您可以捐助,支持我们的公益事业。

1元 10元 50元





认证码:  验证码,看不清楚?请点击刷新验证码 必填



  求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
   
 
     
   
 订阅
  捐助
Spark计算引擎之SparkSQL详解
 
作者: 林夕1740
 
  2460  次浏览      14
2020-4-23
 
编辑推荐:
本文主要对Spark SQL进行概述,并详细介绍如何编写Spark SQL程序的操作,希望对您的学习有所帮助。
本文来自csdn,由火龙果软件Alice编辑、推荐。

一、Spark SQL

1.Spark SQL概述

1.1.Spark SQL的前世今生

Shark是一个为Spark设计的大规模数据仓库系统,它与Hive兼容。Shark建立在Hive的代码基础上,并通过将Hive的部分物理执行计划交换出来。这个方法使得Shark的用户可以加速Hive的查询,但是Shark继承了Hive的大且复杂的代码使得Shark很难优化和维护,同时Shark依赖于Spark的版本。随着我们遇到了性能优化的上限,以及集成SQL的一些复杂的分析功能,我们发现Hive的MapReduce设计的框架限制了Shark的发展。在2014年7月1日的SparkSummit上,Databricks宣布终止对Shark的开发,将重点放到SparkSQL上。

1.2.什么是Spark SQL

Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。

相比于Spark RDD API,Spark SQL包含了对结构化数据和在其上运算的更多信息,Spark SQL使用这些信息进行了额外的优化,使对结构化数据的操作更加高效和方便。

有多种方式去使用Spark SQL,包括SQL、DataFrames API和Datasets API。但无论是哪种API或者是编程语言,它们都是基于同样的执行引擎,因此你可以在不同的API之间随意切换,它们各有各的特点,看你喜欢那种风格。

1.3.为什么要学习Spark SQL

我们已经学习了Hive,它是将Hive SQL转换成MapReduce然后提交到集群中去执行,大大简化了编写MapReduce程序的复杂性,由于MapReduce这种计算模型执行效率比较慢,所以Spark SQL应运而生,它是将Spark SQL转换成RDD,然后提交到集群中去运行,执行效率非常快!

1.易整合

将sql查询与spark程序无缝混合,可以使用java、scala、python、R等语言的API操作。

2.统一的数据访问

以相同的方式连接到任何数据源。

3.兼容Hive

支持hiveSQL的语法。

4.标准的数据连接

可以使用行业标准的JDBC或ODBC连接。

2.DataFrame

2.1.什么是DataFrame

DataFrame的前身是SchemaRDD,从Spark 1.3.0开始SchemaRDD更名为DataFrame。与SchemaRDD的主要区别是:DataFrame不再直接继承自RDD,而是自己实现了RDD的绝大多数功能。你仍旧可以在DataFrame上调用rdd方法将其转换为一个RDD。

在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库的二维表格,DataFrame带有Schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型,但底层做了更多的优化。DataFrame可以从很多数据源构建,比如:已经存在的RDD、结构化文件、外部数据库、Hive表。

2.2.DataFrame与RDD的区别

RDD可看作是分布式的对象的集合,Spark并不知道对象的详细模式信息,DataFrame可看作是分布式的Row对象的集合,其提供了由列组成的详细模式信息,使得Spark SQL可以进行某些形式的执行优化。DataFrame和普通的RDD的逻辑框架区别如下所示:

上图直观地体现了DataFrame和RDD的区别。

左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解 Person类的内部结构。

而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。DataFrame多了数据的结构信息,即schema。这样看起来就像一张表了,DataFrame还配套了新的操作数据的方法,DataFrame API(如df.select())和SQL(select id, name from xx_table where ...)。

此外DataFrame还引入了off-heap,意味着JVM堆以外的内存, 这些内存直接受操作系统管理(而不是JVM)。Spark能够以二进制的形式序列化数据(不包括结构)到off-heap中, 当要操作数据时, 就直接操作off-heap内存. 由于Spark理解schema, 所以知道该如何操作。

RDD是分布式的Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效率、减少数据读取以及执行计划的优化。

有了DataFrame这个高一层的抽象后,我们处理数据更加简单了,甚至可以用SQL来处理数据了,对开发者来说,易用性有了很大的提升。

不仅如此,通过DataFrame API或SQL处理数据,会自动经过Spark 优化器(Catalyst)的优化,即使你写的程序或SQL不高效,也可以运行的很快。

2.3.DataFrame与RDD的优缺点

RDD的优缺点:

优点:

(1)编译时类型安全

编译时就能检查出类型错误

(2)面向对象的编程风格

直接通过对象调用方法的形式来操作数据

缺点:

(1)序列化和反序列化的性能开销

无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化。

(2)GC的性能开销

频繁的创建和销毁对象, 势必会增加GC

DataFrame通过引入schema和off-heap(不在堆里面的内存,指的是除了不在堆的内存,使用操作系统上的内存),解决了RDD的缺点, Spark通过schame就能够读懂数据, 因此在通信和IO时就只需要序列化和反序列化数据, 而结构的部分就可以省略了;通过off-heap引入,可以快速的操作数据,避免大量的GC。但是却丢了RDD的优点,DataFrame不是类型安全的, API也不是面向对象风格的。

2.4.读取数据源创建DataFrame

2.4.1 读取文本文件创建DataFrame

在spark2.0版本之前,Spark SQL中SQLContext是创建DataFrame和执行SQL的入口,利用hiveContext通过hive sql语句操作hive表数据,兼容hive操作,并且hiveContext继承自SQLContext。在spark2.0之后,这些都统一于SparkSession,SparkSession 封装了 SparkContext,SqlContext,通过SparkSession可以获取到 SparkConetxt,SqlContext 对象。

(1)在本地创建一个文件,有三列,分别是id、name、age,用空格分隔,然后上传到hdfs上。person.txt内容为:

1 zhangsan 20
2 lisi 29
3 wangwu 25
4 zhaoliu 30
5 tianqi 35
6 kobe 40

上传数据文件到HDFS上:

hdfs dfs -put person.txt /

(2)在spark shell执行下面命令,读取数据,将每一行的数据使用列分隔符分割

先执行 spark-shell --master local[2]

val lineRDD= sc.textFile("/person.txt").map(_.split(" "))

(3)定义case class(相当于表的schema)

case class Person(id:Int, name:String, age:Int)

(4)将RDD和case class关联

val personRDD = lineRDD.map(x => Person( x(0).toInt, x(1) , x(2).toInt ))

(5)将RDD转换成DataFrame

val personDF = personRDD.toDF

(6)对DataFrame进行处理

personDF.show

personDF.printSchema

(7)、通过SparkSession构建DataFrame

使用spark-shell中已经初始化好的SparkSession对象spark生成DataFrame

val dataFrame=spark.read.text("/person.txt")

2.4.2 读取json文件创建DataFrame

(1)数据文件

使用spark安装包下的

/opt/bigdata/spark/examples/src/main/resources / people.json 文件

(2)在spark shell执行下面命令,读取数据

(3)接下来就可以使用DataFrame的函数操作

2.4.3 读取parquet列式存储格式文件创建DataFrame

(3)数据文件

使用spark安装包下的

/opt/bigdata/spark/examples/src/main/resources / users.parquet 文件

(2)在spark shell执行下面命令,读取数据

(3)接下来就可以使用DataFrame的函数操作

3.DataFrame常用操作

3.1. DSL风格语法

DataFrame提供了一个领域特定语言(DSL)以方便操作结构化数据。下面是一些使用示例

(1)查看DataFrame中的内容,通过调用show方法

personDF.show

(2)查看DataFrame部分列中的内容

查看name字段的数据

personDF.select(personDF.col("name")).show

查看name字段的另一种写法

查看 name 和age字段数据personDF.select(col("name") , col("age")) .show

(3)打印DataFrame的Schema信息

personDF.printSchema

(4)查询所有的name和age,并将age+1

personDF.select(col("id"), col("name"), col ("age") + 1) . show

也可以这样:

personDF.select(personDF("id"), personDF("name") , personDF("age") + 1) . show

(5)过滤age大于等于25的,使用filter方法过滤

personDF.filter(col("age") >= 25).show

(6)统计年龄大于30的人数

personDF.filter(col("age")>30).count()

(7)按年龄进行分组并统计相同年龄的人数

personDF.groupBy("age").count().show

3.2. SQL风格语法

 DataFrame的一个强大之处就是我们可以将它看作是一个关系型数据表,然后可以通过在程序中使用spark.sql()来执行SQL查询,结果将作为一个DataFrame返回。

如果想使用SQL风格的语法,需要将DataFrame注册成表,采用如下的方式:

personDF.registerTempTable("t_person")

(1)查询年龄最大的前两名

spark.sql("select * from t_person order by age desc limit 2" ). show

(2)显示表的Schema信息

spark.sql("desc t_person").show

(3)查询年龄大于30的人的信息

spark.sql("select * from t_personwhere age > 30 ") .show

4.DataSet

4.1. 什么是DataSet

DataSet是分布式的数据集合。DataSet是在Spark1.6中添加的新的接口。它集中了RDD的优点(强类型和可以用强大lambda函数)以及Spark SQL优化的执行引擎。DataSet可以通过JVM的对象进行构建,可以用函数式的转换( map/flatmap/filter )进行多种操作。

4.2. DataFrame、DataSet、RDD的区别

假设RDD中的两行数据长这样:

那么DataFrame中的数据长这样:

那么Dataset中的数据长这样:

或者长这样(每行数据是个Object):

DataSet包含了DataFrame的功能,Spark2.0中两者统一,DataFrame表示为DataSet[Row],即DataSet的子集。

(1)DataSet可以在编译时检查类型

(2)并且是面向对象的编程接口

相比DataFrame,Dataset提供了编译时类型检查,对于分布式程序来讲,提交一次作业太费劲了(要编译、打包、上传、运行),到提交到集群运行时才发现错误,这会浪费大量的时间,这也是引入Dataset的一个重要原因。

4.3. DataFrame与DataSet的互转

DataFrame和DataSet可以相互转化。

(1)DataFrame转为 DataSet

df.as[ElementType]这样可以把DataFrame转化为DataSet。

(2)DataSet转为DataFrame

ds.toDF()这样可以把DataSet转化为DataFrame。

4.4. 创建DataSet

(1)通过spark.createDataset创建

(2)通toDS方法生成DataSet

(3)通过DataFrame转化生成

使用as[]转换为DataSet

三、以编程方式执行Spark SQL查询

1.编写Spark SQL程序实现RDD转换DataFrame

前面我们学习了如何在Spark Shell中使用SQL完成查询,现在我们来实现在自定义的程序中编写Spark SQL查询程序。

在Spark SQL中有两种方式可以在DataFrame和RDD进行转换,第一种方法是利用反射机制,推导包含某种类型的RDD,通过反射将其转换为指定类型的DataFrame,适用于提前知道RDD的schema。

第二种方法通过编程接口与RDD进行交互获取schema,并动态创建DataFrame,在运行时决定列及其类型。

首先在maven项目的pom.xml中添加Spark SQL的依赖

<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.0.2</version>
</dependency>

1.1.通过反射推断Schema

Scala支持使用case class类型导入RDD转换为DataFrame,通过case class创建schema,case class的参数名称会被反射读取并成为表的列名。这种RDD可以高效的转换为DataFrame并注册为表。

代码如下:

package cn.itcast.sql
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession}

/**
* RDD转化成DataFrame:利用反射机制
*/
//todo:定义一个样例类Person
case class Person(id:Int,name:String,age:Int)
extends Serializable

object InferringSchema {

def main(args: Array[String]): Unit = {
//todo:1、构建sparkSession 指定
appName和master的地址
val spark: SparkSession = SparkSession.builder()
.appName("InferringSchema")
.master("local[2]").getOrCreate()
//todo:2、从sparkSession获取sparkContext对象
val sc: SparkContext = spark.sparkContext
sc.setLogLevel("WARN")//设置日志输出级别
//todo:3、加载数据
val dataRDD: RDD[String] = sc.textFile
("D:\\person.txt")
//todo:4、切分每一行记录
val lineArrayRDD: RDD[Array[String]] = dataRDD.map(_.split(" "))
//todo:5、将RDD与Person类关联
val personRDD: RDD[Person] = lineArrayRDD.map(x=>Person(x(0).toInt,
x(1),x(2).toInt))
//todo:6、创建dataFrame,需要导入隐式转换
import spark.implicits._
val personDF: DataFrame = personRDD.toDF()

//todo
-------------------DSL语法操作 start--------------
//1、显示DataFrame的数据,默认显示20行
personDF.show()
//2、显示DataFrame的schema信息
personDF.printSchema()
//3、显示DataFrame记录数
println(personDF.count())
//4、显示DataFrame的所有字段
personDF.columns.foreach(println)
//5、取出DataFrame的第一行记录
println(personDF.head())
//6、显示DataFrame中name字段的所有值
personDF.select("name").show()
//7、过滤出DataFrame中年龄大于30的记录
personDF.filter($"age" > 30).show()
//8、统计DataFrame中年龄大于30的人数
println(personDF.filter($"age">30).count())
//9、统计DataFrame中按照年龄进行分组,
求每个组的人数
personDF.groupBy("age").count().show()
//todo
-------------------DSL语法操作 end-------------

//todo
--------------------SQL操作风格 start-----------
//todo:将DataFrame注册成表
personDF.createOrReplaceTempView("t_person")
//todo:传入sql语句,进行操作
spark.sql("select * from t_person").show()
spark.sql("select * from t_person where name='zhangsan'").show()
spark.sql("select * from t_person order by age desc")
.show()
//todo
--------------------SQL操作风格 end-------------
sc.stop()
}
}

1.2.通过StructType直接指定Schema

当case class不能提前定义好时,可以通过以下三步通过代码创建DataFrame

(1)将RDD转为包含row对象的RDD

(2)基于structType类型创建schema,与第一步创建的RDD相匹配

(3)通过sparkSession的createDataFrame方法对第一步的RDD应用

schema创建DataFrame

package cn.itcast.sql
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.
{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row,
SparkSession}
/**
* RDD转换成DataFrame:通过指定schema构建DataFrame
*/
object SparkSqlSchema {
def main(args: Array[String]): Unit = {
//todo:1、创建SparkSession,指定appName和master
val spark: SparkSession = SparkSession.builder()
.appName("SparkSqlSchema")
.master("local[2]")
.getOrCreate()
//todo:2、获取sparkContext对象
val sc: SparkContext = spark.sparkContext
//todo:3、加载数据
val dataRDD: RDD[String] = sc.textFile
("d:\\person.txt")
//todo:4、切分每一行
val dataArrayRDD: RDD[Array[String]] = dataRDD.map
(_.split(" "))
//todo:5、加载数据到Row对象中
val personRDD: RDD[Row] = dataArrayRDD.map(x=>Row(x(0).toInt,x(1),x(2).toInt))
//todo:6、创建schema
val schema:StructType= StructType(Seq(
StructField("id", IntegerType, false),
StructField("name", StringType, false),
StructField("age", IntegerType, false)
))

//todo:7、利用personRDD与schema创建DataFrame
val personDF: DataFrame = spark.createDataFrame
(personRDD,schema)

//todo:8、DSL操作显示DataFrame的数据结果
personDF.show()

//todo:9、将DataFrame注册成表
personDF.createOrReplaceTempView("t_person")

//todo:10、sql语句操作
spark.sql("select * from t_person").show()

spark.sql("select count(*) from t_person").show()
sc.stop()
}
}

2.编写Spark SQL程序操作HiveContext

HiveContext是对应spark-hive这个项目,与hive有部分耦合, 支持hql,是SqlContext的子类,也就是说兼容SqlContext;

2.1.添加pom依赖

<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>2.0.2</version>
</dependency>

2.2.代码实现

package itcast.sql
import org.apache.spark.sql.SparkSession
/**
* todo:支持hive的sql操作
*/
object HiveSupport {
def main(args: Array[String]): Unit = {
val warehouseLocation = "D:\\workSpace
_IDEA_NEW\\day2017-10-12\\spark-warehouse"
//todo:1、创建sparkSession
val spark: SparkSession = SparkSession.builder()
.appName("HiveSupport")
.master("local[2]")
.config("spark.sql.warehouse.dir", warehouseLocation)
.enableHiveSupport() //开启支持hive
.getOrCreate()
spark.sparkContext.setLogLevel("WARN")
//设置日志输出级别
import spark.implicits._
import spark.sql

//todo:2、操作sql语句
sql("CREATE TABLE IF NOT EXISTS person (id int, name string, age int) row format delimited fields
terminated by ' '")
sql("LOAD DATA LOCAL INPATH '/person.txt' INTO TABLE person")
sql("select * from person ").show()
spark.stop()
}
}

四、数据源

1.JDBC

Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。

1.1.SparkSql从MySQL中加载数据

1.1.1 通过IDEA编写SparkSql代码

package itcast.sql
import java.util.Properties
import org.apache.spark.sql.{DataFrame,
SparkSession}
/**
* todo:Sparksql从mysql中加载数据
*/
object DataFromMysql {
def main(args: Array[String]): Unit = {
//todo:1、创建sparkSession对象
val spark: SparkSession = SparkSession.builder()
.appName("DataFromMysql")
.master("local[2]")
.getOrCreate()
//todo:2、创建Properties对象,设置连接mysql
的用户名和密码
val properties: Properties =new Properties()
properties.setProperty("user","root")
properties.setProperty("password","123456")
//todo:3、读取mysql中的数据
val mysqlDF: DataFrame = spark.read.jdbc("jdbc:mysql
://192.168.200.150:3306/spark","iplocaltion",properties)
//todo:4、显示mysql中表的数据
mysqlDF.show()
spark.stop()
}
}

执行查看效果:

1.1.2 通过spark-shell运行

(1)、启动spark-shell(必须指定mysql的连接驱动包)

spark-shell \
--master spark://hdp-node-01:7077 \
--executor-memory 1g\
--total-executor-cores 2\
--jars /opt/bigdata/hive/lib/mysql-connector-java-5.1.35.jar\
--driver-class-path/opt/bigdata/hive/lib/mysql
-connector-java-5.1.35.jar

(2)、从mysql中加载数据

val mysqlDF = spark.read.format("jdbc").options
(Map("url" -> "jdbc:mysql://192.168.200.100:3306/spark", "driver" -> "com.mysql.jdbc.Driver", "dbtable" -> "iplocaltion", "user" -> "root", "password" -> "123456")).load()

(3)、执行查询

1.2.SparkSql将数据写入到MySQL中

1.2.1 通过IDEA编写SparkSql代码

(1)编写代码

package itcast.sql
import java.util.Properties
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset,
SaveMode, SparkSession}
/**
* todo:sparksql写入数据到mysql中
*/
object SparkSqlToMysql {
def main(args: Array[String]): Unit = {
//todo:1、创建sparkSession对象
val spark: SparkSession = SparkSession.builder()
.appName("SparkSqlToMysql")
.getOrCreate()
//todo:2、读取数据
val data: RDD[String] = spark.sparkContext
.textFile(args(0))
//todo:3、切分每一行,
val arrRDD: RDD[Array[String]] = data.map(_.split(" "))
//todo:4、RDD关联Student
val studentRDD: RDD[Student] = arrRDD.map
(x=>Student(x(0).
toInt,x(1),x(2).toInt))
//todo:导入隐式转换
import spark.implicits._
//todo:5、将RDD转换成DataFrame
val studentDF: DataFrame = studentRDD.toDF()
//todo:6、将DataFrame注册成表
studentDF.createOrReplaceTempView("student")
//todo:7、操作student表 ,按照年龄进行降序排列
val resultDF: DataFrame = spark.sql("select *
from student order by age desc")

//todo:8、把结果保存在mysql表中
//todo:创建Properties对象,配置连接mysql的
用户名和密码
val prop =new Properties()
prop.setProperty("user","root")
prop.setProperty("password","123456")
resultDF.write.jdbc("jdbc:mysql://192.168.200.150:3306/
spark","student",prop)
//todo:写入mysql时,可以配置插入mode,overwrite覆盖,
append追加,
ignore忽略,error默认表存在报错
//resultDF.write.mode(SaveMode.Overwrite).jdbc
("jdbc:mysql://192.168.200.150:3306/spark",
"student",prop)
spark.stop()
}
}
//todo:创建样例类Student
case class Student(id:Int,name:String,age:Int)

(2)用maven将程序打包

通过IDEA工具打包即可

(3)将Jar包提交到spark集群

spark-submit \
--class itcast.sql.SparkSqlToMysql \
--master spark://hdp-node-01:7077 \
--executor-memory 1g \
--total-executor-cores 2 \
--jars/opt/bigdata/hive/lib/mysql-connector-java-5.1.35.jar \
--driver-class-path /opt/bigdata/hive/lib/mysql-connector-java-5.1.35.jar\
/root/original-spark-2.0.2.jar /person.txt

(4)查看mysql中表的数据

 

 
   
2460 次浏览       14
相关文章

基于EA的数据库建模
数据流建模(EA指南)
“数据湖”:概念、特征、架构与案例
在线商城数据库系统设计 思路+效果
 
相关文档

Greenplum数据库基础培训
MySQL5.1性能优化方案
某电商数据中台架构实践
MySQL高扩展架构设计
相关课程

数据治理、数据架构及数据标准
MongoDB实战课程
并发、大容量、高性能数据库设计与优化
PostgreSQL数据库实战培训
最新课程计划
信息架构建模(基于UML+EA)3-21[北京]
软件架构设计师 3-21[北京]
图数据库与知识图谱 3-25[北京]
业务架构设计 4-11[北京]
SysML和EA系统设计与建模 4-22[北京]
DoDAF规范、模型与实例 5-23[北京]
 
最新文章
大数据平台下的数据治理
如何设计实时数据平台(技术篇)
大数据资产管理总体框架概述
Kafka架构和原理
ELK多种架构及优劣
最新课程
大数据平台搭建与高性能计算
大数据平台架构与应用实战
大数据系统运维
大数据分析与管理
Python及数据分析
更多...   
成功案例
某通信设备企业 Python数据分析与挖掘
某银行 人工智能+Python+大数据
北京 Python及数据分析
神龙汽车 大数据技术平台-Hadoop
中国电信 大数据时代与现代企业的数据化运营实践
更多...