

SSSCCCAAA SSSeeerrrvvviiiccceee CCCooommmpppooonnneeennnttt
AAArrrccchhhiiittteeeccctttuuurrreee
Client and Implementation Model Specification

for C++

SCA Version 0.9, November 2005

Technical Contacts: Mike Greenberg IONA Technologies

 Todd Little BEA Systems, Inc.

 Brian Lorenz Sybase, Inc.

 Pete Robbins IBM Corporation

 Colin Thorne IBM Corporation

 Steve Vinoski IONA Technologies

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

ii

Copyright Notice

© Copyright BEA Systems, Inc., International Business Machines Corp, IONA Technologies, Sybase, Inc. 2005. All
rights reserved.

License

The Service Component Architecture Specification is being provided by the copyright holders
under the following license. By using and/or copying this work, you agree that you have read,
understood and will comply with the following terms and conditions:

Permission to copy and display the Service Component Architecture Specification and/or portions
thereof, without modification, in any medium without fee or royalty is hereby granted, provided
that you include the following on ALL copies of the Service Component Architecture Specification,
or portions thereof, that you make:

1. A link or URL to the Service Component Architecture Specification at these locations:

• http://dev2dev.bea.com/technologies/commonj/index.jsp

• http://www.ibm.com/developerworks/library/specification/ws-sca/

• http://www.iona.com/devcenter/sca/

• http://www.sybase.com

2. The full text of this copyright notice as shown in the Service Component Architecture
Specification.

BEA, IBM, IONA (collectively, the “Authors”) agree to grant you a royalty-free license, under
reasonable, non-discriminatory terms and conditions to patents that they deem necessary to
implement the Service Component Architecture Specification.

THE Service Component Architecture SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS
SPECIFICATION AND THE IMPLEMENTATION OF ITS CONTENTS, INCLUDING, BUT NOT LIMITED
TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT OR TITLE.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF
THE SERVICE DATA OBJECTS SPECIFICATION.

http://dev2dev.bea.com/technologies/commonj/index.jsp
http://www.ibm.com/developerworks/library/specification/ws-sca/
http://www.iona.com/devcenter/sca/
http://www.sybase.com/

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

iii

The name and trademarks of the Authors may NOT be used in any manner, including advertising
or publicity pertaining to the Service Component Architecture Specification or its contents
without specific, written prior permission. Title to copyright in the Service Component
Architecture Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Status of this Document
This specification may change before final release and you are cautioned against relying on the
content of this specification. The authors are currently soliciting your contributions and
suggestions. Licenses are available for the purposes of feedback and (optionally) for
implementation.

IBM is a registered trademark of International Business Machines Corporation.

BEA is a registered trademark of BEA Systems, Inc.

IONA and IONA Technologies are registered trademarks of IONA Technologies plc.

Sybase is a registered trademark of Sybase, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

iv

Table of Contents

Copyright Notice ... ii
License .. ii
Status of this Document...iii

1. Client and Implementation Model .. 1
1.1. Introduction... 1
1.2. Basic Component Implementation Model .. 1

1.2.1. Implementing a Service .. 1
1.2.2. Implementing a Configuration Property ... 5
1.2.3. Component Type and Component ... 6

1.3. Basic Client Model... 8
1.3.1. Accessing Services from Component Implementations ... 8
1.3.2. Accessing Services from non-SCA component implementations............................... 9
1.3.3. Calling Service Methods .. 10

1.4. Error Handling.. 10
1.5. C++ API.. 11

1.5.1. Module Context.. 11
1.5.2. Component Context.. 11
1.5.3. ServiceList .. 12

1.6. Proposed Future Additions to the Specification .. 12
2. Appendix 1 .. 13

2.1. Packaging and Deployment .. 13
2.1.1. Module Packaging .. 13
2.1.2. Subsystem Packaging ... 14
2.1.3. Deployment... 14
3. Appendix 2 .. 15

3.1. Types Supported in Service Interfaces ... 15
3.1.1. Local service ... 15
3.1.2. Remotable service.. 15
4. Appendix 3 .. 16

4.1. Restrictions on C++ header files ... 16
5. Appendix 4 .. 17

5.1. XML Schemas... 17
5.1.1. sca-interface-cpp.xsd.. 17

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

v

5.1.2. sca-implementation-cpp.xsd .. 18
6. References... 19

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

1

1. Client and Implementation Model

1.1. Introduction
This document describes the SCA Client and Implementation Model for the C++ programming
language.

The SCA C++ implementation model describes how to implement SCA components in C++. A
component implementation itself can also be a client to other services provided by other
components or external services. The document describes how a C++ implemented component
gets access to services and calls their methods.

The document also explains how non-SCA C++ components can be clients to services provided
by other components or external services. The document shows how those non-SCA C++
component implementations get access to services and call their methods.

1.2. Basic Component Implementation Model
This section describes how SCA components are implemented using the C++ programming
language. It shows how a C++ implementation based component can implement a local or
remotable service, and how the implementation can be made configurable through properties.

Every component implementation is itself also a client of services, this aspect of a component
implementation is described in the basic client model section.

1.2.1. Implementing a Service

A component implementation based on a C++ class (a C++ implementation) provides one or
more services.

The services provided by the C++ implementation have an interface which is defined using the
declaration of a C++ abstract base class. An abstract base class is a class which has only pure
virtual methods. This is the service interface.

The C++ class based component implementation must implement the C++ abstract base class
that defines the service interface.

There is the intention in a future specification to specify how a C++ base class can be generated
from a WSDL portType.

The following snippets show the C++ service interface and the C++ implementation class of a
C++ implementation.

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

2

Service interface.

// LoanService interface
class LoanService {
public:
 virtual bool approveLoan(unsigned long customerNumber,

 unsigned long loanAmount) = 0;
};

Implementation declaration header file.

class LoanServiceImpl : public LoanService
{
public:
 LoanServiceImpl();
 virtual ~LoanServiceImpl();

 virtual bool approveLoan(unsigned long customerNumber,

 unsigned long loanAmount);
};

Implementation.

#include "LoanServiceImpl.h"

LoanServiceImpl::LoanServiceImpl()
{
 …
}
LoanServiceImpl::~LoanServiceImpl()
{
 …
}

bool LoanServiceImpl::approveLoan(unsigned long customerNumber,

 unsigned long loanAmount)
{
 …
}

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

3

The following snippet shows the component type for this component implementation.

<?xml version="1.0" encoding="ASCII"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/0.9">
 <service name="LoanService">
 <interface.cpp header="LoanService.h"/>
 </service>
</componentType>

The following picture shows the relationship between the C++ header files and implementation
files for a component that has a single service and a single reference.

Service Component
Service1

class LoanService {
public:

… operation(…)

};

LoanService.h

class LoanService {
public:

… operation(…)

};

LoanService.h

class CustomerService {
public:

… operation(…)

};

CustomerService.h

class CustomerService {
public:

… operation(…)

};

CustomerService.h

class LoanServiceImpl :
public LoanService

{
public:

LoanServiceImpl();
…
};

LoanServiceImpl.h
LoanServiceImpl::

LoanServiceImpl()
{

…
}
…

LoanServiceImpl.cpp

1.2.1.1. Implementing a Remotable Service
Remotable services are services that can be published through entry points. Published services
can be accessed by clients outside of the module that contains the component that provides the
service.

Whether a service is remotable is defined by the interface of the service. In the case of C++ this
is defined by adding the remotable attribute to the C++ interface definition in the
componentType. The following snippet shows the component type for a remotable service:

<?xml version="1.0" encoding="ASCII"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/0.9">
 <service name="LoanService">
 <interface.cpp header="LoanService.h" remotable="true"/>
 </service>
</componentType>

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

4

The style of remotable interfaces is typically coarse grained and intended for loosely coupled
interactions. Remotable service Interfaces are not allowed to make use of method overloading.

Complex data types exchanged via remotable service interfaces must be compatible with the
marshalling technology that is used by any binding that is used for the service. For example, if
the service is going to be exposed using the standard web service binding, then the parameters
must be Service Data Objects (SDOs) 2.0 [1].

Independent of whether the remotable service is called from outside a module or from another
component in the same module the data exchange semantics are by-value.

Implementations of remotable services may modify input data during or after an invocation and
may modify return data after the invocation. If a remotable service is called locally or remotely,
the SCA container is responsible for making sure that no modification of input data or post-
invocation modifications to return data are seen by the caller.

1.2.1.2. Implementing a Local Service
A local service can only be called by clients that are part of the same module as the component
that implements the local service. Local services cannot be published through entry points.

Whether a service is local is defined by the interface of the service. In the case of C++ this is
defined by the remotable attribute being set to false or not being present on the interface
definition in the component type file.

The style of local interfaces is typically fine grained and intended for tightly coupled
interactions.

The data exchange semantics for calls to local services is by-reference. This means that code
must be written with the knowledge that changes made to parameters (other than simple types)
by either the client or the provider of the service can be seen by the other.

1.2.1.3. Implementing the Stateful Resource Pattern
The fact that a service has its state maintained by SCA is represented by the scope attribute on
the interface definition in the component type file. SCA refers to such a service as a scoped
service.

Clients accessing a scoped service will get a service instance according to scope. The following
are the currently supported scope values:

• stateless (default) – Each request is handled separately. C++ class instances may be
drawn from a pool of instances that are use to service requests.

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

5

• module – Service requests are delegated to the same C++ class instance for all requests
within the same “module”. The lifecycle of a module-scoped instance extends from the
point where the module component is loaded in the SCA runtime such that it is ready to
service requests until the module is unloaded or stopped. Registry lookups will return the
same module-scoped service instance for the duration of the module.

Note: The scope model is extensible and allows for new scopes to be defined. A future version of
the specifications will describe how to extend an SCA runtime to handle additional scopes.

The following snippet shows the component type for a module scoped component.

<componentType xmlns="http://www.osoa.org/xmlns/sca/0.9">
 <service name="LoanService">
 <interface.cpp header="LoanService.h" scope="module"/>
 </service>
</componentType>

For stateless scoped implementations, the SCA runtime will prevent concurrent execution of
methods on an instance of that implementation. However, module scoped implementations
must be able to handle multiple threads running its methods concurrently.

1.2.2. Implementing a Configuration Property

Component implementations can be configured through properties. The properties and their
types (not their values) are defined in the component type file. The C++ component can retrieve
the properties using the getProperties() on the ComponentContext class.

The following code extract shows how to get the property values.

#include "ComponentContext.h"
using namespace osoa::sca;

void clientMethod()
{

 …

 ComponentContext context = ComponentContext::getCurrent();

 DataObjectPtr properties = context.getProperties();

 long loanRating = properties->getLong(“maxLoanValue”);

 …

}

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

6

1.2.3. Component Type and Component
For a C++ component implementation, a component type must be specified in a side file. The
component type side file must be located in the same module directory as the header file for the
implementation class

This Client and Implementation Model for C++ extends the SCA Assembly model [2] providing
support for the C++ interface type system and support for the C++ implementation type.

The following snippet shows the schema for the C++ interface element used to type services and
references of component types.

<interface.cpp header="Name" class=”Name”? remotable="boolean"? scope="scope"/>

The interface.cpp element has the following attributes:

• header – full name of the header file, including relative path from the module root. This
header file describes the interface

• class – optional name of the class declaration in the header file, including any namespace
definition. If the header only contains one class then this class does not need to be
specified.

• remotable – optional boolean value indicating whether the service is remotable or local.
The default is local.

• scope – optional attribute indicating the scope of the component implementation. The
default is stateless.

The following snippet shows the schema for the C++ implementation element used to define the
implementation of a component.

<implementation.cpp dll="NCName" header="NCName" class=”Name”? />

The implementation.cpp element has the following attributes:

• dll – name of the dll or shared library that holds the factory for the service component.
The name of the dll may specify a path which is relative to the root of the module.

• header – The name of the header file that declares the implementation class of the
component. A path is optional which is relative to the root of the module.

• class – optional name of the class declaration of the implementation, including any
namespace definition. If the header only contains one class then this class does not need
to be specified.

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

7

The following snippets show the C++ service interface and the C++ implementation class of a
C++ implementation.

// LoanService interface
class LoanService {
public:
 virtual bool approveLoan(unsigned long customerNumber,

 unsigned long loanAmount) = 0;
};

Implementation declaration header file.

class LoanServiceImpl : public LoanService
{
public:
 LoanServiceImpl();
 virtual ~LoanServiceImpl();

 virtual bool approveLoan(unsigned long customerNumber,

 unsigned long loanAmount);
};

Implementation.

#include "LoanServiceImpl.h"

//
// Construction/Destruction
//
LoanServiceImpl::LoanServiceImpl()
{
 …
}
LoanServiceImpl::~LoanServiceImpl()
{
 …
}
//
// Implementation
//
bool LoanServiceImpl::approveLoan(unsigned long customerNumber,

 unsigned long loanAmount)
{
 …
}

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

8

The following snippet shows the component type for this component implementation.

<?xml version="1.0" encoding="ASCII"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/0.9">
 <service name="LoanService">
 <interface.cpp header="LoanService.h"/>
 </service>
</componentType>

The following snippet shows the component using the implementation.

<?xml version="1.0" encoding="ASCII"?>
<module xmlns="http://www.osoa.org/xmlns/sca/0.9"

 name="LoanModule" >

 …

 <component name="LoanService">
 <implementation.cpp dll="loan.dll" header="LoanServiceImpl.h”/>
 </component>

 …

</module>

1.3. Basic Client Model
This section describes how to get access to SCA services from both SCA components and from
non-SCA components. It also describes how to call methods of these services.

1.3.1. Accessing Services from Component Implementations

A service can get access a service using a component context. To access a service using the
module context two things have to be done:

1. the current component context must be retrieved

2. a method has to be called on the component context.

The following snippet shows the ComponentContext C++ class with its getService() method.

namespace osoa {
 namespace sca {

 class ComponentContext {
 public:
 static ComponentContext getCurrent();
 virtual void * getService(const char *referenceName);
 …
 }
 }
}

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

9

The getService() method takes as its input argument the name of the reference and returns a
pointer to an object providing access to the service. The returned object will implement the
abstract base class definition that is used to describe the reference.

The following shows a sample of how the ComponentContext is used in a C++ component
implementation. The getService() method is called on the ComponentContext passing the
reference name as input. The return of the getService() method is cast to the abstract base class
defined for the reference.

#include "ComponentContext.h"
#include "CustomerService.h"

using namespace osoa::sca;

void clientMethod()
{

 unsigned long customerNumber = 1234;

 …

 ComponentContext context = ComponentContext::getCurrent();

CustomerService* service =
(CustomerService*)context.getService("customerService");

 short rating = service->getCreditRating(customerNumber);

}

1.3.2. Accessing Services from non-SCA component implementations

The following sections describe how non-SCA components that are part of an SCA module get
access to services.

1.3.2.1. Using Module Context
Non-SCA code that is part of an SCA module can use the ModuleContext in their implementations
in order to find services. Non-SCA code is considered to be part of an SCA module if it has been
loaded in the same process and memory as an SCA module. One SCA module will be the default
module which is the first module to be loaded by the SCA runtime, and this module will be used
if an explicit module is not set.

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

10

The following snippet shows the ModuleContext C++ interface.

namespace osoa {
 namespace sca {

 class ModuleContext {
 public:
 static ModuleContext getCurrent();

 virtual void * locateService(const char *serviceName);
 …
 };
 }
}

The non-SCA component would include a line like the following in its implementation to get
access to the module context:

ModuleContext moduleContext = ModuleContext::getCurrent();

Once the module context is available, the required service can be found using the locateService()
method of the module context.

1.3.3. Calling Service Methods
The previous sections show the various options for getting access to a service. Once you have
access to the service, calling a method of the service is like calling a method of a C++ class.

If you have access to a service whose interface is marked as remotable, then on calls to methods
of that service you will experience remote semantics. Arguments and return are passed by-
value and you may get a ServiceUnavailableException, which is a RuntimeException.

1.4. Error Handling
Clients calling service methods will experience business exceptions, and SCA runtime exceptions.

Business exceptions are raised by the implementation of the called service method. They should
be caught by client invoking the method on the service.

SCA runtime exceptions are raised by the SCA runtime and signal problems in the management
of the execution of components, and in the interaction with remote services. Currently the
following SCA runtime exceptions are defined:

• ServiceRuntimeException - signals problems in the management of the execution of
SCA components.

• ServiceUnavailableException – signals problems in the interaction with remote
services. This extends ServiceRuntimeException. These are exceptions that may be

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

11

transient, so retrying is appropriate. Any exception that is a ServiceRuntimeException
that is not a ServiceUnavailableException is unlikely to be resolved by retrying the
operation, since it most likely requires human intervention.

1.5. C++ API
All the C++ interfaces are found in the namespace osoa::sca, which has been omitted from the
following descriptions for clarity.

1.5.1. Module Context

The following snippet shows the ModuleContext interface.

class ModuleContext {
public:
 static ModuleContext getCurrent();
 virtual void * locateService(const char *serviceName);
 virtual const char * getName();
 virtual const char * getURI();
 virtual DataObjectPtr getMetaData();
};

The ModuleContext C++ interface has the following methods:

• getCurrent() – a static method returning context for the current module.

• getName() – returns the name of the module.

• getURI() – returns the absolute URI of the module component.

• getMetaData() – returns an SDO data object pointer that represents the Module meta
data object. The module data object and all the other model data objects are created from
the SCA XML schema using the SDO 2.0 [1] XML schema to C++ mapping rules.

• locateService() – returns a pointer to an object implementing the interface defined for
the named service. Input to the method is the name of a service that is part of the same
SCA module. The service name must be the <component-name>/<service-name> where
the service-name is optional if the component has only one service defined

1.5.2. Component Context

The following snippet shows the ComponentContext interface.

class ComponentContext {
public:
 static ComponentContext getCurrent();
 virtual void * getService(const char *referenceName);
 virtual ServiceList getServices(const char *referenceName);
 virtual DataObjectPtr getProperties();

virtual DataFactoryPtr getDataFactory();
};

The ComponentContext C++ interface has the following methods:

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

12

• getCurrent() – returns the ComponentContext for the current component.

• getService() – returns a pointer to object implementing the interface defined for the
named reference. Input to the method is the name of a reference defined on this
component. An exception will be thrown if the reference resolves to more than one
service.

• getServices() – returns a list of objects implementing the interface defined for the
named reference. Input to the method is the name of a reference defined on this
component.

• getProperties() – Returns an SDO from which all the properties defined in the
componentType file can be retrieved.

• getDataFactory() – Returns an SDO DataFactory which can be used to create data
objects.

1.5.3. ServiceList
The ServiceList class holds a list of services that can individually be cast to the business
interface.

class ServiceList {
public:
 virtual void * operator[](int position);
 virtual unsigned int size(void);

};

• The ServiceList class provides the [] operator to allow access to the list by index.

• size() – The number of services in the list.

1.6. Proposed Future Additions to the Specification

The current version of the specification is acknowledged to be incomplete and there are a
number of areas where future versions of the specification will be expanded to cover additional
capabilities. Community feedback is welcomed for any of these topics. Some of these capabilities
include:

• An asynchronous programming model.

• A dynamic invocation interface.

• The use of annotations in header files to describe SCA artifacts without needing to include
the details in side files.

• The use of injection to set properties and references of a component implementation.

• A C++ to WSDL mapping.

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

13

2. Appendix 1

2.1. Packaging and Deployment

2.1.1. Module Packaging

The physical realization of an SCA module is a folder in a file system which is named like the
module and which must contain one and only one sca.module file at its root. The following shows
the MyValueModule just after creation in a file system.

 MyValueModule/
 sca.module

Besides the sca.module file the module contains artifacts that define the implementations of
components, and that define the bindings of external services and entry points. Samples for
artifacts would C++ header files, shared libraries (for example, dll), WSDL portType definitions,
XML schemas, WSDL binding definitions, and so on. These artifacts can be contained in
subfolders of the module, whereby programmers have the freedom to construct a folder
structure that best fits the needs of their project. The following shows the complete
MyValueModule folder file structure in a file system.

 MyValueModule/
 sca.module
 bin/
 myvalue.dll
 services/myValue/
 MyValue.h
 MyValueImpl.h
 MyValueImpl.componentType
 MyValueService.wsdl
 services/customer/
 CustomerService.h
 CustomerServiceImpl.h
 CustomerServiceImpl.cpp
 Customer.h
 services/stockquote/
 StockQuoteService.h
 StockQuoteService.wsdl

Note that the folder structure is not architected, other than the sca.module (and any .fragment
files) must be at the root of the folder structure.

Note that it is not possible in a module to mix component implementations written in C++ with
those written in any other language.

Addressing of the resources inside of the module is done relative to the root of the module
(i.e. the location of the sca.module file).

Shared libraries (including dlls) will be located as specified in the <implementation.cpp> element
in the sca.module file (or a .fragment file) relative to the root of the module.

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

14

XML definitions like XML schema complex types or WSDL portTypes are referenced by module
and component type files using URI’s. These URI’s consist of the namespace and local name of
these XML definitions. The module folder or one of its subfolders has to contain the XML
resources providing the XML definitions identified by these URI’s.

An SCA module is the smallest unit of deployment in an SCA system. Deployed modules are
used and configured in the SCA system by SCA subsystem configurations.

2.1.2. Subsystem Packaging

The physical realization of an SCA subsystem can be a folder in a file system or which is
named like the subsystem and which must contain one and only one sca.subsystem file at its
root. The following shows the MyValueSubsystem in a file system.

 MyValueSubsystem/
 sca.subsystem

Subsystems contain module components that use and configure instances of SCA modules
deployed in the SCA system.

2.1.3. Deployment
SCA Modules and SCA subsystems get deployed in SCA systems. An SCA system will have two
architected folders one named modules that contains the deployed SCA modules, and the other
named subsystems that contain the deployed SCA subsystems.

The modules folder contains one subfolder per module that either can contain the module
contents in expanded or archive form. Similarly the subsystems folder contains one subfolder per
subsystem that either can contains the subsystem contents in expanded or archive form.

See SCA Assembly model [2] for more description of the deployment model.

During deployment, the shared libraries packaged in an SCA Module may be moved to a different
location on the target system to be accessible at runtime. Also any shared libraries that are
dependencies on the libraries packaged in the SCA Module must be accessible by the normal
library loading rules for the target environment (for example, included on the PATH environment
variable on Windows, or in /usr/lib on Linux).

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

15

3. Appendix 2

3.1. Types Supported in Service Interfaces
A service interface can support a restricted set of the types available to a C++ programmer. This
section summarizes the valid types that can be used.

3.1.1. Local service
For a local service the types that are supported are:

• Any of the C++ primitive types (for example, int, short, char). In this case the types will
be passed by value as is normal for C++.

• Pointers to any of the C++ primitive types (for example, int *, short *, char *).

• The const keyword can be used for any pointer to a C++ primitive type (for example
const char *). If this is used on a parameter then the destination may not change the
value.

• C++ class. The class will be passed by value as is normal for C++.

• Pointer to a C++ class. A pointer will be passed to the destination which can then modify
the original contents.

• DataObjectPtr. An SDO pointer. This will be passed by reference.

• References to C++ classes (passed by reference)

3.1.2. Remotable service

For a remotable service being called by another service the data exchange semantics is by-value.
In this case the types that are supported are:

• Any of the C++ primitive types (for example, int, short, char). This will be copied.

• C++ classes. These will be passed using the copy constructor. The copy constructor must
make sure that any embedded references, pointers or objects are copied appropriately.

• DataObjectPtr. An SDO pointer. The SDO will be copied and passed to the destination.

Not supported:

• Pointers.

• References.

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

16

4. Appendix 3

4.1. Restrictions on C++ header files
A C++ header file that is used to describe an interface has some restrictions. It must:

• Declare at least one class with:

o At least one public method.

o All public methods must be pure virtual (virtual with no implementation)

The following C++ keywords and constructs must not be used:

• Macros

• inline methods

• friend classes

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

17

5. Appendix 4

5.1. XML Schemas
Two new XML schemas are defined to support the use of C++ for implementation and definition
of interfaces.

5.1.1. sca-interface-cpp.xsd
<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.commonj.org/xmlns/sca/v0.0.1/"
 xmlns:sca="http://www.commonj.org/xmlns/sca/v0.0.1/"
 xmlns:sdo="commonj.sdo/XML"
 elementFormDefault="qualified">

 <include schemaLocation="sca-core.xsd"/>

 <element name="interface.cpp" type="sca:CPPInterface"

substitutionGroup="sca:interface"/>

 <complexType name="CPPInterface">
 <complexContent>
 <extension base="sca:Interface">
 <attribute name="header" type="Name" use="required"/>
 <attribute name="class" type="Name" use="required"/>
 <attribute name="scope" type="sca:CPPScope" use="optional"/>
 <attribute name="remotable" type="boolean" use="optional"/>
 <anyAttribute namespace="##any" processContents="lax"/>
 </extension>
 </complexContent>
 </complexType>

 <simpleType name="CPPScope">
 <restriction base="string">
 <enumeration value="stateless"/>
 <enumeration value="module"/>
 </restriction>
 </simpleType>

</schema>

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

18

5.1.2. sca-implementation-cpp.xsd
<?xml version="1.0" encoding="UTF-8"?>
<!-- (c) Copyright BEA Systems Inc. and IBM Corporation 2005 -->
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.osoa.org/xmlns/sca/0.9"
 xmlns:sca="http://www.osoa.org/xmlns/sca/0.9"
 xmlns:sdo="commonj.sdo/XML"
 elementFormDefault="qualified">

 <include schemaLocation="sca-core.xsd"/>

 <element name="implementation.cpp" type="sca:CPPImplementation"

 substitutionGroup="sca:implementation" sdo:name="implementationCpp"/>
 <complexType name="CPPImplementation">
 <complexContent>
 <extension base="sca:Implementation">
 <sequence>
 <any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="dll" type="NCName" use="required"/>

<attribute name="header" type="NCName" use="required"/>
<attribute name="class" type="Name" use="optional"/>

 <anyAttribute namespace="##any" processContents="lax"/>
 </extension>
 </complexContent>
 </complexType>
</schema>

SCA Service Component Architecture

Client and Implementation Model for C++ November 2005

19

6. References

[1] SDO 2.0 Specification

Any one of:

• http://dev2dev.bea.com/technologies/commonj/index.jsp

• http://www.ibm.com/developerworks/library/specification/ws-sdo/

• http://oracle.com/technology/webservices/sca

• https://www.sdn.sap.com/

• http://www.xcalia/xdn/specs/sdo

• http:/www.sybase.com

[2] SCA Assembly Specification

Any one of:

• http://dev2dev.bea.com/technologies/commonj/index.jsp

• http://www.ibm.com/developerworks/library/specification/ws-sca/

• http://www.iona.com/devcenter/sca/

• http://oracle.com/technology/webservices/sca

• https://www.sdn.sap.com/

• http://www.sybase.com

http://dev2dev.bea.com/technologies/commonj/index.jsp
http://www.ibm.com/developerworks/library/specification/ws-sdo/
http://oracle.com/technology/webservices/sca
https://www.sdn.sap.com/
http://www.xcalia/xdn/specs/sdo
http://www.sybase.com/
http://dev2dev.bea.com/technologies/commonj/index.jsp
http://www.ibm.com/developerworks/library/specification/ws-sca/
http://www.iona.com/devcenter/sca/
http://oracle.com/technology/webservices/sca
https://www.sdn.sap.com/
http://www.sybase.com/

	Introduction
	Basic Component Implementation Model
	Implementing a Service
	Implementing a Remotable Service
	Implementing a Local Service
	Implementing the Stateful Resource Pattern

	Implementing a Configuration Property
	Component Type and Component

	Basic Client Model
	Accessing Services from Component Implementations
	Accessing Services from non-SCA component implementations
	Using Module Context

	Calling Service Methods

	Error Handling
	C++ API
	Module Context
	Component Context
	ServiceList

	Proposed Future Additions to the Specification
	Packaging and Deployment
	Module Packaging
	Subsystem Packaging
	Deployment

	Types Supported in Service Interfaces
	Local service
	Remotable service

	Restrictions on C++ header files
	XML Schemas
	sca-interface-cpp.xsd
	sca-implementation-cpp.xsd

