¼ä²½³¤£¬½ÓÏÂÀ´µÄ¼ÆËãÓУº
ºÏÁ¦F£¬Ã¿¸öÌåÉϵĺÏÁ¦¸ù¾ÝËùÓÐÆäËûÌåµÄ¼ÆËã¡£
ËÙ¶Èv£¬ÓÉÓÚÁ¦µÄ×÷ÓÃÿ¸öÌåµÄËٶȱ»¸Ä±ä¡£
λÖÃR£¬ÓÉÓÚËÙ¶Èÿ¸öÌåµÄλÖñ»¸Ä±ä¡£
µÚÒ»²½ÊǼÆËãºÏÁ¦F£¬Õ⽫ÊÇÎÒÃÇµÄÆ¿¾±¡£ÓÉÓÚÊÀ½çÉÏ´æÔ򵀮äËûÎïÌ壬µ¥Ò»ÎïÌåÉϵÄÁ¦ÊÇËùÓÐ×÷ÓÃÁ¦µÄ×ܺ͡£Õâµ¼Ö¸´ÔÓ¶ÈΪO£¨N^2£©¡£ËÙ¶ÈvºÍλÖÃr¸üеĸ´ÔӶȶ¼ÊÇO£¨N£©¡£
Èç¹ûÄãÓÐÐËȤ£¬ÕâÆªÎ¬»ù°Ù¿ÆµÄÎÄÕ½éÉÜÁËһЩ¿ÉÒÔ¼Ó¿ìÁ¦µÄ¼ÆËãµÄ½üËÆ·½·¨¡£
´¿Python
ÔÚ´¿PythonÖУ¬Ê¹ÓÃNumPyÊý×éÊÇʱ¼äÑݱ亯ÊýµÄÒ»ÖÖʵÏÖ·½Ê½£¬ËüΪÓÅ»¯ÌṩÁËÒ»¸öÆðµã£¬²¢Éæ¼°²âÊÔÆäËûʵÏÖ·½Ê½¡£
# lib/sim.py def compute_F(w): """Compute the force on each body in the world, w.""" for i in xrange(w.N): w.s[:] = w.r - w.r[i] w.s3[:] = (w.s[:,0]**2 + w.s[:,1]**2)**1.5 w.s3[i] = 1.0 # This makes the self-force zero. w.F[i] = (w.m[i] * w.m[:,None] * w.s / w.s3[:,None]).sum(0) def evolve(w, steps): """Evolve the world, w, through the given number of steps.""" for _ in xrange(steps): compute_F(w) w.v += w.F * w.dt / w.m[:,None] w.r += w.v * w.dt |
ºÏÁ¦¼ÆËãµÄ¸´ÔÓ¶ÈΪO£¨N^2£©µÄÏÖÏó±»NumPyµÄÊý×é·ûºÅËùÑڸǡ£Ã¿¸öÊý×é²Ù×÷±éÀúÊý×éÔªËØ¡£
¿ÉÊÓ»¯
ÕâÀïÊÇ7¸öÎïÌå´ÓËæ»ú³õʼ״̬¿ªÊ¼ÑÝ»¯µÄ·¾¶Í¼£º

ÐÔÄÜ
ΪÁËʵÏÖÕâ¸ö»ù×¼£¬ÎÒÃÇÔÚÏîĿĿ¼Ï´´½¨ÁËÒ»¸ö½Å±¾£¬°üº¬ÈçÏÂÄÚÈÝ£º
import lib w = lib.World(101) lib.evolve(w, 4096) |
ÎÒÃÇʹÓÃcProfileÄ£¿éÀ´²âÊÔºâÁ¿Õâ¸ö½Å±¾¡£
python -m cProfile -scum bench.py |
ǰ¼¸ÐиæËßÎÒÃÇ£¬compute_FȷʵÊÇÎÒÃÇµÄÆ¿¾±£¬ËüÕ¼Á˳¬¹ý99£¥µÄÔËÐÐʱ¼ä¡£
428710 function calls (428521 primitive calls) in 16.836 seconds Ordered by: cumulative time ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 16.837 16.837 bench.py:2(<module>) 1 0.062 0.062 16.756 16.756 sim.py:60(evolve) 4096 15.551 0.004 16.693 0.004 sim.py:51(compute_F) 413696 1.142 0.000 1.142 0.000 {method 'sum' ... 3 0.002 0.001 0.115 0.038 __init__.py:1(<module>) ... |
ÔÚIntel i5̨ʽ»úÉÏÓÐ101Ì壬ÕâÖÖʵÏÖÄܹ»Í¨¹ýÿÃë257¸öʱ¼ä²½³¤ÑÝ»¯ÊÀ½ç¡£
¼òµ¥µÄCÀ©Õ¹ 1
ÔÚ±¾½ÚÖУ¬ÎÒÃǽ«¿´µ½Ò»¸öCÀ©Õ¹Ä£¿éʵÏÖÑÝ»¯µÄ¹¦ÄÜ¡£µ±¿´ÍêÕâÒ»½Úʱ£¬Õâ¿ÉÄܰïÖúÎÒÃÇ»ñµÃÒ»¸öCÎļþµÄ¸±±¾¡£Îļþsrc/simple1.c£¬¿ÉÒÔÔÚGitHubÉÏ»ñµÃ¡£
¹ØÓÚNumPyµÄC APIµÄÆäËûÎĵµ£¬Çë²ÎÔÄNumPyµÄ²Î¿¼¡£PythonµÄC
APIµÄÏêϸÎĵµÔÚÕâÀï¡£
Ñù°å
ÎļþÖеĵÚÒ»¼þÊÂÇéÊÇÏÈÉùÃ÷ÑÝ»¯º¯Êý¡£Õ⽫ֱ½ÓÓÃÓÚÏÂÃæµÄ·½·¨ÁÐ±í¡£
static PyObject *evolve(PyObject *self, PyObject *args); |
½ÓÏÂÀ´ÊÇ·½·¨ÁÐ±í¡£
static PyMethodDef methods[] = { { "evolve", evolve, METH_VARARGS, "Doc string."}, { NULL, NULL, 0, NULL } /* Sentinel */ }; |
ÕâÊÇΪÀ©Õ¹Ä£¿éµÄÒ»¸öµ¼³ö·½·¨ÁÐ±í¡£ÕâÖ»ÓÐÒ»¸öÃûΪevolve·½·¨¡£
Ñù°åµÄ×îºóÒ»²¿·ÖÊÇÄ£¿éµÄ³õʼ»¯¡£
PyMODINIT_FUNC initsimple1(void) { (void) Py_InitModule("simple1", methods); import_array(); } |
ÁíÍ⣬ÕýÈçÕâÀïÏÔʾ£¬initsimple1ÖеÄÃû³Æ±ØÐëÓëPy_InitModuleÖеĵÚÒ»¸ö²ÎÊýÆ¥Åä¡£¶Ôÿ¸öʹÓÃNumPy
APIµÄÀ©Õ¹¶øÑÔ£¬µ÷ÓÃimport_arrayÊÇÓбØÒªµÄ¡£
Êý×é·ÃÎʺê
Êý×é·ÃÎʵĺê¿ÉÒÔÔÚÊý×éÖб»ÓÃÀ´ÕýÈ·µØË÷Òý£¬ÎÞÂÛÊý×é±»ÈçºÎÖØËÜ»ò·ÖƬ¡£ÕâЩºêҲʹÓÃÈçϵĴúÂëʹËüÃÇÓиü¸ßµÄ¿É¶ÁÐÔ¡£
#define m(x0) (*(npy_float64*)((PyArray_DATA(py_m) + \ (x0) * PyArray_STRIDES(py_m)[0]))) #define m_shape(i) (py_m->dimensions[(i)]) #define r(x0, x1) (*(npy_float64*)((PyArray_DATA(py_r) + \ (x0) * PyArray_STRIDES(py_r)[0] + \ (x1) * PyArray_STRIDES(py_r)[1]))) #define r_shape(i) (py_r->dimensions[(i)]) |
ÔÚÕâÀÎÒÃÇ¿´µ½·ÃÎʺêµÄһάºÍ¶þάÊý×é¡£¾ßÓиü¸ßά¶ÈµÄÊý×é¿ÉÒÔÒÔÀàËÆµÄ·½Ê½±»·ÃÎÊ¡£
ÔÚÕâЩºêµÄ°ïÖúÏ£¬ÎÒÃÇ¿ÉÒÔʹÓÃÏÂÃæµÄ´úÂëÑ»·r:
for(i = 0; i < r_shape(0); ++i) { for(j = 0; j < r_shape(1); ++j) { r(i, j) = 0; // Zero all elements. } } |
ÃüÃû±ê¼Ç
ÉÏÃæ¶¨ÒåµÄºê£¬Ö»ÔÚÆ¥ÅäNumPyµÄÊý×é¶ÔÏó¶¨ÒåÁËÕýÈ·µÄÃû³ÆÊ±²ÅÓÐЧ¡£ÔÚÉÏÃæµÄ´úÂëÖУ¬Êý×é±»ÃüÃûΪpy_mºÍpy_r¡£ÎªÁËÔÚ²»Í¬µÄ·½·¨ÖÐʹÓÃÏàͬµÄºê£¬NumPyÊý×éµÄÃû³ÆÐèÒª±£³ÖÒ»Ö¡£
¼ÆËãÁ¦
ÌØ±ðÊÇÓëÉÏÃæÎåÐеÄPython´úÂëÏà±È£¬¼ÆËãÁ¦Êý×éµÄ·½·¨ÏÔµÃÆÄΪ·±Ëö¡£
static inline void compute_F(npy_int64 N,
PyArrayObject *py_m,
PyArrayObject *py_r,
PyArrayObject *py_F) {
npy_int64 i, j;
npy_float64 sx, sy, Fx, Fy, s3, tmp;
// Set all forces to zero.
for(i = 0; i < N; ++i) {
F(i, 0) = F(i, 1) = 0;
}
// Compute forces between pairs of bodies.
for(i = 0; i < N; ++i) {
for(j = i + 1; j < N; ++j) {
sx = r(j, 0) - r(i, 0);
sy = r(j, 1) - r(i, 1);
s3 = sqrt(sx*sx + sy*sy);
s3 *= s3 * s3;
tmp = m(i) * m(j) / s3;
Fx = tmp * sx;
Fy = tmp * sy;
F(i, 0) += Fx;
F(i, 1) += Fy;
F(j, 0) -= Fx;
F(j, 1) -= Fy;
}
}
}
|
Çë×¢Ò⣬ÎÒÃÇʹÓÃÅ£¶ÙµÚÈý¶¨ÂÉ£¨³É¶Ô³öÏÖµÄÁ¦´óСÏàµÈÇÒ·½ÏòÏà·´£©À´½µµÍÄÚ»··¶Î§¡£²»ÐÒµÄÊÇ£¬ËüµÄ¸´ÔÓ¶ÈÈÔȻΪO£¨N^2£©¡£
ÑÝ»¯º¯Êý
¸ÃÎļþÖеÄ×îºóÒ»¸öº¯ÊýÊǵ¼³öµÄÑÝ»¯·½·¨¡£
static PyObject *evolve(PyObject *self, PyObject *args) {
// Declare variables.
npy_int64 N, threads, steps, step, i;
npy_float64 dt;
PyArrayObject *py_m, *py_r, *py_v, *py_F;
// Parse arguments.
if (!PyArg_ParseTuple(args, "ldllO!O!O!O!",
&threads,
&dt,
&steps,
&N,
&PyArray_Type, &py_m,
&PyArray_Type, &py_r,
&PyArray_Type, &py_v,
&PyArray_Type, &py_F)) {
return NULL;
}
// Evolve the world.
for(step = 0; step< steps; ++step) {
compute_F(N, py_m, py_r, py_F);
for(i = 0; i < N; ++i) {
v(i, 0) += F(i, 0) * dt / m(i);
v(i, 1) += F(i, 1) * dt / m(i);
r(i, 0) += v(i, 0) * dt;
r(i, 1) += v(i, 1) * dt;
}
}
Py_RETURN_NONE;
}
|
ÔÚÕâÀÎÒÃÇ¿´µ½ÁËPython²ÎÊýÈçºÎ±»½âÎö¡£Ôڸú¯Êýµ×²¿µÄʱ¼ä²½³¤Ñ»·ÖУ¬ÎÒÃÇ¿´µ½µÄËٶȺÍλÖÃÏòÁ¿µÄxºÍy·ÖÁ¿µÄÏÔʽ¼ÆËã¡£
ÐÔÄÜ
C°æ±¾µÄÑÝ»¯·½·¨±ÈPython°æ±¾¸ü¿ì£¬ÕâÓ¦¸Ã²»×ãÎªÆæ¡£ÔÚÉÏÃæÌáµ½µÄÏàͬµÄi5̨ʽ»úÖУ¬CʵÏÖµÄÑÝ»¯·½·¨Äܹ»ÊµÏÖÿÃë17972¸öʱ¼ä²½³¤¡£Ïà±ÈPythonʵÏÖ£¬Õâ·½ÃæÓÐ70±¶µÄÌáÉý¡£
¹Û²ì
×¢Ò⣬C´úÂëÒ»Ö±±£³Ö¾¡¿ÉÄܵļòµ¥¡£ÊäÈë²ÎÊýºÍÊä³ö¾ØÕó¿ÉÒÔ½øÐÐÀàÐͼì²é£¬²¢·ÖÅäÒ»¸öPython×°ÊÎÆ÷º¯Êý¡£É¾³ý·ÖÅ䣬²»½öÄܼӿ촦Àí£¬¶øÇÒÏû³ýÁËÓÉPython¶ÔÏó²»ÕýÈ·µÄÒýÓüÆÊýÔì³ÉµÄÄÚ´æÐ¹Â¶£¨»ò¸üÔ㣩¡£
|