
Service Component Architecture 

Whitepaper  November 2005 i

Service Component Architecture 
 

Building Systems using a Service Oriented Architecture 
 
 
A Joint Whitepaper by BEA, IBM, Interface21, IONA, Oracle, SAP, Siebel, Sybase. 
 
Version 0.9 
 
 
November 2005 
 
 
 
 

 

Authors 
 
Michael Beisiegel   IBM Corporation 
Henning Blohm  SAP AG 
Dave Booz    IBM Corporation 
Jean-Jacques Dubray   SAP AG 
Adrian Colyer    Interface21 
Mike Edwards    IBM Corporation 
Don Ferguson    IBM Corporation 
Bill Flood   Sybase, Inc. 
Mike Greenberg  IONA Technologies plc. 
Dan Kearns   Siebel Systems 
Jim Marino    BEA Systems, Inc 
Jeff Mischkinsky  Oracle Corporation 
Martin Nally    IBM Corporation 
Greg Pavlik   Oracle Corporation 
Mike Rowley    BEA Systems, Inc. 
Ken Tam    BEA Systems, Inc. 
Carl Trieloff   IONA Technologies plc. 
 
 



Service Component Architecture 

Whitepaper  November 2005 ii

Copyright Notice 

© Copyright BEA Systems, Inc., International Business Machines Corp, IONA 
Technologies,  Interface21, Oracle USA Inc., SAP AG, Siebel Systems, Inc., Sybase, 
Inc. 2005. All rights reserved. 
 
No part of this document may be reproduced or transmitted in any form without written permission from 
BEA Systems, Inc. (“BEA”),  International Business Machines Corporation (“IBM”), Interface21, 
IONA Technologies (“IONA”), Oracle USA Inc. (“Oracle”), SAP AG (“SAP”), Sybase Inc. (“Sybase”)  
(collectively “the authors”).  

This is a preliminary document and may be changed substantially over time.  The information contained in 
this document represents the current view of the authors on the issues discussed as of the date of 
publication and should not be interpreted to be a commitment on the part of the authors. All data as well as 
any statements regarding future direction and intent are subject to change and withdrawal without notice.  
This information could include technical inaccuracies or typographical errors. 
 
The presentation, distribution or other dissemination of the information contained in this document is not a 
license, either express or implied, to any intellectual property owned or controlled by the authors and\or any 
other third party. The authors and\or any other third party may have patents, patent applications, 
trademarks, copyrights, or other intellectual property rights covering subject matter in this document. The 
furnishing of this document does not give you any license to the authors’ or any other third party's patents, 
trademarks, copyrights, or other intellectual property.  
 
The information provided in this document is distributed “AS IS” AND WITH ALL FAULTS, without any 
warranty, express or implied.  THE AUTHORS EXPRESSLY DISCLAIM ANY WARRANTIES OF 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR 
TITLE. The authors shall have no responsibility to update this information. 
 
IN NO EVENT WILL THE AUTHORS BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, 
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO 
ANY USE OR DSTRIBUTION OF THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD 
ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.  

 
IBM is a registered trademark of International Business Machines Corporation in the 
United States, other countries, or both.  
BEA is a registered trademark of BEA Systems, Inc. 
IONA and IONA Technologies are registered trademarks of IONA Technologies plc. 
Oracle is a registered trademark of Oracle Corporation. 
SAP is a registered trademark of SAP AG. 
Siebel is a registered trademark of Siebel Systems, Inc. 
Sybase is a registered trademark of Sybase, Inc. 
 
 
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the 
United States, other countries, or both.   
 
Other company, product, or service names may be trademarks or service marks of others. 



Service Component Architecture 

Whitepaper  November 2005 iii

Table of Contents 
 
1 Introduction................................................................................................................. 1 
2 Motivation................................................................................................................... 2 

2.1 Service Oriented Architecture and Web Services............................................... 3 
3 Architecture................................................................................................................. 5 

3.1 Service Implementations and Service Clients..................................................... 6 
3.1.1 Java Implementation Type.......................................................................... 8 
3.1.2 BPEL Implementation Type ....................................................................... 8 

3.2 Assembly............................................................................................................. 9 
3.2.1 Module Assembly ....................................................................................... 9 
3.2.2 System Assembly...................................................................................... 10 

3.3 Bindings ............................................................................................................ 12 
3.4 Asynchronous and Message-Oriented Model................................................... 12 
3.5 Infrastructure Capabilities and Policies ............................................................ 13 
3.6 Extensibility of SCA......................................................................................... 14 
3.7 In Summary: SCA Model Characteristics......................................................... 15 

4 Use Cases .................................................................................................................. 17 
4.1 Providing a Web Service to External Users...................................................... 17 
4.2 Connecting to an External Web Service ........................................................... 17 
4.3 Asynchronous Use Case ................................................................................... 18 

5 Integration with Commonly Used Technologies ...................................................... 19 
5.1 Using the SCA Client Model ............................................................................ 19 
5.2 J2EE 1.4 Integration.......................................................................................... 20 

5.2.1 Using SCA Services from Servlets and JSPs............................................ 20 
5.2.2 Linking to J2EE Applications via Bindings.............................................. 21 
5.2.3 System-Level J2EE Integration ................................................................ 21 
5.2.4 Module-Level Integration with J2EE........................................................ 21 
5.2.5 JCA Adapters ............................................................................................ 21 

5.3 Spring................................................................................................................ 22 
5.4 Java Enterprise Edition  5 ................................................................................. 22 

5.4.1 EJB 3.0 Simplified Session Beans ............................................................ 22 
5.4.2 EJB 3.0 Persistence................................................................................... 23 

5.5 JMS and Messaging Systems............................................................................ 23 
5.6 Web Services using JAX-RPC / JAX-WS and Axis ........................................ 23 

5.6.1 REST Web Services.................................................................................. 24 
6 Future Directions ...................................................................................................... 25 

6.1 Bindings ............................................................................................................ 25 
6.2 Implementation types........................................................................................ 25 
6.3 Policy, Security, Transactions and Reliable Messaging ................................... 25 
6.4 Asynchronous and Message-Oriented Model................................................... 25 

7 References................................................................................................................. 27 
 
 



Service Component Architecture 

Whitepaper  November 2005 1

1 Introduction 
Service Component Architecture (SCA) [1] is a specification which describes a model 
for building applications and systems using a Service Oriented Architecture (SOA).  
This white paper discusses the motivation behind SCA, describes the major features 
of the architecture and presents the areas for future development of the specification. 
The paper also explains how SCA extends and complements prior approaches to 
implementing services, and how SCA builds on open standards. 



Service Component Architecture 

Whitepaper  November 2005 2

2 Motivation 
SCA aims to simplify the creation and integration of business applications built using 
a Service Oriented Architecture (SOA). In an SOA, relatively coarse-grained business 
components are exposed as services, with well-defined interfaces and contracts. 
Interfaces are expressed using technology agnostic business terms and concepts. 
“Coarse grained” here means that the service interfaces use relatively few service 
methods to achieve a particular business goal, with large document-oriented 
parameters.  

While SOA-based systems can have individual services that are built using object-
oriented technology (among other approaches), the overall system design is service-
oriented.  In particular the service interfaces involve the exchange of business data, 
not the exchange of objects. 

SCA also provides the capability to build coarse-grained service components as 
assemblies of fine-grained components.  “Coarse-grained” means the use of interfaces 
with relatively few methods and where parameters and return values are typically 
document-oriented. “Fine grained” means that the interfaces may use a larger number 
of service methods, involving simpler parameter type. 

SCA builds on emerging best practices of removing or abstracting middleware 
programming model dependencies from business logic. SCA aims to reduce or 
eliminate the “incidental” complexity to which application developers are exposed 
when they deal directly with middleware APIs. SCA allows developers to focus on 
writing business logic. However, SCA complies with existing standards “under the 
covers” to preserve existing investment in standards, middleware and tools. This 
approach is exemplified by a number of existing projects, such as the Spring 
framework [11].   

The benefits of such an approach include: 

• simplified business component development 

• simplified assembly and deployment of business solutions built as networks of 
services 

• increased agility and flexibility 

• protection of business logic assets by shielding from low-level technology change 

• improved testability 

SCA is based on an open specification, allowing multiple vendors to implement 
support for SCA in their development tools and runtimes. This is particularly 
important for the deployment, administration, and configuration of SCA-based 
applications. 

Unlike existing approaches such as Spring, SCA also supports a variety of component 
implementation and interface types as first class citizens. For example, the 



Service Component Architecture 

Whitepaper  November 2005 3

implementation of an SCA component may be a BPEL process, and its interface may 
be defined in WSDL, or the component may be a Java class with an interface defined 
as a Java interface. This gives businesses the flexibility to incorporate a wide-range of 
existing and future assets into an SCA-based system with little or no bridging code 
required. It is this direct support for richer interface types that make SCA an ideal 
platform for delivering applications built using a Service Oriented Architecture (SOA) 
based approach. 
 

2.1 Service Oriented Architecture and Web Services 

SCA provides a first class model for building systems using Service Oriented 
Architecture (SOA). SOA is a composition model that connects the functional units of 
an application, called services, through well-defined interfaces and contracts between 
these services.  SOA also emphasizes loose coupling between services. Loose 
coupling precludes undocumented interactions between services, for example through 
shared data, and it also supports the independent evolution of interfaces.   

A service’s interface is defined in a way that is independent of the hardware platform, 
the operating system, hosting middleware and the programming language used to 
implement the service. This allows services, built on a variety of systems, to interact 
with each other in a uniform and universal manner.  In addition, the applications’ 
interfaces and services are expressed using business terms and concepts – they are not 
technology focused. 

The benefit of a loosely-coupled system is in its agility - its ability to accommodate 
changes in the structure and implementation of the internals of a service. By contrast, 
tight coupling means that the interfaces between the different components of an 
application are dependent on the form of implementation, making the system brittle 
when changes are made to components. 

The agile nature of loosely-coupled systems serves the need of a business to adapt 
rapidly to changes in policies, business environment, product offerings, partnerships 
and regulatory requirements.  

Service-oriented architectures are not new. Many organizations have built SOAs by 
using “best practices” applied to message oriented systems, RPC infrastructures, etc. 
SOAs are a more agile alternative to the more tightly-coupled object-oriented models 
that have been used to build distributed applications. While SOA-based systems may 
have individual services that are built using object-oriented technology, the overall 
system design is service-oriented.  In particular the service interfaces involve the 
exchange of coarse-grained business data usually as documents in an interoperable 
format, not the exchange of objects. 

SCA is a model designed for SOA, unlike existing systems that have been adapted to 
SOA.  SCA enables encapsulating or “adapting” existing applications and data using 
an SOA abstraction. SCA builds on service encapsulation to take into account the 
unique needs associated with the assembly of netorks of heterogeneous services. SCA 
provides the means to compose assets, which have been implemented using a variety 
of technologies using SOA. The SCA composition becomes a service, which can be 
accessed and reused in a uniform manner.  In addition, the composite service itself 



Service Component Architecture 

Whitepaper  November 2005 4

can be composed with other services. SCA provides the ability to dynamically 
assemble these services to provide business capabilities, but it does so in a way that 
can be adapted and evolved as business requirements change and grow. 

A principal technology for building SOA systems is Web services.  Web services are 
mainly focused on two objectives: 

1. The wire-level protocols that ensure runtime interoperability between 
heterogeneous systems. Web services are based on the exchange of messages 
using a technology-neutral XML format (SOAP). 

2. Standards for defining service interfaces (WSDL and XML) independently of the 
implementation technology. A standard for defining interfaces also enables 
interoperability between tools.  

SCA complements Web services, by providing a means of assembling services into a 
business system, as well as providing a service construction model.  SCA takes 
advantage of many of the aspects of Web services.  For example, SCA uses the 
capabilities of WS-Policy as a way of specifying a wide range of interoperability 
concerns including security. 

SCA recognizes that using Web services aren’t the only way to implement an SOA 
and so SCA supports a range of technologies.  Service interfaces can be defined using 
WSDL and Java interfaces, and will expand to other interface languages.  SCA 
service components can be built with a variety of technologies such as EJBs, Spring 
beans and CORBA components, and with programming languages including Java, 
PHP and C++.  There are also evolving XML centric approaches to building services 
components. Some examples include BPEL [12], XSLT [15] and XQuery [16]. 

SCA components can also be connected by a variety of bindings such as 
WSDL/SOAP web services, JavaTM Message Service (JMS) [13] for message-
oriented middleware systems and J2EETM Connector Architecture (JCA) [14]for 
enterprise information services. SCA recognizes that there is the need to utilize 
existing application components written using these technologies and also recognizes 
that some of these technologies have useful attributes and capabilities which are 
essential to business systems. 



Service Component Architecture 

Whitepaper  November 2005 5

3 Architecture 
SCA encourages an SOA organization of business application code, based on 
components that implement business logic, which offer their capabilities via service-
oriented interfaces and consume functions offered by other components via service-
oriented interfaces.  This is illustrated in the following figure, which can be contrasted 
with the organization of existing applications: 

Business
Logic

Component

Business
Logic

Component
Business

Logic
Component

Application Function

Infrastructure capabilities
Security Transactions

Reliability

Database
Access Messaging EIS

Access
Web 

Services
EJB

Access …

Middleware APIs and File Formats

applied dynamically

Data Access 
Service

Adapter
Service

 
Figure 1: SCA Application Architecture 

More advanced businesses already use an application architecture that is close to that 
shown in Figure 1, but the difficulty is that there is no industry-wide set of capabilities 
that provide support for this architecture.  SCA aims to fill this gap and to help 
businesses create Service-oriented systems using common infrastructure and common 
skills. 

SCA divides up the steps in the building of a Service Oriented Application into two 
major parts – first, the implementation of components which provide services and 
which consume other services; second, the assembly of components to build the 
business application through the wiring of service references to services.  SCA also 
provides a means of packaging and deploying sets of closely related components 
which are developed and deployed together as a unit. 

The model in figure 2 also decouples service implementation and assembly from the 
details of infrastructure capabilities and from the mechanisms for invoking external 



Service Component Architecture 

Whitepaper  November 2005 6

systems. This enables portability of services between different infrastructures.  This 
portability, building on the portability of implementation technologies like Java and 
BPEL4WS, complements the runtime and tool interoperability of Web service 
standards. 

3.1 Service Implementations and Service Clients 
Service implementations are units of business logic, written using any one of many 
implementation programming languages, including conventional object-oriented and 
procedural languages such as Java, PHP, C++, COBOL and C.  It is also possible to 
implement services using more XML centric languages such as BPEL and XSLT 
transformations, and declarative languages like SQL and XQuery.   The freedom to 
use the most appropriate implementation type is an important aspect of SCA – the 
implementation is the servant of the business process, not the other way round. 
 
To assist in understanding how SCA implementations are written and assembled, 
there is an example in the document “Building your first application – Simplified 
BigBank” [3] – it may be useful to refer to this as you read the following sections. In 
the following sections, this example is called “BigBank” for short. 
 
An implementation can provide a service – which is a set of operations defined by an 
interface that can be used by other components.  Implementations can also use other 
services – these are service references (references for short) which indicate a 
dependency that the implementation has on services provided elsewhere.  
 
In the BigBank example, there is a service called AccountService which provides full 
account information for a customer and which is implemented by the 
AccountServiceComponent.  The AccountServiceComponent in turn uses references 
to the AccountDataService and to the StockQuoteService. References are defined by 
interfaces.  References provide a level of indirection between the implementation and 
the target service, since the actual target service used is configured by the assembly 
and it could be bound dynamically at runtime.   
 
An implementation may also have one or more properties.  A property is a data value 
that can be configured externally and which can affect the business function of the 
implementation. 
 
The BigBank AccountServiceImpl implementation of the AccountService has a 
property called currency which is used to set the currency that the account service 
uses when preparing account information. 
 
Service implementations may be designed to provide coarse-grained, remotable 
services intended for use remotely by clients (eg in another department or in another 
business).  Coarse grained services typically use document-style business data for 
parameters and return values, and it is recommended that these parameters are 
represented as Service Data Objects (SDOs) (see the SDO Specification [2] for more 
detail about SDO). Other service implementations may be designed using a fine-
grained service interface intended for local use by clients within the same process. For 
local interfaces, a larger set of parameter types is expected. 
 



Service Component Architecture 

Whitepaper  November 2005 7

Component

… …

service

references
 

Figure 2: An SCA Component 

 
The service, the references and the properties of an implementation can be thought of 
as the externally configurable aspects of the implementation.  An important idea 
associated with this “outside” view is that it can represent a boundary between the 
programmer responsible for building service implementations and a service assembler 
responsible for assembling the services into an overall business solution. All 
components have the same external shape or model to the assembler, independent of 
their internal implementation languages and design. 
 
While the service offered by an implementation is fixed, both the references and the 
properties can be configured, to produce a component.  Configuration of a reference 
involves binding the reference to a target service, which will then be used by the 
implementation when it invokes the reference.  Configuration of the properties 
involves setting specific data values for the properties.  This means that one 
implementation can be used to build multiple different components, with each 
component having a different configuration of the references and properties. 

In the case of BigBank, the AccountServiceComponent configures the 
AccountServiceImpl implementation, wiring its references to the 
AccountDataServiceComponent and to the StockQuoteService and setting its 
currency property to “EURO”.  
 
Components and their service interfaces can be designed for purely local use by other 
components, or components can be designed for remote access, either from other parts 
of the business or from other businesses.  Local components can use interfaces 
optimized to exploit the co-location of the service client and the service 
implementation. Services designed for remote use must take account of the potential 
for the client being connected over a remote link and so must offer interfaces that are 
compatible with this remoteness. 
 
Dependency injection, as supported by containers such as Spring, has proven to be a 
valuable technique for implementing business applications and hiding details of 



Service Component Architecture 

Whitepaper  November 2005 8

service location and instantiation. SCA applies the technique of dependency injection 
to configure SCA services, using it to provide a component instance with its 
references and property values.  Injection can be seen in operation in the example 
code [3].  SCA does provide a minimal set of APIs for situations where the service 
implementer is not able to use dependency injection. 
 
Programming a service invocation is done consistently, without regard for the access 
mechanism used to communicate with the target service – which is invisible to the 
business logic.  This allows for the access mechanism to change over time, or for 
multiple access mechanisms to be used depending on the client and provider involved, 
without the need to modify the service implementation or the client invocation. For 
example, a single service implementation could support access via Web services and 
also support access via a JMS-based transport, without requiring service clients to 
change code. 
 

3.1.1 Java Implementation Type 
Java is a first class implementation type for SCA: <implementation.java>. 
 
The aim of SCA is to support the implementation of components using Plain Old Java 
Objects (POJOs), requiring no special programming or APIs in order to implement the 
business function of the component.  In addition, the separation of the business 
interfaces from the actual target services used to satisfy references allows for the 
assembly step to re-target the reference at will. 
 
In addition to simple Java classes, SCA anticipates that there will be more specialized 
forms of Java implementation, which can take advantage of more sophisticated 
runtime support.  An example is the use of an Enterprise Java Bean (EJB) as an SCA 
component – this would have the implementation type, <implementation.ejb>.  In 
this case, the implementation code must conform to the specification for EJBs, but the 
implementation can take advantage of the capabilities provided by an EJB container, 
such as the persistence model of EJB 3.0.  See the sections on J2EE 1.4 Integration 
and Java Enterprise Edition 5 for more details.   

3.1.2 BPEL Implementation Type 
The OASIS WS-BPEL standard [12] is frequently used as the standard process 
language of providing business process integration within SOA implementations.  
BPEL is a native SCA implementation technology, with components implemented in 
the BPEL language being handled with a first class implementation type:  
<implementation.bpel>. SCA is a natural complement to BPEL components, since 
the BPEL processes typically coordinate the activities of other services, for which 
SCA can provide the wiring.  SCA can also be used to publish the business process 
embodied in a BPEL process, making it accessible as a service for other SCA clients 
to invoke, without the need for the clients to be concerned about the details of how a 
BPEL process is invoked. 
 
As BPEL processes are frequently asynchronous in nature, asynchronous BPEL 
processes will be able to take advantage of the native asynchronous capabilities within 
SCA, such as callbacks and conversational services.  Until SCA, seamless callback 
integration between BPEL and non-BPEL processes was a proprietary exercise within 



Service Component Architecture 

Whitepaper  November 2005 9

most vendor implementations.  SCA provides a standard model for BPEL and non-
BPEL interactions. 
 
BPEL processes can also take advantage of the ability of SCA to attach infrastructure 
services to components, such as Security and Transactions. 
 

3.2 Assembly 
Assembly is the process of composing business applications by configuring and 
connecting components that provide service implementations.  SCA assembly 
operates at two levels – the assembly of loosely connected components within a 
System and the assembly of closely connected components within a Module.  These 
two levels roughly correspond to “programming in the large”, creating business 
solutions as networks of loosely coupled services working together and 
“programming in the small”, assembling services from closely related fine-grained 
components. 
 

3.2.1 Module Assembly 
 
An SCA Module typically contains one or more components that are deployed 
together into an SCA system.  Services that are offered for use by components outside 
the module are represented as EntryPoints in the module.  Where components in the 
module depend on services provided outside the module, the dependencies are 
represented as ExternalServices in the module.  Viewed from the outside, the 
resulting module has services and references that correspond to the entry points and 
external services that are in the module  

In the BigBank example, the AccountServiceComponent is part of the accountmodule 
module, which also contains the AccountDataServiceComponent, an entry point 
called AccountService which offers the account service to external users, and an 
external service called StockQuoteService which may reference a remote web service 
which provides the StockQuote function. 
 
A module is assembled by configuring and wiring together components, entry points 
and external services.  A very simple example of a module is shown in Figure 3: 
 



Service Component Architecture 

Whitepaper  November 2005 10

 

Module A

Component
AEntry

Point

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Implementation
- Java
- BPEL
…

Component
B

Service
- Java interface
- WSDL PortType

Reference
- Java interface
- WSDL PortType

Wire WireWire

External
Service

 
Figure 3:  Example of a Simple Module 

 
In this module, there are two components, called Component A and Component B.  
Each component provides a service and each has a reference to a service it depends 
on.  The service provided by component A is made available for use by clients outside 
the module by the entry point and the entry point is wired to the service of the 
component.  The service required by component A is provided by component B. The 
service required by component B exists outside the module and so there is one 
external service in the module, with the reference of component B being wired to the 
external service. 
 
Where there are multiple components in a module, as here, some component services 
and references may be wired to each other entirely within the module.  These are 
“local” services and the boundary of the module means that they cannot be seen or 
used outside the module.  Only services and references explicitly exposed by entry 
points and external services can be seen and used outside the module. 
 

3.2.2 System Assembly 
 
Assembly at the System level represents the creation of a business solution through 
the configuration and wiring together of loosely coupled services. 
   



Service Component Architecture 

Whitepaper  November 2005 11

The assembly of an SCA system mirrors the assembly of a module.  The system 
consists of one or more ModuleComponents and potentially EntryPoints and 
ExternalServices, plus the Wires that connect them.  Module components represent 
configured instances of an SCA module, where the module component can set values 
for the external services of the module and can set values for properties exposed by 
the module.   The system may contain an entry point for a service that is offered for 
use externally – for example, an entry point can be used to make a service available 
for use by other organizations or by customers as a Web service.  The system may 
contain an external service for any service referenced by a module component in the 
system that is supplied by another organization – for example, a Web service provided 
by another business. 
 
 

Subsystem Y 

Module
Component

B

Module
Component

A

Module A
Module B

Entry
Point

Subsystem X Subsystem X 

implementation
implementation

WireWireWire

System

External
Service

 
Figure 4: Example of System Assembly 

 
For convenience, the configuration of an SCA system can be divided up into a series 
of smaller sections, each of which can be updated and deployed separately.  These 
smaller sections of a system are called Subsystems.  The configuration of the whole 
system then consists of combining together the configuration of each of the 
subsystems.  A subsystem can consist of any of the elements of a system. In particular 
there can be subsystems that consist entirely of wires which connect services and 
references defined in other subsystems. This allows the wiring to be updated 
independently. 
 
The extent of an SCA system is flexible and can vary from business to business.  At 
the smallest, a system could consist of a set of modules deployed and running on a 
single server.  At the largest, a system could consist of all the information technology 
assets of the business, spanning multiple machines of differing types in many different 
locations.  One of the important aspects of the SCA system is the concept of 
administrative control – the system represents the extent of control of an organization.  
Whether a single business has just one SCA system or uses multiple systems (e.g. one 



Service Component Architecture 

Whitepaper  November 2005 12

per department) is a decision that is related to the size and organization of the business 
itself. 
 

3.3 Bindings 
Bindings are used to define the access mechanism used when a service is invoked 
remotely, such as Web services, JMS/Messaging, CORBA IIOP and Database Stored 
Procedures.  Bindings are used by entry points and by external services.  For an entry 
point, the binding defines the access mechanism which clients must use in order to 
access the service offered by the entry point.  For an external service, the binding 
describes the access mechanism that is used when the remote service is called.  
 
Bindings are configured and managed independently of the implementation code.  
The separation of the access mechanism from the business logic in the 
implementation code is a key aspect of SCA, which permits the same business logic to 
be used with a variety of different access mechanisms and which permits a system 
assembler to change and add access mechanisms as the needs of the business evolve. 
 
SCA supports a series of different binding types.  Examples include Web service, 
JMS messaging, stateless session EJB, data base stored procedure, EIS service.  SCA 
also supports a non-interoperable binding, called the SCA binding, which allows the 
SCA runtime implementation to provide a highly optimized transport and protocol. 
SCA is extensible and additional bindings can be added if required. 
 
Services called locally, that is, between two components of the same module, do not 
require bindings. Local invocations occur within the same process and involve calling 
from the client to the provider by means that are native to the implementation code, 
such as Java method invocation. 

3.4 Asynchronous and Message-Oriented Model 
The handling of asynchronous styles of programming is important for SOA solutions, 
since there are numerous application patterns where a simple synchronous call-and-
return style is not appropriate. 
 
SCA defines a set of facilities in support of a number of styles of asynchronous 
service invocations.  The simplest form is where a service is invoked “one way” in a 
non-blocking style – the service is invoked and the client carries on executing without 
waiting for the service to execute.  The “one way” style implies that the client does 
not expect to receive any data back from the called service.  This can also be 
described as “sending a message” from the client to the service provider.  
 
A more sophisticated form of asynchronous invocation is where the client provides a 
callback interface to the service that it invokes.  The callback interface becomes part 
of the contract between the client and the service – effectively the services are 
bidirectional and imply that calls are made in both directions between the client and 
the provider.  The timing of callback invocations is asynchronous – they may occur 
any time after the initial service invocation is made. 
 
The BigBank example is a simplified one and does not use asynchronous 
programming.  However, an example of where asynchronous service invocation might 



Service Component Architecture 

Whitepaper  November 2005 13

be useful in the BigBank example is for the StockQuoteService.  This service might 
take some time to complete, in which case the AccountServiceImpl could be written 
to invoke the StockQuoteService asynchronously, passing a reference to a callback 
interface.  The AccountServiceImpl would implement the callback interface and when 
the StockQuoteService completed its calculation of stock values, it would pass back 
the result by calling the callback service. 
 
Finally, SCA provides support for conversational services, where a series of 
interactions may occur over time between a service client and the service provider.  
The BigBank application might use this form of service when processing a loan 
application, where a LoanApproval service might require a number of different pieces 
of information from the AccountServiceComponent in order to complete its 
processing, but where the actual information required could vary depending on the 
status of the bank account.  In this case, the LoanApproval service would require the 
AccountServiceComponent to supply a conversational interface with a series of 
services for the different types of information required, and would use them in 
sequence in order to complete the loan approval process. 
 
Note that the reliability of message delivery is a property of the binding used, and is 
transparent to both the sending and receiving service.  This becomes significant in the 
case of one-way style of invocation, where there is no straightforward way for the 
sender of a message to know whether it was received by the target service. 
 

3.5 Infrastructure Capabilities and Policies 
There are sets of attributes that may be required when calling a service from a client, 
which go under the collective heading of “Infrastructure Capabilities”.  Examples of 
infrastructure capabilities include security attributes such as authentication and 
encryption requirements, transaction characteristics and whether reliable delivery of 
messages from client to service is required. 
 
SCA models infrastructure capabilities in a declarative fashion.  This ensures that 
these aspects of the overall system are separated from the business logic and that they 
can be modified without the need to change code, since there is no infrastructure code  
included in the business logic of an implementation. This simplifies the development 
of the business logic. 
 
SCA defines infrastructure capabilities through the use of Policies, which are bundled 
collections of attributes and settings. SCA attaches policy definitions to components, 
to entry points and to external services. 
 
Some infrastructure capabilities can be quite complex, particularly security.  An 
important goal of SCA is to hide as much of the complexity as possible from 
application developers and assemblers, while allowing experts in security and other 
policy areas to specify the policies that must be used with appropriate detail. 
 
SCA simplifies the potential complexity of infrastructure policy for quality of service 
through the use of high level policy profiles. For example, an organization may have a 
small number of pre-defined policies that specify different levels of security required 
for different types of service and/or assets within the organization.  Each policy may 



Service Component Architecture 

Whitepaper  November 2005 14

describe settings for a set of policy attributes, such as the encryption of messages, 
authorization roles, authentication methods and so on.  For a particular service, one of 
these pre-defined policy sets is applied by referencing the policy by name. This 
simplifies the application of infrastructure policy, ensures that the combination of 
policy settings is valid and facilitates quality assurance and validation. 
 
The policy may require the configuration of one or more parameters to enable it to be 
used at runtime – for example, a security policy might need the name of a role 
required in order to use a particular service.  The setting of parameters of this type is 
handled in the configuration of the component concerned. 
 
SCA allows for policies to be aggregated into wider policies.  For example, security, 
transaction and reliable messaging may each have its own policy set defined at a low 
level, but for general usage, the individual policies are aggregated into a smaller set of 
general policies that define all aspects in a single package.  The general policies are 
the ones that are used in configuring components, entry points and external services. 
This further improves simplicity and the reliable use of policy. 
 
SCA conforms to the WS-Policy [17] standard for policy definitions, while providing 
straightforward means to integrate policies with the assembly of SCA modules and 
systems. 
 

3.6 Extensibility of SCA 

SCA aims to accommodate a wide variety of technologies.  As a result of this, SCA 
recognizes that it would be difficult to handle all potential technologies using a fixed 
set of features.  SCA provides extensibility mechanisms which allows SCA to be 
extended to integrate technologies not described in the main specification. 

There are 3 principal places for extension: 

1. Interface types  

2. Binding types 

3. Implementation types 

Interface types deal with technologies used to define service interfaces.  SCA 
describes Java interfaces and WSDL as two technologies in this space.  Other 
technologies for defining interfaces can be used, particularly where an implementation 
type naturally uses a different method for defining its interfaces. 

Binding types deal with different technologies for accessing a service.  There are 
potentially many of these and it will not always be desirable to map them to Web 
services, for example.  SCA allows for additional binding types to be defined, 
although new bindings will require the SCA runtime to have additional support added 
to use these new bindings. Adding the support for new bindings is transparent to 
application components. For example, adding a binding that supports the Session 
Initiation Protocol or SMTP requires extending the SCA runtime, and perhaps 
defining new policies, but would be transparent to application components. 



Service Component Architecture 

Whitepaper  November 2005 15

Implementation type describes the technology used to build a component 
implementation.  In principle this can be a very large set.  In addition to programming 
technologies, such as Java, COBOL, C++, BPEL and PHP, there are other types of 
implementation that are very useful in the services world.  Examples include 
declarative styles of programming such as XSLT scripts, XQuery and SQL.  There are 
also container-based solutions such as EJBs, Spring beans and Corba components.  
SCA is extensible so that all these different forms of implementation could be 
accommodated in an SCA runtime. 

In some cases, when considering how to link an existing technology to SCA there 
may be a choice about whether to define a new binding type or to define a new 
implementation type.  When a service runs within a runtime that does not support any 
SCA capabilities, then the component should be accessed using a binding that is 
appropriate for communicating with the component’s runtime.  However, if possible, 
the service runtime can be extended with SCA capabilities and a new SCA 
implementation type can be created for that runtime. 

The SCA abstract model is designed to ensure that implementing an SCA runtime 
with support for native bindings, interfaces and implementation types is natural. It is 
anticipated that there will be SCA compliant runtimes for relational database systems, 
transaction processing monitors, and so on. Web service protocols, along with 
optimized bindings and protocols, will provide interoperability between SCA 
runtimes. 

 

3.7 In Summary: SCA Model Characteristics 
 
1. Application logic is divided up into application components that implement 

business services 

2. Components have business-oriented, service-oriented interfaces. Components do 
not have interfaces that reflect middleware abstractions; they have interfaces that 
reflect business abstractions  

3. Application components can be reused by “wiring” together new and existing 
application components to create new solutions.  This assembly capability of SCA 
can integrate existing and new assets based on multiple heterogeneous 
technologies into a composite service network. 

4. SCA implements a separation between the concerns of a component implementer 
and the concerns of a system assembler creating a solution by wiring together 
existing components and services.  

5. SCA can be implemented on top of a broad range of middleware environments 

6. Components are described and used in the same way regardless of the language or 
technologies used to implement the component. 

7. SCA allows “qualities of service” such as transactions, security and reliable 
asynchronous invocation to be applied to components declaratively and 
dynamically without requiring programming using complex API calls. 



Service Component Architecture 

Whitepaper  November 2005 16

8. Irrespective of whether a component is local to the deployment unit or remote, the 
component is accessed through its defined business interface.  SCA provides for 
assembly of components at multiple levels, allowing greater control and visibility 
of application artifacts. 

9. A variety of resources such as Web services, EIS functions, remote EJBs can be 
modeled as remote components, and can generally be used without regard to the 
underlying implementation technology or of the transport. Some transports impose 
limitations on the qualities of service that can be supported. 

10. SCA supports multiple technologies for expressing the interfaces of components, 
including WSDL and Java interfaces. 

11. Components with business service interfaces are used to provide access to data – 
separating issues related to data persistence from the business logic. This also 
facilitates portability of components between different runtimes. 

12. Infrastructure capabilities, such as Security and Transactions, are applied to 
component interactions rather than being accessed through code.  This helps keep 
the business logic code clear of infrastructure concerns. 

13. Application components can be “customized” either at development time or at 
run-time, by delegating decisions to other components using the “strategy pattern” 
[18]. 

14. SCA defines an abstract model for implementing components and for accessing 
components.  The model supports multiple concrete implementations in a wide 
variety of programming languages and technologies, including Java, C++, BPEL 
and XSLT scripts.  SCA attempts to be "minimally intrusive" with few APIs and, 
where supported, uses techniques such as dependency injection to eliminate the 
use of APIs altogether. 

15. The preferred form for data exchanged between components via remotable 
business interfaces is that defined by the Service Data Objects (SDO) specification 
[2].  

 



Service Component Architecture 

Whitepaper  November 2005 17

4 Use Cases 
SCA aims to support potentially large and complex business solutions built using 
SOA.  However, there are some typical use cases for SCA that are used as the 
building blocks of larger applications.  This section describes some of these use cases. 

4.1 Providing a Web Service to External Users 
Providing a Web service which can be used by external users (for example, users in 
other businesses, connecting via the Internet), SCA involves the following basic steps: 
 

• Define the service interface, concentrating on the set of business operations 
required and the format of the data (message) that is supplied to each operation 
and the format of the data that is returned.  The service interface can be 
defined using WSDL or with a Java interface. 

• Write an implementation of the service, using one of the implementation 
types, such as Java or BPEL, providing the business function for each 
operation. 

• Create an SCA module which contains a component which configures the 
implementation.  The module has an entry point which declares the service 
interface and which has a Web services binding – this makes the service 
available for external users.  The entry point references the component.  

4.2 Connecting to an External Web Service 
To use a Web service provided externally involves: 
 

• Obtain the WSDL which defines the Web service interface. 
• (optional, if producing a Java implementation) Produce a Java interface that is 

a mapping of the WSDL interface.  Using a Java interface makes the 
programming of a Java implementation simpler. 

• Write an implementation which uses the service, providing the business 
function which uses the Web service.  This could be done using Java or using 
BPEL, for example. Declare a reference to the target web service.  
In Java, the implementation code is given the service through dependency 
injection (or through an API, when dependency injection isn't available) and it 
concentrates on the business function and the data values which are passed to 
the service and returned from it.   
In BPEL, the reference service is simply a partner link which is satisfied by 
the actual service wired to the reference in the SCA configuration.  The 
partner link is used when the BPEL process executes. 
In all implementations, no details of the Web services protocol are exposed to 
the implementation code.  

• Create an SCA module which contains a component which uses the 
implementation.  The module also has an external service which declares the 
service interface and which has a Web services binding pointing to the target 
service.  The reference of the component is wired to the external service. 



Service Component Architecture 

Whitepaper  November 2005 18

4.3 Asynchronous Use Case 

Asynchronous services are a common pattern for applications built using SOA.  A 
simple example often used is the case of a travel agency booking a trip for someone, 
where the trip can involve booking a series of items from different suppliers – for 
example, a flight, a rental car and a hotel.  The reason for doing this is that the 
booking with each supplier can take some time and it will save time overall if the 
three bookings are executed at the same time, rather than performing them one after 
the other. 

A way of writing the travel agency application is where the steps involving the 
booking of the flight, the rental car and the hotel are all modeled as asynchronous 
services.  This can be done using a callback style of interaction, for example, where 
each of the booking services calls back to the travel agency application once it is 
complete.  The travel agency application is then set up to call all three services and to 
wait for the callbacks to arrive from each of the booking services – or to time out if all 
three do not respond within some set interval. 

It is common to write a business process, such as the travel agency trip booking 
process in this example, using the WSBPEL language [12].  WSBPEL makes the use 
of asynchronous services a particularly natural way of building business solutions.  
SCA makes it straightforward to create components that use asynchrony and to 
assemble them into an overall business solution.  In this case, each of the 
asynchronous services (flight booking, etc) could use a callback interface to signal 
their completion to the trip booking process.  This would be reflected in a series of 
partner links within a BPEL implementation of the trip booking process. 



Service Component Architecture 

Whitepaper  November 2005 19

5 Integration with Commonly Used Technologies 
Frequently when assembling new business processes and composite applications, it is 
most cost effective to incorporate existing infrastructures into the new development, 
rather than altering or replacing them.  On other occasions, there are performance 
requirements that can not be achieved unless a native binding to the underlying 
endpoint or implementation is used.  For example, there is a significant set of existing 
EJB based applications across the industry.  

SCA provides the ability to access services that are deployed outside of the SCA 
system through the use of external services, which may use any of a variety of 
bindings for communicating with the service provider.  Similarly, entry points are 
available for making SCA services available to external consumers via a variety of 
bindings. This binding approach is the simplest form of integration of SCA 
components with code implemented using other commonly used technologies. 

However, it is frequently desirable to mix SCA services developed using the SCA 
programming model with code developed using other technologies.  When used in 
this way, SCA provides a unifying mechanism for wiring service clients to service 
providers irrespective of the technologies they were developed with. Many application 
framework technologies offer similar sets of fundamental capabilities, such as 
publishing services, using services, and configuring services.  These technologies can 
be mapped onto the equivalent concepts within SCA. 

For each technology, there is a set of possible techniques for integration - call the 
technology being integrated “X”: 
    
1. Call from SCA to X and from X to SCA using a Binding. 
2. X concepts are configured via SCA module components (X defines an entire SCA 

module) and SCA system assembly can be used to integrate the module 
component with other module components. 

3. Create a new implementation type that allows hosting X component 
implementations as SCA components (X provides pieces of an SCA module) 

4. Develop SCA module artifacts as part of the implementation of X (e.g. an SCA 
module as part of a J2EE WAR) 

The current SCA assembly specification includes general mechanisms for integrating 
other technologies, but detailed descriptions of specific integrations do not yet exist.  
The rest of this section provides thoughts on the approach that will be taken for some 
significant technologies. 

5.1 Using the SCA Client Model 

Whenever code based on another technology is used as part of an SCA module, the 
non-SCA code can use SCA services via the SCA client model.  In the case of Java, 
any code that is in the same module as SCA components can get access to an SCA 
service with code that looks like this: 
 
ModuleContext mc = CurrentModuleContext.getContext(); 
StockQuoteService sq =  
  (StockQuoteService)mc.locateService(“StockComponent/QuoteService”); 



Service Component Architecture 

Whitepaper  November 2005 20

float price = sq.getQuote( “AZZ” ); 

When services are accessed from non-SCA component code, the services are located 
by the name of the service within the module, rather than by configuring and using an 
SCA reference. 

When SCA is integrated with technologies which support dependency injection, like 
Spring and EJB 3.0, the reference to the SCA service could be injected (it would be 
present in the configuration of the technology), so no API call is necessary.  This is 
not possible for technologies like EJB 2.1, which require the explicit use of APIs. 

5.2 J2EE 1.4 Integration 
 
SCA provides specific support for J2EE applications and component types to make 
the inclusion of existing J2EE assets into an SCA system as simple as possible. J2EE 
1.4 artifacts can be integrated with SCA at a number of different levels.  J2EE 
applications can be used in their entirety as a module within an SCA system.  This is 
called system-level integration, since the communication is between components at 
the system level. 
 
It is also possible to use J2EE modules within SCA modules, which is called module-
level integration.  With this level of integration, an SCA module may reference 
components whose component type is defined using a J2EE module (WAR, or EJB 
JAR).  This closer level of integration can also involve the direct use of EJBs as SCA 
implementation types. 
 
For both system-level integration and module-level integration, it is possible to map 
J2EE environment variables onto SCA properties.  The name of the property is the 
same as the JNDI name of the environment entry, without the java:comp/env prefix.  
For system-level integration the property will have already been given a value by the 
J2EE application, but SCA can override this by specifying a property value on the 
module component within the system. 
 
The immediate value of this first class integration of J2EE with SCA is in enabling the 
participation of the large installed base of J2EE 1.3 and 1.4 application environments 
which include: 
 

1. Custom applications built with Servlet, JSP, EJB and JMS foundation 
technologies 

2. Third party JCA adapters, frequently provided by third party adapter vendors,  
for business applications such as SAP, Oracle, Peoplesoft, Siebel and others. 

3. Integration products based on J2EE 1.3 and 1.4 technologies 
 

5.2.1 Using SCA Services from Servlets and JSPs 
 
Where a Servlet or a JSP needs to access SCA services, it uses the SCA client model 
defined previously. 
 



Service Component Architecture 

Whitepaper  November 2005 21

5.2.2 Linking to J2EE Applications via Bindings 
 
J2EE applications which expose services as Web services can be accessed from SCA 
using a Web services binding.  Where J2EE applications expose Stateless Session 
Bean interfaces, a SCA provides a native binding which can be used to invoke the 
EJB interfaces from an SCA client using the RMI/IIOP protocol.  Equally, an SCA 
component can expose its service using the same binding – allowing that component 
to be invoked from an EJB as if it were an EJB reference. 

5.2.3 System-Level J2EE Integration 
 
Using a J2EE application deployed within an SCA system as a complete SCA 
module, integration between SCA and J2EE stateless session beans is possible. Each 
remote stateless EJB within a J2EE application is mapped to an SCA entry point 
whose interface is the remote interface of the EJB.  An EJB can invoke an SCA 
service as if it were an EJB if the SCA service offers an EJB binding, with the EJB 
reference being treated as an SCA external service.  
 
System level integration of a J2EE application is also possible where it provides or 
uses J2EE Web services.  Web services exposed by the J2EE application are mapped 
to SCA entry points and Web services used by the J2EE application are mapped to 
external services, both using Web services bindings. 
 

5.2.4 Module-Level Integration with J2EE 
 
Closer integration between SCA components and J2EE is accomplished by using 
stateless EJBs as components within an SCA module.  There is an implementation 
type that corresponds to this: <implementation.ejb>. 
 
When an EJB is used as a component type, the service provided by the 
implementation is the same as the remote interface of the EJB.  The SCA properties 
are the environment entries defined for the EJB.  An EJB may have required EJB 
references that are not resolved within the EJB J2EE module: these are treated as 
service references of the component and they can be satisfied by wiring them to SCA 
services offering an EJB binding.   
 

5.2.5 JCA Adapters 
 
JCA resource adapters provide a mechanism within J2EE for connecting to enterprise 
applications.  While J2EE applications that make use of resource adapters can still 
work within an SCA system, it is not expected that SCA components will directly use 
standard JCA resource adapters.  One way for an SCA component to make use of an 
enterprise application is through an external service binding that uses a protocol that is 
provided by the enterprise application.  An alternative way that SCA components 
might communicate with a JCA adapter is via a stateless session EJB, which, in turn, 
communicates via the adapter. 
 



Service Component Architecture 

Whitepaper  November 2005 22

Newer JCA adapters may implement the interfaces defined by the Enterprise 
Metadata Specification (EMD) [8].  Services in the enterprise application can be 
discovered (via tooling) using a JCA adapter which supports EMD.  The discovered 
service, an EMD Service Description, can be saved as an SCA entry point or as an 
SCA external service with a JCA binding.  
 

5.3 Spring 
 
The Spring Framework [11] is a popular platform used to construct Java applications.  
It aims to reduce the complexity of the programming environment and shares many of 
the same design principles as SCA.  In particular, Spring provides a runtime container 
that provides dependency injection so that application components can avoid the need 
to program directly to middleware APIs. 
 
SCA views Spring as a natural partner which can be used as a component 
implementation technology. The Spring framework can be used to create components 
and wire them within a module using its dependency injection capabilities. SCA may 
be used to extend the capabilities of Spring components by publishing Spring beans as 
entry points to be accessed as services by other modules as well as by providing 
Spring beans with service references wired to services of other modules. As the SCA 
specification evolves in the community, it is hoped that SCA and Spring will define a 
deeper integration so that developers can further leverage the strengths of both 
technologies in their applications. 
 
SCA can add useful capabilities to an application implemented using Spring, for 
example:  

• support for remote components and multiple protocols 
• support for components written in a variety of programming languages  
• support an asynchronous programming model 

 
Planned integration between SCA and Spring will make Spring a natural way to build 
SCA components. 

5.4 Java Enterprise Edition  5 
The impending release of Java EE 5.0 in 2006 simplifies and improves ease of use 
characteristics in EJB 3.0.  The most significant of the changes in EJB3 concerns 
dependency injection and the persistence model. The adoption of modern 
programming principles directly in Java EE 5.0 will result in good affinity between 
Java oriented component development with EJB 3.0 and service oriented assembly 
and composition with SCA, and is expected to provide EJB programmers with a more 
comprehensive platform for the implementation of solutions using an SOA.  
 

5.4.1 EJB 3.0 Simplified Session Beans 
EJB 3.0 simplified session beans can be used naturally as SCA component 
implementations. With EJB 3.0’s dependency injection, it is possible for a reference 
to an SCA service to be injected onto an EJB 3.0 component, instead of requiring the 
EJB to use SCA client APIs to find the service reference.  EJB 3.0 can also inject 



Service Component Architecture 

Whitepaper  November 2005 23

environment entries onto the component.  As in J2EE 1.4, these environment entries 
can be configured as SCA properties. 

5.4.2 EJB 3.0 Persistence 
EJB 3.0 introduces a new persistence model that is based on object-relational mapping 
technology.  Unlike EJB2.1, EJB 3.0 entity beans are not remotable.  Therefore, in 
order to use EJB 3.0 entity beans directly from an SCA component, the entity beans 
need to be in the same module as the SCA component.  Also, the SCA container that 
is being used also needs to be a compliant EJB 3.0 container.  When that is the case, 
the EJB 3.0 mechanisms for accessing entity managers, persistent contexts and entity 
beans can be used as described in the EJB 3.0 specification.   
 

5.5 JMS and Messaging Systems 

JMS may be used in two different ways within SCA:  
1) As a transport for a service operation 
2) As a provider of queue and topic services. 

 
In both cases, JMS is handled via a Binding - <binding.jms…. />. 
 
When JMS is used purely as the transport for a service operation, JMS queues are not 
visible artifacts within the development environment, although they are visible to 
administrators. 
 
However, there are times when it makes sense for JMS queues to be exposed as 
explicit services that are available to the developer.  For example, when several 
services draw work from the same work queue, the services that enqueue work are 
written to an API that is explicitly putting work on a queue.  Similarly, a JMS topic 
must be represented as an explicit component, since message publishers publish to a 
topic.  

The value of exposing JMS concepts as SCA concepts, rather than just accessing them 
through the JMS API, is that SCA can then be used for the static wiring between JMS 
clients and destinations. Thus there is the simplicity common model for integrating 
components through interfaces and wires that support both simple service invocations 
and also the pub/sub style commonly used with messaging systems.  This also 
provides flexibility both when building components and when assembling systems 
since developers can provide components that can be integrated using synchronous 
call/return, asynchronous calls or pub/sub transparently to the component’s 
implementation. 
 

5.6 Web Services using JAX-RPC / JAX-WS and Axis 
 
There are existing technologies for implementing Web services clients and 
implementations.  In Java, there are the JAX-RPC and the new JAX-WS APIs, which 
can be used in conjunction with a variety of runtime technologies including J2EE 
servers and the popular Apache Axis runtime [6].  There is an Axis runtime also 
available for C++.   



Service Component Architecture 

Whitepaper  November 2005 24

 
SCA components can be linked with Web services of these types using Web services 
bindings, both as clients and as implementations. 
 

5.6.1 REST Web Services 
 
REST [7] provides a simpler way of implementing basic Web services which can suit 
the needs of some SOA implementations.  Over the last several years, some of the 
larger successful e-commerce portals, clearing houses and search engines such as 
Yahoo, Amazon and E-Bay have provided their customer facing service API’s using 
plain old XML (“POX”) or in a number of cases explicitly called their API’s REST 
oriented.  The goal of this has been to reduce the learning curve of their programming 
model and significantly simplify the overhead required to interact with their services. 
 
SCA will support REST style Web services by supporting a REST Web services 
binding.  SCA components can implement REST style Web services by means of 
offering their services using the REST binding.  Similarly, SCA components can 
invoke REST style Web services through the REST binding.  Other than a change of 
binding, using REST Web services is similar to the use of Web services using SOAP 
and WSDL bindings. 



Service Component Architecture 

Whitepaper  November 2005 25

6 Future Directions 
The current SCA specification is the foundation of a programming environment tuned 
to the needs of building SOA solutions.  SCA also provides a model that unifies and 
simplifies many concepts, and enables a simplified suite of development tools. 
However, the current specification is published as a “0.9” level of specification and it 
is not intended to be a complete and final document.  The current document 
concentrates on core capabilities and invites community feedback, especially on some 
of the more complex areas.  Future versions of the specification will add capabilities 
in a number of significant areas and will reflect input from the wider community. 

6.1 Bindings 
The current bindings defined in the specification are limited to SCA binding and 
WSDL-described Web services.  Additional bindings will be defined, including the 
following: 
 

• JMS and Messaging bindings 
• Queue and Topic bindings for messaging systems 
• J2EE EJB bindings 
• Web services bindings that conform to specific Profiles, such as the WS-I 

Basic Profile [4] and Basic Security Profile [5] 

6.2 Implementation types 
The current SCA spec defines implementation types for Java, local Java and for 
BPEL.  This list is expected to grow quite rapidly to include implementations that use  
a variety of programming languages and technologies, including for example: 
 

• C++ 
• PHP 
• XSLT 
• Java EJB 
• XQuery 
• SQL 

6.3 Policy, Security, Transactions and Reliable Messaging 
Important aspects of an SOA system in the areas of Security, Transactions and 
Reliable Messaging are not part of the main SCA specification at present.  Much 
thought has gone into how to structure these often complex areas and this thinking is 
described in an Appendix to the specification – with the main emphasis on presenting 
a simple model to the end-programmer using Policies, while still preserving the 
flexibility required by the experts in these fields. 
 
In future versions of the SCA specification, the areas covered in the Appendix will 
migrate into the main body of the specification, updated to reflect community 
feedback on the current proposals. 

6.4 Asynchronous and Message-Oriented Model 
 



Service Component Architecture 

Whitepaper  November 2005 26

The Asynchronous and Message-Oriented model for SCA services is currently not 
part of the main body of the SCA specification – it is an appendix which presents a 
detailed proposal for how these facilities will be presented under SCA.  Asynchronous 
programming is a complex area and the writers of the SCA specification are looking 
for community feedback on these proposals before including this function in the main 
body of the specification.   



Service Component Architecture 

Whitepaper  November 2005 27

7 References 
[1] SCA Specification 
 
Any one of: 

• http://dev2dev.bea.com/technologies/commonj/index.jsp 

• http://www.ibm.com/developerworks/library/specification/ws-sca/ 

• http://www.iona.com/devcenter/sca/ 

• http://oracle.com/technology/webservices/sca 

• https://www.sdn.sap.com/  

• http://www.sybase.com 

 
[2] SDO Specification 
  
• http://dev2dev.bea.com/technologies/commonj/index.jsp 

• http://www.ibm.com/developerworks/library/specification/ws-sdo/ 

• http://oracle.com/technology/webservices/sca 

• https://www.sdn.sap.com/ 

• http://www.xcalia/xdn/specs/sdo 

• http:/www.sybase.com 

 
[3] SCA Sample application “Building your first application – Simplified BigBank” 
 
Any one of: 

• http://dev2dev.bea.com/technologies/commonj/index.jsp 

• http://www.ibm.com/developerworks/library/specification/ws-sca/ 

• http://www.iona.com/devcenter/sca/ 

• http://oracle.com/technology/webservices/sca 

• https://www.sdn.sap.com/  

• http://www.sybase.com 

 
[4] WS-I Basic Profile 
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile 
 
[5] WS-I Basic Security Profile 
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicsecurity 
 
[6] Apache Axis 
http://ws.apache.org/axis/ 
 

http://dev2dev.bea.com/technologies/commonj/index.jsp
http://www.ibm.com/developerworks/library/specification/ws-sca/
http://www.iona.com/devcenter/sca/
http://oracle.com/technology/webservices/sca
https://www.sdn.sap.com/
http://www.sybase.com/
http://dev2dev.bea.com/technologies/commonj/index.jsp
http://www.ibm.com/developerworks/library/specification/ws-sdo/
http://oracle.com/technology/webservices/sca
https://www.sdn.sap.com/
http://www.xcalia/xdn/specs/sdo
http://www.sybase.com/
http://dev2dev.bea.com/technologies/commonj/index.jsp
http://www.ibm.com/developerworks/library/specification/ws-sca/
http://www.iona.com/devcenter/sca/
http://oracle.com/technology/webservices/sca
https://www.sdn.sap.com/
http://www.sybase.com/
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicsecurity
http://ws.apache.org/axis/


Service Component Architecture 

Whitepaper  November 2005 28

[7] REST Web services 
There is no single definitive source for REST Web services.  The following articles 
represent good starting points and refer to multiple sources of information about 
REST-style Web services: 
http://www.xfront.com/REST-Web-Services.html 
 and 
http://www.xml.com/pub/a/2004/08/11/rest.html 
 
[8] Enterprise Metadata Specification 
http://www-128.ibm.com/developerworks/library/specification/j-emd/ 
 or 
http://dev2dev.bea.com/wlplatform/commonj/ 
 
[9] JAX-WS Specification 
http://www.jcp.org/en/jsr/detail?id=224 
 
[10] JAX-RPC Specification 
http://jcp.org/en/jsr/detail?id=101 
 
[11] Spring Framework 
http://www.springframework.org/ 
 
[12] WSBPEL 
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/ 
http://www.oasis-open.org/committees/download.php/14616/wsbpel-specification-
draft.htm 
 
[13] Java Message Service (JMS) 
http://java.sun.com/products/jms/docs.html 
 
[14] J2EE Connector Architecture (JCA) 
http://java.sun.com/j2ee/connector/download.html 
 
[15] XSL Transformations (XSLT) 
http://www.w3.org/TR/xslt 
 
[16] XQuery Specification 
http://www.w3.org/TR/2005/WD-xquery-20050915/ 
 
[17] WS-Policy Specification 
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/ 
 
[18] The Strategy Pattern 
Design Patterns -- Elements of Reusable Object-Oriented Software 
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides 
 
[19] Web Services Definition Language (WSDL) 
http://www.w3.org/TR/wsdl 
http://www.w3.org/TR/wsdl20/ 
  

http://www.xfront.com/REST-Web-Services.html
http://www.xml.com/pub/a/2004/08/11/rest.html
http://www-128.ibm.com/developerworks/library/specification/j-emd/
http://dev2dev.bea.com/wlplatform/commonj/
http://www.jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=101
http://www.springframework.org/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www.oasis-open.org/committees/download.php/14616/wsbpel-specification-draft.htm
http://www.oasis-open.org/committees/download.php/14616/wsbpel-specification-draft.htm
http://java.sun.com/products/jms/docs.html
http://java.sun.com/j2ee/connector/download.html
http://www.w3.org/TR/xslt
http://www.w3.org/TR/2005/WD-xquery-20050915/
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
http://www.amazon.com/exec/obidos/ASIN/0201633612/ref=nosim/ootips
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/

	Service Oriented Architecture and Web Services
	Service Implementations and Service Clients
	Java Implementation Type
	BPEL Implementation Type

	Assembly
	Module Assembly
	System Assembly

	Bindings
	Asynchronous and Message-Oriented Model
	Infrastructure Capabilities and Policies
	Extensibility of SCA
	In Summary: SCA Model Characteristics
	Providing a Web Service to External Users
	Connecting to an External Web Service
	Asynchronous Use Case
	Using the SCA Client Model
	J2EE 1.4 Integration
	Using SCA Services from Servlets and JSPs
	Linking to J2EE Applications via Bindings
	System-Level J2EE Integration
	Module-Level Integration with J2EE
	JCA Adapters

	Spring
	Java Enterprise Edition  5
	EJB 3.0 Simplified Session Beans
	EJB 3.0 Persistence

	JMS and Messaging Systems
	Web Services using JAX-RPC / JAX-WS and Axis
	REST Web Services

	Bindings
	Implementation types
	Policy, Security, Transactions and Reliable Messaging
	Asynchronous and Message-Oriented Model

