Äú¿ÉÒÔ¾èÖú£¬Ö§³ÖÎÒÃǵĹ«ÒæÊÂÒµ¡£

1Ôª 10Ôª 50Ôª





ÈÏÖ¤Â룺  ÑéÖ¤Âë,¿´²»Çå³þ?Çëµã»÷Ë¢ÐÂÑéÖ¤Âë ±ØÌî



  ÇóÖª ÎÄÕ ÎÄ¿â Lib ÊÓÆµ iPerson ¿Î³Ì ÈÏÖ¤ ×Éѯ ¹¤¾ß ½²×ù Model Center   Code  
»áÔ±   
   
 
     
   
 ¶©ÔÄ
  ¾èÖú
Elasticsearch ÒÚ¼¶Êý¾Ý¼ìË÷ÐÔÄÜÓÅ»¯°¸Àýʵս£¡
 
×÷Õߣºmikevictor
 
  2658  次浏览      32
2020-9-14 
 
±à¼­ÍƼö:
±¾ÎÄÖ÷Òª½éÉÜÁËelasticsearch¼ìË÷Ô­Àí¡¢ÓÅ»¯°¸Àý¡¢ÐÔÄܲâÊÔµÈÏà¹ØÄÚÈÝ¡£
±¾ÎÄÀ´×Ô²©¿ÍÔ°£¬ÓÉ»ðÁú¹ûÈí¼þAnna±à¼­¡¢ÍƼö¡£

Ò»¡¢Ç°ÑÔ

Êý¾Ýƽ̨Òѵü´úÈý¸ö°æ±¾£¬´ÓÍ·¿ªÊ¼Óöµ½ºÜ¶à³£¼ûµÄÄÑÌ⣬ÖÕÓÚÓÐÆ¬¶Îʱ¼äÕûÀíһЩÒÑÍêÉÆµÄÎĵµ£¬ÔÚ´Ë·ÖÏíÒÔ¹©ËùÐèÅóÓÑʵÏֲο¼£¬ÉÙ×ßЩÍä·£¬ÔÚ´ËÆª·ùÖÐÆ«ÖØÓÚESµÄÓÅ»¯£¬¹ØÓÚHBase£¬HadoopµÄÉè¼ÆÓÅ»¯¹À¼ÆÓкܶàÎÄÕ¿ÉÒԲο¼£¬²»ÔÙ׸Êö¡£

¶þ¡¢ÐèÇó˵Ã÷

ÏîÄ¿±³¾°£º

ÔÚÒ»ÒµÎñϵͳÖУ¬²¿·Ö±íÿÌìµÄÊý¾ÝÁ¿¹ýÒÚ£¬ÒѰ´Ìì·Ö±í£¬µ«ÒµÎñÉÏÊÜÏÞÓÚ°´Ìì²éѯ£¬²¢ÇÒDBÖÐÖ»Äܱ£Áô3¸öÔµÄÊý¾Ý(Ó²¼þ¸ßÅä)£¬·Ö¿â´ú¼Û½Ï¸ß¡£

¸Ä½ø°æ±¾Ä¿±ê£º

1. Êý¾ÝÄÜ¿çÔ²éѯ£¬²¢ÇÒÖ§³Ö1ÄêÒÔÉϵÄÀúÊ·Êý¾Ý²éѯÓëµ¼³ö¡£

2. °´Ìõ¼þµÄÊý¾Ý²éѯÃë¼¶·µ»Ø¡£

Èý¡¢ES ¼ìË÷Ô­Àí

3.1 ¹ØÓÚESºÍLucene»ù´¡½á¹¹

̸µ½ÓÅ»¯£¬±ØÐëÄÜÁ˽â×é¼þµÄ»ù±¾Ô­Àí£¬²ÅÈÝÒ×ÕÒµ½Æ¿¾±ËùÔÚ£¬ÒÔÃâ×ß¶àÖÖÍä·£¬ÏÈ´ÓESµÄ»ù´¡½á¹¹ËµÆð(ÈçÏÂͼ)£º

һЩ»ù±¾¸ÅÄî:

Cluster °üº¬¶à¸öNodeµÄ¼¯Èº

Node ¼¯Èº·þÎñµ¥Ôª

Index Ò»¸öESË÷Òý°üº¬Ò»¸ö»ò¶à¸öÎïÀí·ÖƬ£¬ËüÖ»ÊÇÕâЩ·ÖƬµÄÂß¼­ÃüÃû¿Õ¼ä

Type Ò»¸öindexµÄ²»Í¬·ÖÀ࣬6.xºóÖ»ÄÜÅäÖÃÒ»¸ötype£¬ÒÔºó½«ÒƳý

Document ×î»ù´¡µÄ¿É±»Ë÷ÒýµÄÊý¾Ýµ¥Ôª£¬ÈçÒ»¸öJSON´®

Shards Ò»¸ö·ÖƬÊÇÒ»¸öµ×²ãµÄ¹¤×÷µ¥Ôª£¬Ëü½ö±£´æÈ«²¿Êý¾ÝÖеÄÒ»²¿·Ö£¬ËüÊÇÒ»¸öLucenceʵÀý (Ò»¸öluceneË÷Òý×î´ó°üº¬2,147,483,519 (= Integer.MAX_VALUE ¨C 128)¸öÎĵµÊýÁ¿)

Replicas ·ÖƬ±¸·Ý£¬ÓÃÓÚ±£ÕÏÊý¾Ý°²È«Óë·Öµ£¼ìË÷ѹÁ¦

ESÒÀÀµÒ»¸öÖØÒªµÄ×é¼þLucene£¬¹ØÓÚÊý¾Ý½á¹¹µÄÓÅ»¯Í¨³£À´ËµÊǶÔLuceneµÄÓÅ»¯£¬ËüÊǼ¯ÈºµÄÒ»¸ö´æ´¢ÓÚ¼ìË÷¹¤×÷µ¥Ôª£¬½á¹¹ÈçÏÂͼ£º

ÔÚLuceneÖУ¬·ÖΪË÷Òý(¼Èë)Óë¼ìË÷(²éѯ)Á½²¿·Ö£¬Ë÷Òý²¿·Ö°üº¬ ·Ö´ÊÆ÷¡¢¹ýÂËÆ÷¡¢×Ö·ûÓ³ÉäÆ÷ µÈ£¬¼ìË÷²¿·Ö°üº¬ ²éѯ½âÎöÆ÷ µÈ¡£

Ò»¸öLuceneË÷Òý°üº¬¶à¸ösegments£¬Ò»¸ösegment°üº¬¶à¸öÎĵµ£¬Ã¿¸öÎĵµ°üº¬¶à¸ö×ֶΣ¬Ã¿¸ö×ֶξ­¹ý·Ö´ÊºóÐγÉÒ»¸ö»ò¶à¸öterm¡£

ͨ¹ýLuke¹¤¾ß²é¿´ESµÄluceneÎļþÈçÏ£¬Ö÷ÒªÔö¼ÓÁË_idºÍ_source×Ö¶Î:

3.2 LuceneË÷ÒýʵÏÖ

Lucene Ë÷ÒýÎļþ½á¹¹Ö÷ÒªµÄ·ÖΪ£º´Êµä¡¢µ¹ÅÅ±í¡¢ÕýÏòÎļþ¡¢DocValuesµÈ£¬ÈçÏÂͼ:

×¢£ºÕûÀíÀ´Ô´ÓÚlucene¹Ù·½:

Lucene Ëæ»úÈý´Î´ÅÅ̶ÁÈ¡±È½ÏºÄʱ¡£ÆäÖÐ.fdtÎļþ±£´æÊý¾ÝÖµËðºÄ¿Õ¼ä´ó£¬.timºÍ.docÔòÐèÒªSSD´æ´¢Ìá¸ßËæ»ú¶ÁдÐÔÄÜ¡£

ÁíÍâÒ»¸ö±È½ÏÏûºÄÐÔÄܵÄÊÇ´ò·ÖÁ÷³Ì£¬²»ÐèÒªÔò¿ÉÆÁ±Î¡£

¹ØÓÚDocValues£º

µ¹ÅÅË÷Òý½â¾ö´Ó´Ê¿ìËÙ¼ìË÷µ½ÏàÓ¦ÎĵµID, µ«Èç¹ûÐèÒª¶Ô½á¹û½øÐÐÅÅÐò¡¢·Ö×é¡¢¾ÛºÏµÈ²Ù×÷µÄʱºòÔòÐèÒª¸ù¾ÝÎĵµID¿ìËÙÕÒµ½¶ÔÓ¦µÄÖµ¡£

ͨ¹ýµ¹ÅÅË÷Òý´ú¼ÛÈ´ºÜ¸ß£ºÐèµü´úË÷ÒýÀïµÄÿ¸ö´ÊÏî²¢ÊÕ¼¯ÎĵµµÄÁÐÀïÃæ token¡£ÕâºÜÂý¶øÇÒÄÑÒÔÀ©Õ¹£ºËæ×Å´ÊÏîºÍÎĵµµÄÊýÁ¿Ôö¼Ó£¬Ö´ÐÐʱ¼äÒ²»áÔö¼Ó¡£

Solr docs¶Ô´ËµÄ½âÊÍÈçÏ£º

For other features that we now commonly associate with search, such as sorting, faceting, and highlighting, this approach is not very efficient. The faceting engine, for example, must look up each term that appears in each document that will make up the result set and pull the document IDs in order to build the facet list. In Solr, this is maintained in memory, and can be slow to load (depending on the number of documents, terms, etc.)

ÔÚlucene 4.0°æ±¾Ç°Í¨¹ýFieldCache£¬Ô­ÀíÊÇͨ¹ý°´ÁÐÄæ×ªµ¹ÅÅ±í½«£¨field value ->doc£©Ó³Éä±ä³É£¨doc -> field value£©Ó³É䣬ÎÊÌâΪÖð²½¹¹½¨Ê±¼ä³¤²¢ÇÒÏûºÄ´óÁ¿Äڴ棬ÈÝÒ×Ôì³ÉOOM¡£

DocValuesÊÇÒ»ÖÖÁд洢½á¹¹£¬ÄÜ¿ìËÙͨ¹ýÎĵµIDÕÒµ½Ïà¹ØÐèÒªÅÅÐòµÄ×ֶΡ£

ÔÚESÖУ¬Ä¬ÈÏ¿ªÆôËùÓÐ(³ýÁ˱ê¼ÇÐèanalyzedµÄ×Ö·û´®×Ö¶Î)×ֶεÄdoc values£¬Èç¹û²»ÐèÒª¶Ô´Ë×Ö¶Î×öÈκÎÅÅÐòµÈ¹¤×÷£¬Ôò¿É¹Ø±ÕÒÔ¼õÉÙ×ÊÔ´ÏûºÄ¡£

3.3 ¹ØÓÚESË÷ÒýÓë¼ìË÷·ÖƬ

ESÖÐÒ»¸öË÷ÒýÓÉÒ»¸ö»ò¶à¸öluceneË÷Òý¹¹³É£¬Ò»¸öluceneË÷ÒýÓÉÒ»¸ö»ò¶à¸ösegment¹¹³É£¬ÆäÖÐsegmentÊÇ×îСµÄ¼ìË÷Óò¡£

Êý¾Ý¾ßÌå±»´æ´¢µ½Äĸö·ÖƬÉÏ£º shard = hash(routing) % number_of_primary_shards

ĬÈÏÇé¿öÏ routing²ÎÊýÊÇÎĵµID (murmurhash3),¿Éͨ¹ý URLÖÐµÄ _routing ²ÎÊýÖ¸¶¨Êý¾Ý·Ö²¼ÔÚͬһ¸ö·ÖƬÖУ¬indexºÍsearchµÄʱºò¶¼ÐèÒªÒ»Ö²ÅÄÜÕÒµ½Êý¾Ý

Èç¹ûÄÜÃ÷È·¸ù¾Ý_routing½øÐÐÊý¾Ý·ÖÇø£¬Ôò¿É¼õÉÙ·ÖÆ¬µÄ¼ìË÷¹¤×÷£¬ÒÔÌá¸ßÐÔÄÜ¡£

ËÄ¡¢ÓÅ»¯°¸Àý

ÔÚÎÒÃǵݸÀýÖУ¬²éѯ×ֶζ¼Êǹ̶¨µÄ£¬²»ÌṩȫÎļìË÷¹¦ÄÜ£¬ÕâÒ²ÊǼ¸Ê®ÒÚÊý¾ÝÄÜÃë¼¶·µ»ØµÄÒ»¸ö´óǰÌ᣺

1¡¢ES½öÌṩ×ֶεļìË÷£¬½ö´æ´¢HBaseµÄRowkey²»´æ´¢Êµ¼ÊÊý¾Ý¡£

2¡¢Êµ¼ÊÊý¾Ý´æ´¢ÔÚHBaseÖУ¬Í¨¹ýRowkey²éѯ£¬ÈçÏÂͼ¡£

3¡¢Ìá¸ßË÷ÒýÓë¼ìË÷µÄÐÔÄܽ¨Ò飬¿É²Î¿¼¹Ù·½Îĵµ

һЩϸ½ÚÓÅ»¯Ïî¹Ù·½ÓëÆäËûµÄһЩÎÄÕ¶¼ÓÐÃèÊö£¬ÔÚ´ËÎÄÕÂÖнöÌá³öһЩ±¾°¸ÀýµÄÖØµãÓÅ»¯Ïî¡£

4.1 ÓÅ»¯Ë÷ÒýÐÔÄÜ

1¡¢ÅúÁ¿Ð´È룬¿´Ã¿ÌõÊý¾ÝÁ¿µÄ´óС£¬Ò»°ã¶¼ÊǼ¸°Ùµ½¼¸Ç§¡£

2¡¢¶àÏß³ÌдÈ룬дÈëÏß³ÌÊýÒ»°ãºÍ»úÆ÷ÊýÏ൱£¬¿ÉÒÔÅä¶àÖÖÇé¿ö£¬ÔÚ²âÊÔ»·¾³Í¨¹ýKibana¹Û²ìÐÔÄÜÇúÏß¡£

3¡¢Ôö¼ÓsegmentsµÄË¢ÐÂʱ¼ä£¬Í¨¹ýÉÏÃæµÄÔ­ÀíÖªµÀ£¬segment×÷Ϊһ¸ö×îСµÄ¼ìË÷µ¥Ôª£¬±ÈÈçsegmentÓÐ50¸ö£¬Ä¿µÄÐèÒª²é10ÌõÊý¾Ý£¬µ«ÐèÒª´Ó50¸ösegment

·Ö±ð²éѯ10Ìõ£¬¹²500Ìõ¼Ç¼£¬ÔÙ½øÐÐÅÅÐò»òÕß·ÖÊý±È½Ïºó£¬½ØÈ¡×îÇ°ÃæµÄ10Ìõ£¬¶ªÆú490Ìõ¡£ÔÚÎÒÃǵݸÀýÖн«´Ë ¡°refresh_interval¡±: ¡°-1¡± £¬³ÌÐòÅúÁ¿Ð´ÈëÍê³Éºó

½øÐÐÊÖ¹¤Ë¢ÐÂ(µ÷ÓÃÏàÓ¦µÄAPI¼´¿É)¡£

4¡¢ÄÚ´æ·ÖÅä·½Ãæ£¬ºÜ¶àÎÄÕÂÒѾ­Ìáµ½£¬¸øÏµÍ³50%µÄÄÚ´æ¸øLucene×öÎļþ»º´æ£¬ËüÈÎÎñºÜ·±ÖØ£¬ËùÒÔES½ÚµãµÄÄÚ´æÐèÒª±È½Ï¶à(±ÈÈçÿ¸ö½ÚµãÄÜÅäÖÃ64GÒÔÉÏ×îºÃ£©¡£

5¡¢´ÅÅÌ·½ÃæÅäÖÃSSD£¬»úеÅÌ×öÕóÁÐRAID5 RAID10ËäÈ»¿´ÉÏÈ¥ºÜ¿ì£¬µ«ÊÇËæ»úIO»¹ÊÇSSDºÃ¡£

6¡¢ ʹÓÃ×Ô¶¯Éú³ÉµÄID£¬ÔÚÎÒÃǵݸÀýÖÐʹÓÃ×Ô¶¨ÒåµÄKEY£¬Ò²¾ÍÊÇÓëHBaseµÄROW KEY£¬ÊÇΪÁËÄܸù¾Ýrowkeyɾ³ýºÍ¸üÐÂÊý¾Ý£¬ÐÔÄÜϽµ²»ÊǺÜÃ÷ÏÔ¡£

7¡¢¹ØÓڶκϲ¢£¬ºÏ²¢ÔÚºǫ́¶¨ÆÚÖ´ÐУ¬±È½Ï´óµÄsegmentÐèÒªºÜ³¤Ê±¼ä²ÅÄÜÍê³É£¬ÎªÁ˼õÉÙ¶ÔÆäËû²Ù×÷µÄÓ°Ïì(Èç¼ìË÷)£¬elasticsearch½øÐÐãÐÖµÏÞÖÆ£¬Ä¬ÈÏÊÇ20MB/s£¬

¿ÉÅäÖõIJÎÊý£º¡±indices.store.throttle.max_bytes_per_sec¡± : ¡°200mb¡± £¨¸ù¾Ý´ÅÅÌÐÔÄܵ÷Õû£©

ºÏ²¢Ïß³ÌÊýĬÈÏÊÇ£ºMath.max(1, Math.min(4, Runtime.getRuntime( ).availableProcessors() / 2))£¬Èç¹ûÊÇ»úе´ÅÅÌ£¬¿ÉÒÔ¿¼ÂÇÉèÖÃΪ1£ºindex.merge.scheduler.max_thread_count: 1£¬

ÔÚÎÒÃǵݸÀýÖÐʹÓÃSSD£¬ÅäÖÃÁË6¸öºÏ²¢Ï̡߳£

4.2 ÓÅ»¯¼ìË÷ÐÔÄÜ

1¡¢¹Ø±Õ²»ÐèÒª×ֶεÄdoc values¡£

2¡¢¾¡Á¿Ê¹ÓÃkeywordÌæ´úһЩlong»òÕßintÖ®À࣬term²éѯ×ܱÈrange²éѯºÃ (²Î¿¼lucene˵Ã÷ )¡£

3¡¢¹Ø±Õ²»ÐèÒª²éѯ×ֶεÄ_source¹¦ÄÜ£¬²»½«´Ë´æ´¢½öESÖУ¬ÒÔ½ÚÊ¡´ÅÅ̿ռ䡣

4¡¢ÆÀ·ÖÏûºÄ×ÊÔ´£¬Èç¹û²»ÐèÒª¿ÉʹÓÃfilter¹ýÂËÀ´´ïµ½¹Ø±ÕÆÀ·Ö¹¦ÄÜ£¬scoreÔòΪ0£¬Èç¹ûʹÓÃconstantScoreQueryÔòscoreΪ1¡£

5¡¢¹ØÓÚ·ÖÒ³£º

£¨1£©from + size:

ÿ·ÖƬ¼ìË÷½á¹ûÊý×î´óΪ from + size£¬¼ÙÉèfrom = 20, size = 20£¬Ôòÿ¸ö·ÖƬÐèÒª»ñÈ¡20 * 20 = 400ÌõÊý¾Ý£¬¶à¸ö·ÖƬµÄ½á¹ûÔÚЭµ÷½ÚµãºÏ²¢(¼ÙÉèÇëÇóµÄ·ÖÅäÊýΪ5£¬Ôò½á¹ûÊý×î´óΪ 400*5 = 2000Ìõ) ÔÙÔÚÄÚ´æÖÐÅÅÐòºóÈ»ºó20Ìõ¸øÓû§¡£

ÕâÖÖ»úÖÆµ¼ÖÂÔ½Íùºó·ÖÒ³»ñÈ¡µÄ´ú¼ÛÔ½¸ß£¬´ïµ½50000Ìõ½«ÃæÁÙ³ÁÖØµÄ´ú¼Û£¬Ä¬ÈÏfrom + sizeĬÈÏÈçÏ£º

index.max_result_window £º10000

(2) search_after: ʹÓÃǰһ¸ö·ÖÒ³¼Ç¼µÄ×îºóÒ»ÌõÀ´¼ìË÷ÏÂÒ»¸ö·ÖÒ³¼Ç¼£¬ÔÚÎÒÃǵݸÀýÖУ¬Ê×ÏÈʹÓÃfrom+size£¬¼ìË÷³ö½á¹ûºóÔÙʹÓÃsearch_after£¬ÔÚÒ³ÃæÉÏÎÒÃÇÏÞÖÆÁËÓû§Ö»ÄÜÌø5Ò³£¬²»ÄÜÌøµ½×îºóÒ»Ò³¡£

(3) scroll ÓÃÓÚ´ó½á¹û¼¯²éѯ£¬È±ÏÝÊÇÐèҪά»¤scroll_id

6¡¢¹ØÓÚÅÅÐò£ºÎÒÃÇÔö¼ÓÒ»¸ölong×ֶΣ¬ËüÓÃÓڴ洢ʱ¼äºÍIDµÄ×éºÏ(ͨ¹ýÒÆÎ»¼´¿É)£¬ÕýÅÅÓëµ¹ÅÅÐÔÄÜÏà²î²»Ã÷ÏÔ¡£

7¡¢¹ØÓÚCPUÏûºÄ£¬¼ìË÷ʱÈç¹ûÐèÒª×öÅÅÐòÔòÐèÒª×ֶζԱȣ¬ÏûºÄCPU±È½Ï´ó£¬Èç¹ûÓпÉÄܾ¡Á¿·ÖÅä16coresÒÔÉϵÄCPU£¬¾ßÌå¿´ÒµÎñѹÁ¦¡£

8¡¢¹ØÓںϲ¢±»±ê¼Çɾ³ýµÄ¼Ç¼£¬ÎÒÃÇÉèÖÃΪ0±íʾÔںϲ¢µÄʱºòÒ»¶¨É¾³ý±»±ê¼ÇµÄ¼Ç¼£¬Ä¬ÈÏÓ¦¸ÃÊÇ´óÓÚ10%²Åɾ³ý£º¡±merge.policy.expunge_deletes_allowed¡±: ¡°0¡±¡£

{
"mappings": {
"data": {
"dynamic": "false",
"_source": {
"includes": ["XXX"] -- ½ö½«²éѯ½á¹ûËùÐèµÄÊý¾Ý´æ´¢½ö_sourceÖÐ
},
"properties": {
"state": {
"type": "keyword", -- ËäÈ»stateΪintÖµ£¬µ«Èç¹û²»ÐèÒª×ö·¶Î§²éѯ£¬¾¡Á¿Ê¹ÓÃkeyword£¬ÒòΪintÐèÒª±ÈkeywordÔö¼Ó¶îÍâµÄÏûºÄ¡£
"doc_values": false -- ¹Ø±Õ²»ÐèÒª×ֶεÄdoc values¹¦ÄÜ£¬½ö¶ÔÐèÒªÅÅÐò£¬»ã¾Û¹¦ÄܵÄ×ֶοªÆô¡£
},
"b": {
"type": "long" -- ʹÓÃÁË·¶Î§²éѯ×ֶΣ¬ÔòÐèÒªÓÃlong»òÕßintÖ®Àà £¨¹¹½¨ÀàËÆKD-trees½á¹¹£©
}
}
}
}, "settings": {......}
}

Îå¡¢ÐÔÄܲâÊÔ

ÓÅ»¯Ð§¹ûÆÀ¹À»ùÓÚ»ù×¼²âÊÔ£¬Èç¹ûûÓлù×¼²âÊÔÎÞ·¨Á˽âÊÇ·ñÓÐÐÔÄÜÌáÉý£¬ÔÚÕâËùÓеı䶯ǰ×öÒ»´Î²âÊÔ»á±È½ÏºÃ¡£ÔÚÎÒÃǵݸÀýÖУº

1¡¢µ¥½Úµã5ǧÍòµ½Ò»ÒÚµÄÊý¾ÝÁ¿²âÊÔ£¬¼ì²éµ¥µã³ÐÊÜÄÜÁ¦¡£

2¡¢¼¯Èº²âÊÔ1ÒÚ-30ÒÚµÄÊýÁ¿£¬´ÅÅÌIO/ÄÚ´æ/CPU/ÍøÂçIOÏûºÄÈçºÎ¡£

3¡¢Ëæ»ú²»Í¬×éºÏÌõ¼þµÄ¼ìË÷£¬ÔÚ¸÷¸öÊý¾ÝÁ¿Çé¿öϱíÏÖÈçºÎ¡£

4¡¢ÁíÍâSSDÓë»úеÅÌÔÚ²âÊÔÖÐÐÔÄܲî¾àÈçºÎ¡£

ÐÔÄܵIJâÊÔ×éºÏÓкܶ࣬ͨ³£Ò²ºÜ»¨Ê±¼ä£¬²»¹ý×÷ΪÆÀ²â±ê׼ʱ¼äÉϵÄͶÈëÓбØÒª£¬·ñÔòÉú²ú³öÏÖÐÔÄÜÎÊÌâºÜÄѶ¨Î»»ò²»ºÃ¸ÄÉÆ¡£

¶ÔÓÚESµÄÐÔÄÜÑо¿»¨Á˲»ÉÙʱ¼ä£¬×î¶àµÄ¹Ø×¢µã¾ÍÊÇluceneµÄÓÅ»¯£¬ÄÜÉîÈëÁ˽âluceneÔ­Àí¶ÔÓÅ»¯ÓкܴóµÄ°ïÖú¡£

Áù¡¢Éú²úЧ¹û

Ŀǰƽ̨Îȶ¨ÔËÐУ¬¼¸Ê®ÒÚµÄÊý¾Ý²éѯ100Ìõ¶¼ÔÚ3ÃëÄÚ·µ»Ø£¬Ç°ºó·­Ò³ºÜ¿ì£¬Èç¹ûºóÐøÓÐÐÔÄÜÆ¿¾±£¬¿Éͨ¹ýÀ©Õ¹½Úµã·Öµ£Êý¾ÝѹÁ¦¡£

 
   
2658 ´Îä¯ÀÀ       32
Ïà¹ØÎÄÕÂ

»ùÓÚEAµÄÊý¾Ý¿â½¨Ä£
Êý¾ÝÁ÷½¨Ä££¨EAÖ¸ÄÏ£©
¡°Êý¾Ýºþ¡±£º¸ÅÄî¡¢ÌØÕ÷¡¢¼Ü¹¹Óë°¸Àý
ÔÚÏßÉ̳ÇÊý¾Ý¿âϵͳÉè¼Æ ˼·+Ч¹û
 
Ïà¹ØÎĵµ

GreenplumÊý¾Ý¿â»ù´¡Åàѵ
MySQL5.1ÐÔÄÜÓÅ»¯·½°¸
ijµçÉÌÊý¾ÝÖÐ̨¼Ü¹¹Êµ¼ù
MySQL¸ßÀ©Õ¹¼Ü¹¹Éè¼Æ
Ïà¹Ø¿Î³Ì

Êý¾ÝÖÎÀí¡¢Êý¾Ý¼Ü¹¹¼°Êý¾Ý±ê×¼
MongoDBʵս¿Î³Ì
²¢·¢¡¢´óÈÝÁ¿¡¢¸ßÐÔÄÜÊý¾Ý¿âÉè¼ÆÓëÓÅ»¯
PostgreSQLÊý¾Ý¿âʵսÅàѵ
×îл¼Æ»®
DeepSeekÔÚÈí¼þ²âÊÔÓ¦ÓÃʵ¼ù 4-12[ÔÚÏß]
DeepSeek´óÄ£ÐÍÓ¦Óÿª·¢Êµ¼ù 4-19[ÔÚÏß]
UAF¼Ü¹¹ÌåϵÓëʵ¼ù 4-11[±±¾©]
AIÖÇÄÜ»¯Èí¼þ²âÊÔ·½·¨Óëʵ¼ù 5-23[ÉϺ£]
»ùÓÚ UML ºÍEA½øÐзÖÎöÉè¼Æ 4-26[±±¾©]
ÒµÎñ¼Ü¹¹Éè¼ÆÓ뽨ģ 4-18[±±¾©]
 
×îÐÂÎÄÕÂ
´óÊý¾Ýƽ̨ϵÄÊý¾ÝÖÎÀí
ÈçºÎÉè¼ÆÊµÊ±Êý¾Ýƽ̨£¨¼¼Êõƪ£©
´óÊý¾Ý×ʲú¹ÜÀí×ÜÌå¿ò¼Ü¸ÅÊö
Kafka¼Ü¹¹ºÍÔ­Àí
ELK¶àÖּܹ¹¼°ÓÅÁÓ
×îпγÌ
´óÊý¾Ýƽ̨´î½¨Óë¸ßÐÔÄܼÆËã
´óÊý¾Ýƽ̨¼Ü¹¹ÓëÓ¦ÓÃʵս
´óÊý¾ÝϵͳÔËά
´óÊý¾Ý·ÖÎöÓë¹ÜÀí
Python¼°Êý¾Ý·ÖÎö
³É¹¦°¸Àý
ijͨÐÅÉ豸ÆóÒµ PythonÊý¾Ý·ÖÎöÓëÍÚ¾ò
Ä³ÒøÐÐ È˹¤ÖÇÄÜ+Python+´óÊý¾Ý
±±¾© Python¼°Êý¾Ý·ÖÎö
ÉñÁúÆû³µ ´óÊý¾Ý¼¼Êõƽ̨-Hadoop
ÖйúµçÐÅ ´óÊý¾Ýʱ´úÓëÏÖ´úÆóÒµµÄÊý¾Ý»¯ÔËӪʵ¼ù