
TECHNICAL REPORT
CMU/SEI-2000-TR-001

ESC-TR-2000-001

The Architecture
Based Design Method

Felix Bachmann
*

Len Bass

Gary Chastek

Patrick Donohoe

Fabio Peruzzi
*

January 2000

* Fellix Bachmann and Fabio Peruzzi are employees
 of Robert Bosch, GmBH.

blank page (to be thrown out immediately before production)

Pittsburgh, PA 15213-3890

The Architecture
Based Design Method
CMU/SEI-2000-TR-001
ESC-TR-2000-001

Felix Bachmann
Len Bass
Gary Chastek
Pat Donohoe
Fabio Peruzzi

January 2000

Program Affiliation

Len Bass, Gary Chastek and Pat Donohoe work in the Product
Line Systems program of the Software Engineering Institute.
Felix Bachmann and Fabio Peruzzi are employees of Robert
Bosch, GmBH.

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col., USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2000 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2000-TR-001 i

Table of Contents

1 Introduction 1

2 Quick Overview of the ABD Method 3

3 Terminology 5
3.1 Design Elements 5
3.2 Perspectives and Views 6
3.3 Use Cases and Quality Scenarios 7

4 Architecture Design Considerations 9
4.1 Variabilities and Commonalities 9
4.2 Software Templates and System

Infrastructure 10
4.3 Architectural Drivers 11
4.4 Requirements, Quality Attributes,

Functionality and Architectural Styles 12

5 The ABD Method Within the Life Cycle 15
5.1 Abstract Functional Requirements 16
5.2 Use Cases 16
5.3 Abstract Quality and Business

Requirements 17
5.4 Architecture Options 17
5.5 Quality Scenarios 18
5.6 Constraints 18

6 The ABD Method 19
6.1 Design Elements Defined by the Method 19
6.2 Order of Generation of Design Elements 20
6.3 Activities within a Design Element 22

6.3.1 Divide Functionality 23
6.3.2 Choose Architectural Style 25
6.3.3 Allocate Functionality to Style 26
6.3.4 Refine Templates 26
6.3.5 Verify Functionality 27
6.3.6 Generate Concurrency View 28

ii CMU/SEI-2000-TR-001

6.3.7 Generate Deployment View 28
6.3.8 Verify Quality Scenarios 29
6.3.9 Verify Constraints 29

6.4 Next Steps 29

7 Conclusions and Further Work 31

8 References 33

Appendix A - Rose Model of an Example 35
A.1 Rose Constructs 35
A.2 Directory Structure 36

Appendix B. Example 41
B.1 Logical View 41
B.2 Concurrency View 42
B.3 Deployment View 43

CMU/SEI-2000-TR-001 iii

List of Figures

Figure 1: Labeling of Decomposition 6
Figure 2: The ABD Method within the Life Cycle 15
Figure 3: Decomposition of System into Design

Elements 20
Figure 4: Design Element A Decomposed into Design

Elements B and C 21
Figure 5: Steps within Decomposition of a Design

Element 22
Figure 6: Defining Logical View 23
Figure 7: Top Level Package Structure 36
Figure 8: Requirement Sub-Structure 38
Figure 9: Subdirectory Structure for the Architecture

Directory 40
Figure 10: Example Subsytem Structure 41
Figure 11: Thread View During Initialization 42
Figure 12: Mapping of Design Elements to Units of

Deployment 44
Figure 13: Alternative Node Structures 45
Figure 14: Distribution of the Units of Distribution and

Processes for the Product Based on Node
Structure 1 45

Figure 15: Distribution of the Units of Distribution and
Processes for the Product Based on Node
Structure 2 46

Figure 16: Communication Mechanisms for the Product
Based Node Structure 1 47

Figure 17: Communication Mechanisms for the Product
Based on Node Structure 2 47

Figure 18: Virtual Threads vs. Physical Threads 49
Figure 19: Use Case Mapping 50

iv CMU/SEI-2000-TR-001

CMU/SEI-2000-TR-001 v

Abstract

This paper presents the Architecture Based Design (ABD) method for designing the high-
level software architecture for a product line or long-lived system. Designing an architecture
for a product line or long-lived system is difficult because detailed requirements are not
known in advance. The ABD method fulfills functional, quality, and business requirements at
a level of abstraction that allows for the necessary variation when producing specific prod-
ucts. Its application relies on an understanding of the architectural mechanisms used to
achieve this fulfillment.

The method provides a series of steps for designing the conceptual software architecture. The
conceptual software architecture provides organization of function, identification of synchro-
nization points for independent threads of control, and allocation of function to processors.
The method ends when commitments to classes, processes and operating system threads be-
gin to be made. In addition, one output of the method is a collection of software templates
that constrain the implementation of components of different types. The software templates
include a description of how components interact with shared services and also include “citi-
zenship” responsibilities for components.

vi CMU/SEI-2000-TR-001

CMU/SEI-2000-TR-001 1

1 Introduction

Designing a software architecture for a product line of systems is a difficult undertaking.
Product lines must be long lived and flexible. Moreover, they must support a set of require-
ments that are known only in broad scope—the details are unknowable until the actual prod-
ucts are created. Furthermore, the initial stages of architecture design are where the most fun-
damental design decisions are made; these are the decisions that are the most difficult to
correct when they are in error. In order to effectively design a product line architecture, the
architect needs a disciplined design method that focuses the creative process; provides a
strategy for coping with the uncertainty in requirements; provides guidance in organizing the
decisions made during the design process; and makes clear why the steps of the method exist
and how they relate to each other.

In this report, we present the Architecture Based Design (ABD) method. The ABD method
provides structure in producing the conceptual architecture of a system. The conceptual ar-
chitecture is one of four different architectures identified by Hofmeister, Nord, and Soni
[Hofmeister 00]. It describes the system(s) being designed in terms of the major design ele-
ments and the relationships among them. The conceptual architecture represents the first de-
sign choices made during a development process. Consequently, it is pivotal to achieving the
quality and business goals for the system(s) and in providing a basis for the achievement of
the desired functionality.

The ABD method depends on determining the architectural drivers for a system. The archi-
tectural drivers are the combination of business, quality and functional requirements that
“shape” the architecture. With the ABD method, design activities can begin as soon as the
architectural drivers have been determined with confidence. This means that the requirements
elicitation and analysis activities do not have to be completed (or even very far along) prior to
beginning the design. The beginning of design activities does not mean that requirement
elicitation and analysis can be discontinued, only that they can go on in parallel with design
activities. Especially in situations where determining all of the requirements in advance is not
possible, such as for product lines or long-lived systems, the ability to quickly begin design
(and hence some level of construction) is important.

The ABD method has three foundations. First is the decomposition of function. For this the
method uses well-established techniques based on coupling and cohesion. The second foun-
dation is the realization of quality and business requirements through the choice of architec-
ture style. The third foundation is the use of software templates. Software templates have

2 CMU/SEI-2000-TR-001

been utilized in the construction of some systems [Bass 98, Chastek 96]. However, their use
is a new concept for design methods, and so we briefly introduce it now.

A software template defines what it means to be a software element of a particular type. This
includes patterns that describe how all elements of this type must interact with shared serv-
ices and the infrastructure. Also, a software template includes “citizenship” responsibilities
that pertain to all elements of that type. Examples of such responsibilities are “each element
shall log interesting events” and “each element shall provide test points for external diagnos-
tic during run time.” Software templates are particularly important in product line systems,
since the introduction of new elements is one common technique for managing the specializ-
ing of a product line architecture to a particular product.

The ABD method is recursive and the steps within each iteration are clearly defined. There-
fore it is always clear during use which design steps have been achieved and which remain.
This helps to make the process of architecture design less mysterious.

The ABD method has been used, in toto, in a project involving a next-generation automobile
and involving personnel from both the Software Engineering Institute (SEI) and Robert
Bosch GmbH. It has been used, in part, in other design projects in which the SEI has assisted.
Thus, while the ABD method is still evolving, it is sufficiently mature to have been used in
actual projects and it has been developed based on experiences in designing large product
line architectures.

We begin this report by providing a quick sketch of the ABD method. We continue by dealing
with several terminological issues and introducing some basic concepts. We then position the
ABD method within the life cycle and describe the method, itself. We also include several
appendices. One describes how a design generated using ABD has been represented using an
existing commercial design tool; the other gives an example of the interaction of several
views generated by the ABD method.

CMU/SEI-2000-TR-001 3

2 Quick Overview of the ABD Method

In this section, we present a quick overview of the ABD method. Everything we discuss in
this section will be elaborated in subsequent sections, but we want the reader to have an
overview of the method before we plunge into the details.

The input to the ABD method is a list of requirements. These requirements are functional
(both abstract and concrete), quality and business (both abstract and concrete), and con-
straints. A requirement is an item for which the designer has freedom to choose a solution, a
constraint is an item that specifies the decision a designer must take. The abstract require-
ments are used to generate the design; the concrete requirements are used to validate the deci-
sions made as a result of the abstract requirements.

The ABD method proceeds by recursively decomposing the system(s) to be designed. The
first decomposition is of the system(s); subsequent decompositions are refinements of the
prior decomposition. At each decomposition step, the functional requirements are met by as-
signing responsibilities to the divisions of the element being decomposed. The quality and
business requirements for that element are met by choosing an architecture style, based on the
driving quality and business requirements, that describes how the divisions relate to one an-
other.

The decomposition is examined from the perspective of three views: logical, concurrency,
and deployment. Each view will lead to additional responsibilities for the element being de-
composed and these responsibilities must be captured in the decomposition.

The decomposition is also examined from the point of view of the software templates – both
to add new items to the templates and to determine where the items in the template will be
implemented.

The concrete requirements (functional, quality and business) are used to verify the decisions
made during the decomposition. Also, the constraints are examined to verify that none of
them has been violated by decisions made during the decomposition.

Design methods such as the ABD method are not intended to replace expert designers. In-
stead, they are intended to support these designers by providing a structure within which the
design can proceed. The ABD method provides a simple and powerful structure. It is simple
because the total method can be described as a recursive procedure with a few steps within

4 CMU/SEI-2000-TR-001

the recursion. It is powerful because it provides a method of design that can meet all require-
ments and validate that those requirements have been met.

CMU/SEI-2000-TR-001 5

3 Terminology

We begin by discussing terms and how we are using them. We then discuss the types of de-
sign elements that we are using, how we represent information about these elements as views,
and various types of scenarios.

3.1 Design Elements
The ABD method is intended to organize the earliest design decisions. It does not involve
commitments to actual software components and classes, nor to organization of the compo-
nents into processes and operating system threads. We use the term concrete component to
refer to a component for which a commitment has been made to classes, processes and oper-
ating system threads. On the other hand, even though commitments to concrete components
are not being made during the method, decisions are being made about division of function
and about mechanisms to achieve various quality attributes. The ABD method is a recursive
refinement method. The architecture for the system is refined through the method until com-
mitments can be made to software components and classes.

Figure 1 shows the terminology we apply while using the ABD method. At the top level, the
system is decomposed into conceptual subsystems and one or more software templates. At the
next level, the conceptual subsystems are decomposed into conceptual components and one
or more additional software templates.

Because the method is recursive, the steps we apply to the system are the same as the steps
we apply to the conceptual subsystems, and are the same as the steps we apply to the con-
ceptual components. We use the term design element to refer generically to the system, a
conceptual subsystem or a conceptual component. A design element will implement a collec-
tion of responsibilities that includes those responsibilities involved in managing concurrency
and distribution. A design element has a conceptual interface that encapsulates knowledge of
data input and output. It is possible that the functions of a particular design element at one
stage of the method may be distributed at a later stage in the method into other design ele-
ments. The ABD method concludes once decisions begin to be made about classes, methods,
processes, and operating system threads. It may be that conceptual components are refined
into additional conceptual components. However, our experience has been that once the con-
ceptual components are defined, it is almost always possible to make commitments to con-
crete components.

6 CMU/SEI-2000-TR-001

Figure 1: Labeling of Decomposition

3.2 Perspectives and Views
When reasoning about an architecture, it’s important to examine it from a variety of different
perspectives. This allows the architect to think about different properties of the architecture.
For example, a static perspective that displays the organization of the functionality enables
certain types of reasoning about development qualities. On the other hand, a dynamic per-
spective that displays activities that may take place concurrently enables certain types of rea-
soning about performance.

In the ABD method we view design elements from several different perspectives. That is, a
subsystem is not inherently a static architectural element; it is an architectural element that
can be viewed from both static and dynamic (or combined) perspectives.

The particular perspectives or views that we choose are similar to those proposed by Kruch-
ten [Kruchten 95]. His views are the logical, process, implementation and deployment views.
We use the logical view to record the responsibilities and conceptual interfaces for the design
elements. The responsibilities of the design element define its role within the system. They
include both functional and quality-oriented items such as “this design element must execute
within 50 milliseconds.”

We call our second view the concurrency view. We use this view to examine the system in
light of multiple users, resource contention, start-up and other parallel activities. We use the
term concurrency in preference to the term process to emphasize that no commitment has

System

Conceptual
subsystems Templates

Templates

Concrete
components

Aggregation

Inheritance

Evolves into

Key

Conceptual
components

CMU/SEI-2000-TR-001 7

been made to processes or operating system threads. The concurrency view will evolve into
the process view once these commitments have been made.

The final view that we use is the deployment view. It represents nodes in a computer net-
work; that is, the physical structure of the system. The deployment view is only used for sys-
tems that execute on multiple processors. The deployment view displays processors and the
networks used to communicate among the processors.

Appendix B provides a sample of how our three views interact.

3.3 Use Cases and Quality Scenarios
Use cases have become an important technique in reasoning about the behavior of a system in
a concrete setting. The term has been used in various ways but we use it according to the
definition of its authors:

A use case is a piece of functionality in the system that gives a user a result of value. Use
cases capture functional requirements [Jacobson 99].

Just as use cases make functional requirements concrete, it is necessary to make quality re-
quirements concrete. It is not meaningful to have a requirement “the system should be easy to
modify” since all systems are easy to modify with respect to some sets of changes and diffi-
cult to modify with respect to other sets of changes. A concrete form of this requirement is
that “it should be easy to add new features of the following type …” Performance require-
ments often are stated in terms of latency but without reference to input patterns, and so on.
In addition to using use cases to capture the functional requirements we use the technique of
defining specific scenarios that embody quality requirements. We call those scenarios quality
scenarios. Thus, in a typical development, we might have quality scenarios that capture
change, performance, reliability and interoperability. We call these change scenarios, per-
formance scenarios, reliability scenarios and interoperability scenarios. The quality scenarios
should include both expected and unexpected stimuli. For example, if one expected perform-
ance scenario is to estimate the impact of a 10% increase in the number of users per year, one
unexpected performance scenario is to estimate the impact of a 100% increase in the number
of users per year. The unexpected scenarios may not be realistic but they are useful in deter-
mining the boundary conditions within the design.

8 CMU/SEI-2000-TR-001

CMU/SEI-2000-TR-001 9

4 Architecture Design Considerations

In this section, we discuss three considerations that pertain to architecture design and de-
scribe how they are related to the ABD method. In particular, we discuss the variabilities and
commonalities, software templates and architecture drivers.

4.1 Variabilities and Commonalities
When designing an architecture for a product line of software, it is important to attempt to
capture explicitly the envisioned variations that will occur between instances of the product
line. The more explicitly these variations can be captured at an early stage, the less turmoil
and problems with design occur during product development. These variations can be either
coarse or fine grained. For example, a particular automobile may have a radio or a navigation
system or both. The product line must be able to support all three configurations. This is an
example of coarse-grained variation. On the other hand, the radio may have a dial to control
tuning or it may have a digital keypad for entry of a station frequency. This is an example of
fine-grained variation. The ABD method is concerned with variation at a granularity that has
impact on the conceptual architecture. This is primarily coarse-grained variation but some
aspects of the conceptual architecture may exist to allow for fine-grained variation.

Commonalities refers to the fixed points within the variation inherent in a product line. These
may be features that are common to all instances of the product line, e.g. if every automobile
must have a radio then the radio is “in common.” It may also refer to architecture design ele-
ments, e.g. if a particular operating system is going to be used for all of the instances of a
product line then it is “in common.”

Variability can either occur in function (such as the radio examples above) or in platform or
environment. An example of platform variability might be the change of an operating system.
The ABD method assumes that both kinds of coarse-grained variation (function and platform)
are captured during the requirements phase. The mechanism for capturing and representing
the commonalities and variabilities is a portion of the requirements process and outside of the
scope of the ABD method. Variabilities in platform should be categorized as quality require-
ments during the requirements phase, and the ABD method has an explicit method to insure
the satisfaction of quality requirements. Once the variations are captured, the achievement of
this variability becomes the responsibility of the design method. Variability in function is
achieved through structural choices made during one step of the ABD method and we will
describe this in a subsequent section.

10 CMU/SEI-2000-TR-001

4.2 Software Templates and System Infrastructure
In the introduction, we gave a brief description of the meaning of software template. To re-
peat, a software template of a particular type enumerates responsibilities for design elements
of that type and these responsibilities are one of three kinds:

1. Patterns that describe how this type of design element interacts with services provided
to multiple design elements. These are sometimes called crosscutting services. For ex-
ample, if there is a diagnosis service, then all conceptual components that provide data
to the diagnosis service should use the same protocol.

2. Patterns that describe how this type of design element interacts with the infrastructure.
For example, it may be that every conceptual component must have an install and de-
install method that will be invoked by the infrastructure. Placing this information in the
component template records this knowledge.

3. Citizenship responsibilities. Those responsibilities that every design element of a par-
ticular type must provide are placed in the software template. For example, the re-
quirement to handle errors in a consistent fashion may be a responsibility of particular
types of design element. Placing this information in the template records it and simpli-
fies the identification of common methods for meeting these responsibilities.

Software templates serve several purposes: They are a repository for certain components that
can be reused within the system, they are an aid to integration, and they provide the basis for
constructing a skeletal system. The nature of software templates enables their role as reposi-
tories; they identify patterns of behavior that transcend particular components. Consequently,
the implementation of the responsibilities that make up the template is likely to be reusable
within the system.

Software templates are an aid to integration because of the categorization of design elements
into types. The concrete realization of these design elements into components will conse-
quently also be typed. Consider, as an example, a conceptual component A and a collection of
conceptual components of type B. Assume A interacts with multiple instances of components
of type B. The pattern of interaction between A and each of the instances of type B will be the
same. Thus, integrating A with one instance of type B will simplify the integration of A with
other instances of type B. Some integration problems are caused by data inconsistencies and
others are caused by the pattern of interaction. Those problems caused by the pattern of inter-
action need only be solved once but can be applied to multiple instances.

A template captures the interactions of design element types with both the infrastructure and
the shared services. Thus, in aggregate, an implementation of the templates together with the
shared services and the infrastructure represent a skeleton of the system(s) being designed.
By a skeleton, we mean an implementation of the necessary infrastructure of the system or
systems with no or very little application functionality.

CMU/SEI-2000-TR-001 11

A skeletal implementation such as this allows subsequent incremental addition and roll out of
functionality. It also embodies the support necessary for the functional variations within a
product line. The development pattern, from the customer’s perspective, is that there is a pe-
riod of design where nothing is visible, followed by the development of the skeleton where
extremely limited functionality is visible, followed by features implemented in an order that
supports the business goals of the system.

Other implementation orders are also possible. The definition of software templates and what
it means to be a design element of a particular type does not directly support these other im-
plementation strategies, but neither does this definition hinder other implementation orders.

Some quality attribute modeling techniques such as those used in performance analysis and
availability analysis depend on knowing the patterns of interactions of the various architec-
tural element types without reference to specific functionality. The definition of software
templates determines the patterns of interaction and allows these models to be developed.

4.3 Architectural Drivers
Architectural drivers are the combination of functional, quality and business requirements
that “shape” the architecture. If the driving requirements can be met, then the system can be
satisfactorily designed. At the top level, the drivers can be determined by looking at the pur-
pose of the system and critical business needs. At more detailed levels, the drivers are deter-
mined by the architect from the requirements on the particular conceptual subsystem or con-
ceptual component. Some examples of system level drivers based on the purpose of the
system are

• The purpose of a flight simulator is to train aircrews and this dictates both high fidelity of
the simulation and real-time performance.

• The purpose of an air traffic control system is to perform real-time control of enroute
aircraft and this dictates high availability and reasonably stringent performance.

• The purpose of some financial systems is to transfer money or orders from one place to
another and this dictates high security and high availability.

Another source of drivers might be the business goals and background of the organization
constructing the systems. For example

• The organization wishes to develop a product line, and this dictates a concern for
generality that might not occur in a single product architecture.

• The organization has an investment in prior systems in the domain. This dictates reusing
components from prior systems and, consequently, either reusing the architecture from
prior systems or developing an architecture that accomodates the legacy components.

• The organization wishes to develop a particular competence, such as in Web-based
database access. Consequently, the architecture for the next system will be strongly
influenced by that desire.

12 CMU/SEI-2000-TR-001

• The organization has established a business relationship with a particular software
supplier. Consequently, the architecture will reflect the use of the components furnished
by that supplier.

• The particular product being developed will have time to market, size of market and
lifetime of the product constraints. Consequently, the amount of generality or specificity
built into the architecture will be affected.

• The product must interoperate with other products. Consequently, the character of the
interfaces being exposed will be affected.

• The organization has employees with particular talents who must be utilized.
Consequently, the architecture will be designed with identifiable components suited to
the talents of these employees.

Observe that the drivers do not depend on the details of the functional requirements but on an
abstraction of the functional requirements. That is, in the flight simulator case, whether the
aircraft being simulated has two engines or four is not an architectural driver—but the
achievement of real-time performance in the face of large amounts of data movement is. This
means, as we observed before, that design activities could begin as soon as the architectural
drivers have been determined with confidence. This could be very early in the life cycle de-
pending on the familiarity of the architecture team with the domain.

Determination of the architectural drivers is not always a top-down process. It may involve
detailed investigation of particular aspects of the requirements in order to understand the ar-
chitectural implications. For example, navigation systems depend on use of CDs for storage
of map data and there are two different standards for storage of the maps. These two stan-
dards use different approaches that have been optimized for different query types. A require-
ment might dictate, for example, that performance differences in the two different formats be
masked from the end user. This would lead to a detailed investigation of the formats, in order
to determine the best architectural approach to achieve the requirement. Whether this par-
ticular requirement is a driving requirement depends on the solution. If the solution is far
reaching then it is a driving requirement; if the solution is easy to achieve and does not affect
the overall architecture, then it is not.

4.4 Requirements, Quality Attributes, Functionality
and Architectural Styles

An architectural style consists of a collection of component1 types together with a description
of the pattern of interaction among them [Bass 98]. Example component types are client,
server, layer, and process. As such, the component types have functionality to the extent nec-
essary to implement the patterns of interaction, but they have no application functionality
associated with them. One of the important steps in the ABD method is to choose a dominant
architectural style for a particular set of requirements. In the previous section we discussed

1 This is a different use of the word component than is used when referring to conceptual or concrete
components. The word component, when used by the architecture community, is a primitive that
describes any connection of coherent computation.

CMU/SEI-2000-TR-001 13

the concept of architectural driver. In this section we discuss how architectural drivers enable
the choice of architectural style through the interplay of requirements, functionality and qual-
ity attributes.

Consider, again, the flight simulator example we introduced above. In this example, the ar-
chitectural driver was the requirement to process large amounts of data with hard real-time
performance constraints. A driving requirement may involve any combination of function,
quality and business requirements. In the flight simulator example, the functional facet of this
requirement is the movement of large amounts of data; the quality facet of this requirement is
hard real-time performance. One architectural style that results from this driving requirement
is a real-time scheduling strategy. This strategy depends on both the functional and the qual-
ity facets of the driving requirement. That is, if there were not large amounts of data to use
then real-time performance could be achieved under other scheduling disciplines. If real-time
performance were not an issue, then the large amount of data movement could be achieved
under other scheduling disciplines. It is the combination of the two that drives the choice of
style.

Furthermore, once the style has been chosen, it doesn’t implement any application function-
ality. The functionality must be divided and allocated to instances of the component types.
Thus, in the flight simulator example, what are being scheduled are specific computations.
The number and function of these computations must be determined independently from the
non-driving requirements. The criteria for determining the number and function of these
computations will differ from the driving requirements (although they are constrained by
them). As in the flight simulator example, there may be computations for each engine and
these computations must exist in component types defined by the real-time scheduling style.
The fact that each engine has a separate computation is determined by requirements for modi-
fiability. We use the term division of functionality to refer to the division of the functional
requirements in response to specific criteria.

In the ABD method, two closely related and intertwined steps are the division of functionality
and the choosing of an architectural style. The architecture results from allocating the func-
tional divisions to the instances of component types defined by the style. It is this architecture
that can be analyzed for how well it achieves various properties.

14 CMU/SEI-2000-TR-001

CMU/SEI-2000-TR-001 15

5 The ABD Method Within the Life Cycle

Figure 2 shows the placement of the ABD method within the life cycle. We assume a re-
quirements phase to be at least partially complete, although we do not prescribe a particular
method of requirements gathering, organization or tracking. We do require certain output
from the requirements phase, including functional requirements, quality and business re-
quirements, and constraints. The output of the ABD method is a collection of conceptual
components in three views, including: the assumptions that can be made about each concep-
tual component; a collection of software templates; and those concrete implementation deci-
sions that have already been made. We maintain the concrete implementation decisions as
additional constraints.

Figure 2: The ABD Method within the Life Cycle

Requirements analysis

- Business case
- Architect’s experience
- Legacy systems

Functional requirements
- abstract
- use cases

Quality requirements
- abstract
- quality scenarios
- architecture options

Constraints

ABD Method

Abstract components
Software templates
Constraints
Requirements

Concrete component design

16 CMU/SEI-2000-TR-001

All decisions made during the execution of the ABD method must be recorded as well as the
rationale for those decisions. This allows traceability for a decision should it become neces-
sary to revisit it. Appendix A of this report documents the use we made of Rational Rose as a
tool for recording these decisions.

The input to the ABD method consists of

• abstract functional requirements, including the identification of variabilities and
commonalities

• use cases (concrete functional requirements)

• abstract quality and business requirements

• quality scenarios (concrete quality and business requirements)

• architecture options

• constraints

We now describe the assumed outputs of the requirements phase (the inputs to the ABD
method).

5.1 Abstract Functional Requirements
The ABD method assumes that one of the outputs of the requirements phase is an abstract
characterization of the functional requirements, together with a characterization of the coarse
variability within those requirements. It is important to consider all of the end users when
capturing the requirements.

A variety of end users are typically associated with a particular system. Different system ad-
ministrators (database, system, network) may be end users. Maintenance technicians may be
end users for systems such as computers embedded in automobiles or aircraft. An end user is
anyone who uses a system while it is in execution.

Associated with the abstract functional requirements is a characterization of the commonali-
ties and the coarse variabilities associated with these requirements. Understanding the de-
pendencies among the requirements is also important for the design.

The functional requirements must be captured at an abstract level because detailed require-
ments for the individual products in a product line may not be known until the products are
constructed. The abstract capture of the requirements provides categories for the detailed re-
quirements when they become known.

5.2 Use Cases
As we defined above, a use case is a concrete expression of an interaction between one (or
more) end users and the system. For the purposes of use cases, another system that must in-

CMU/SEI-2000-TR-001 17

teroperate with the system being designed can be considered an end user. Use cases are easy
to generate and it’s possible to have hundreds or even thousands of them. Use cases require
analysis, however, and so their number should be limited. Only the most important ones are
useful during architecture design; the use cases that are generated should be grouped and pri-
oritized in order to identify the most important. The remainder can be generated at any por-
tion of the design process.

5.3 Abstract Quality and Business Requirements
The quality and business requirements for the system(s) to be constructed should be enumer-
ated. Each quality requirement should include a specific stimulus as well as the response that
is desired. Quality requirements such as “The system shall be modifiable” are essentially
meaningless, since every system is modifiable for some set of modifications and difficult to
modify for others. A requirement for modifiability should characterize the set of modifica-
tions such as “The system (a flight simulator) shall be modifiable with respect to changes in
the aircraft being simulated.”

The distinction between business requirements and quality requirements is not clear. Many
important business goals for the architecture will translate into abstract quality requirements.
For example, the goal that the architecture supports a product line will translate into a collec-
tion of extendibility requirements. We lump together quality and business requirements in the
ABD method, since the source of a requirement is not important to the method.

5.4 Architecture Options
For each quality and business requirement, possible architecture options that could enable the
satisfaction of the requirement should be enumerated. For example, if the requirement were
to support a variety of different user interfaces, then one architecture option would be to
separate the user interface into a separate component. Another requirement might be to re-
main independent of a particular operating system. Then an architecture option would be to
have a virtual operating system layer that receives all operating system invocations and
translates them to the current operating system. No decisions among the options are made at
this point; the intent is to enumerate all possible options. This list of architecture options is
where the architect’s experience base is applied. The options are mechanisms or patterns for
solving particular quality problems. These mechanisms or patterns would come, ideally, from
a handbook; absent such a handbook, they come from the architect’s background.

This enumeration of options, logically belongs to the ABD portion of the process and not to
the requirements phase. However, since it is natural to begin to enumerate possible solutions
while generating quality and business requirements, we list this as an output of the require-
ments phase. This enumeration will be extended as additional options are discovered during
the design phase. Architectural options are a subset of what Hofmeister, Nord, and Soni call
“strategies.”

18 CMU/SEI-2000-TR-001

5.5 Quality Scenarios
Just as use cases make concrete functional requirements, quality scenarios make concrete
quality requirements. Quality scenarios are very specific expansions of the quality require-
ments. While a quality requirement from the above example might be “modifications to a
flight simulator that reflect modifications to the underlying aircraft should be easy,” a quality
scenario might be “modify the system to change the rotor in an engine.”

As with use cases, quality scenarios are easy to generate and it is possible to generate many
of them. They should be prioritized so that during the design phase, only the most important
will need to be examined.

5.6 Constraints
A constraint is a design decision that is pre-specified. The design process consists of making
decisions. Some of these decisions can be derived directly from the business goals without
consideration regarding its impact on design. For example, if an organization has a large in-
vestment in a particular middleware product, that product may be chosen without reference to
other decisions. During requirements capture, constraints come primarily from the business
goals surrounding the system. One special case of these constraints is determined by legacy
systems, which we will now explore in detail.

Few systems today are designed without reference to existing systems. Frequently the new
system must interoperate with existing systems. In other cases the new system is replacing
the existing system, and must reuse as much as possible from the existing system. In any
event, these legacy systems are external to the system being currently designed and some of
their characteristics must be considered during the design process.

To the extent that legacy systems will affect the current design, it is important to understand
their structure and the techniques they employed to solve problems. Business reasons may
require use of components from legacy systems or from particular commercial vendors. Such
requirements will tend to become constraints. Business reasons may also require that com-
petitive systems be examined for relevant features or structural aspects.

While utilizing the ABD method, the architect may make decisions that do not immediately
appear in the design. For example, the architect may decide that a particular real-time oper-
ating system must be used. This is not a business decision but a technical one. Although this
is technically a design decision and not a constraint, we use the list of constraints as a place
to record this type of decision. From the point of view of the design method, it does not mat-
ter whether a constraint results from a business reason or a technical decision.

CMU/SEI-2000-TR-001 19

6 The ABD Method

Now we turn to the description of the method itself. We begin by describing a view of the
artifacts that emerge from the method. We then turn to a more process oriented view.

6.1 Design Elements Defined by the Method
The ABD method is based on decomposing the overall system. Figure 3 repeats the elements
of this decomposition. Every system consists of an application portion and an infrastructure
portion. Although the boundaries between these portions is not always clear, a design must
consider both the application and the infrastructure on which it executes. The ABD method
captures these two fundamental portions by viewing the system as the combination of an ap-
plication portion and the infrastructure. Both of these portions contribute to the decomposi-
tion and their subsequent definition. The top-level decomposition of the system is into con-
ceptual subsystems. Associated with these conceptual subsystems are subsystem templates.
The conceptual subsystems together with the subsystem templates aggregate into the system.
Each conceptual subsystem has its own responsibilities and is considered according to the
three views: logical, concurrency, and deployment.

The conceptual subsystems are, in turn, decomposed into conceptual components. As with
conceptual subsystems, each conceptual component is considered from three views. Associ-
ated with the conceptual components are component templates.

In the figure, we show concrete components as being the next decomposition after the con-
ceptual components. A concrete component reflects a commitment to a software element such
as a class. Depending on the size of the system being designed, it is possible to have addi-
tional design elements between the conceptual components and concrete components but, for
the size of the systems on which the ABD method has been used, this additional level of de-
sign elements has not been needed.

20 CMU/SEI-2000-TR-001

Figure 3: Decomposition of System into Design Elements

6.2 Order of Generation of Design Elements
Figure 3 shows the design elements and their relationships after exercising the ABD method.
It does not show how this tree may be traversed. There is a wide variety of schemes for trav-
ersing the tree.

One possibility is to traverse the tree breadth first— define all of the conceptual subsystems
prior to decomposing any of the conceptual subsystems and then define all of the conceptual
components prior to making commitments to concrete components.

Another possibility is to traverse the tree in some depth for one or more of the conceptual
subsystems and fill in the other conceptual subsystems in a later stage in the process.

It is always the case that more detailed understanding of a particular aspect of the design may
cause reconsideration of prior decisions. In our case, this means that during the generation of
the conceptual subsystems, insight into the requirements might be gained that causes new
requirements to be added or existing requirements to be modified. During the generation of
the conceptual components, decisions made during the definition of the conceptual subsys-
tems may be revisited in the light of new information. This type of re-investigation in light of

Application
including
infrastructure

Conceptual
subsystems Templates

Templates

Concrete
components

Aggregation

Inheritance

Evolves into

Key

Conceptual
components

CMU/SEI-2000-TR-001 21

better understanding is a characteristic of all designing efforts including those using the ABD
method.

Also, a detailed investigation of some aspect of the design may be done at any point in the
process—in order to understand the design options and the implications of choosing a par-
ticular option. This is appropriate. The only consideration is that decisions made must be re-
corded in the proper place.

Some of the considerations in determining the path to traverse the tree for a particular devel-
opment are

• the knowledge of the domain. If the architect has extensive knowledge of the domain then
exploration will not be as necessary.

• the incorporation of new technology. If new technology is to be used as middleware or
for the operating system, then prototypes will need to be constructed. This will both aid
understanding of the capabilities and limitations of the new technology, and give the
architecture team experience in using the technology.

• the personnel on the architecture team. People with specific expertise may be engaged to
explore a particular portion of the tree in some depth.

Now consider Figure 4. This figure shows a design element A that is decomposed
into two smaller design elements B and C. We will use this figure to discuss the in-
terplay between requirements and responsibilities. We first refer solely to A. There
are certain requirements that A must satisfy (functional, business and quality). These
requirements are satisfied by the responsibilities of A (functional and those quality
attributes that are dependent only on A).

During the decomposition of A into B and C, then, the responsibilities of A are de-
composed into requirements on B and C. During the reasoning about B, responsibili-
ties are assigned that enable the satisfaction of its requirements.

Figure 4: Design Element A Decomposed into Design Elements B and C

A

B C

22 CMU/SEI-2000-TR-001

6.3 Activities within a Design Element
Up to this point, we have discussed paths for traversing the tree of design elements in order to
decompose them, but we have yet to discuss how to decompose a design element. According
to the method, we begin the decomposition of each design element with a set of requirements
(both functional and quality), a template that pertains to that design element, and a set of con-
straints. The output of the process for the design element is a list of children design elements,
each having a set of requirements, templates that pertain to it, and a set of constraints. Figure
5 shows the usual sequence of the steps of the decomposition of a design element with a
feedback loop between the verification and the definition of the logical view (as we have
shown), but it is possible to begin with the other views. The feedback loops will help ensure
that all of the views are considered. The architect may wish to begin with the deployment
view, for example, if the system(s) being designed has unusual connectivities. Although not
shown here, it is also possible to have feedback back to the logical view during the definition
of any of the other views. The location of the feedback loops is a function of the type of sys-
tem(s) being designed.

Figure 5: Steps within Decomposition of a Design Element

The steps are as follows: define the logical view, define the concurrency view, define the de-
ployment view, and verify. At each step, there are likely to be additional functions that must
be managed by the logical view, requiring that the decisions made thus far be revisited.

Figure 6 shows the steps involved in the definition of the logical view. In this case, function
is decomposed, a base architectural style is chosen, and the function is allocated to the style.

Define
concurrency
view

Define logical view

Define deployment view

Verify with
quality scenarios

and constraints

CMU/SEI-2000-TR-001 23

These three steps are intricately intertwined, as we have already discussed. Then the software
templates are refined and the result is verified by exercising use cases and change scenarios.

Figure 6: Defining Logical View

As with all of the steps in the ABD method, executing one step may produce insight that will
cause reconsideration of prior steps. For example, when the concurrency view is generated,
additional functionality may be identified that was not considered in the requirements. This
functionality may cause a reconsideration of the basic architectural style for the design ele-
ment; it may have to be allocated and verified with use cases. Furthermore, discussions that
occur during one step may uncover information that pertains to a future step. For example,
during discussion of functional decomposition, items may be discovered for the templates.
These items should be recorded as they are discovered.

We now describe these steps in more detail.

6.3.1 Divide Functionality
A design element has a set of responsibilities. These responsibilities should be divided into
groups. The goal of the division is to have each group represent distinct elements within the
architecture. The divisions may need to be refined further, even to the extent of breaking up

Decompose
function

Choose basic
architectural style

Allocate function to style

Refine templates

Verify with use cases
and change scenarios

24 CMU/SEI-2000-TR-001

design elements. The criteria for this division will depend on the qualities that are important
to a particular design element. There may be multiple divisions that are based on different
qualities. Below we provide examples of such differing qualities.

If the quality influential in the division is modifiability, as is usual in product lines, then the
groups of responsibilities are chosen based on several criteria:

1. Functional coherence. Requirements grouped together should exhibit low coupling and
high cohesion. This is a standard technique for decomposing function. The use cases
can be used to investigate the cohesion and coupling. The quality scenarios dealing with
change can also be used to investigate cohesion and coupling.

2. Similar patterns of data or computation behavior. Those responsibilities that exhibit
similar patterns of data and computation behavior should be grouped together. What it
means to exhibit similar behavior depends on the particular domain for which the sys-
tem(s) are to be used. If data acquisition is a responsibility then a similar pattern might
refer to the sampling period. If a particular responsibility is computationally expensive
then it should be grouped with other computationally expensive responsibilities. Re-
sponsibilities that access a database in a similar fashion should be grouped together.

3. Similar levels of abstraction. Responsibilities that are close to the hardware should not
be grouped with those that are more abstract. On the other hand, responsibilities that ex-
ist at the same level of abstraction should be grouped together.

4. Locality of responsibility. Those responsibilities that provide services to other services
should not be grouped with purely local responsibilities.

Other criteria for modifiability exist in addition to those stated above. Also, there will be re-
sponsibilities that do not fit neatly into any grouping. If these are substantial enough they
should be assigned to their own group. If not, they should be assigned to another group, even
when they do not create a good match.

If the quality influential in the decomposition is performance, then the division is based on
minimizing the amount of data movement among the pieces (assuming a fixed set of algo-
rithms) and frequency of data calculations (assuming periodic processes).

If the investigation into the decomposition causes a detailed investigation of a particular as-
pect, then decisions made during the detailed investigation should be recorded. They will ei-
ther be recorded as a responsibility of one of the design element or they will be recorded as
additional constraints that must be satisfied.

The goal of this decomposition is to produce groups of functionality of sufficient granularity
so as to 1) represent a decomposition of the design element responsibilities while 2) keeping

CMU/SEI-2000-TR-001 25

the number of groups intellectually manageable. Nominally, between 3 and 15 groups should
be produced.

Associated with each group of responsibilities is a characterization of the coarse-grained
variability and the dependencies of that group. Also associated with each group of responsi-
bilities is an enumeration of the information requirements of that group and the information
produced by that group. This data flow view of the decomposition leads to the conceptual
interface in terms of its information needs and production. The information flow and the de-
sign elements with which the current design element interacts can be determined by the gen-
eration of a diagram. A tool that supports the design process should generate this automati-
cally. The diagram would show the entities external to the design element (both other design
elements and actors external to the system) with which the design element interacts.

Finally, it is important to recall that not all of the requirements are known and, hence, the list
of responsibilities for any particular design element is incomplete. Thus, the groups of re-
sponsibilities should be broad enough to provide a location for additional requirements that
might be added to the system either during or after initial development.

6.3.2 Choose Architectural Style
Each design element has a dominant architectural style or pattern. It is the basis for how the
design element achieves its responsibilities. The dominant style is not the only style within
the design element; it may be modified to achieve particular goals. The choice of architec-
tural style is based on the architectural drivers for this design element. Thus, the process is to
determine the architectural drivers for this design element and from the architectural drivers
and consideration of the functional decomposition, to determine the dominant architectural
style.

It is not always the case that a documented style can be chosen as the dominant style. In this
case, the architect should make up a new style that fits the needs at hand. Sometimes, the re-
sponsibilities of a design element consist of relatively independent collections and a domi-
nant style can not be discerned. In this case, a style of independent filters with connections
from outside the design element may be appropriate.

Once the dominant architectural style has been chosen, it should be adapted based on the
quality requirements that pertain to this design element and the architecture options identified
to satisfy the quality requirements. That is, examine each quality requirement, and determine
whether it is relevant to the design element being decomposed. If it is, choose one of the op-
tions associated with the quality requirement and apply it to the style chosen for the design
element.

It is desirable to use the same option whenever a particular quality requirement is relevant to
multiple design elements and so the option should be associated in the design record with the

26 CMU/SEI-2000-TR-001

design element. This will enable revisiting of the decision regarding what option to use once
the design has been further elaborated.

The result of choosing and refining an architectural style is a collection of (architectural)
component types. There may be types such as “client” without reference to either the func-
tionality to be computed by the client, or to how many instances of the client may exist. Such
determinations will be made in the next step. Some component types, especially those re-
sulting from quality requirements, may have associated functionality, such as “virtual de-
vice.” This association should be retained for use in the allocation step.

The choice of an architectural style for a design element is a fundamental choice that relies
heavily on the architects’ experience in design. The style chosen may be a run-time style such
as client-server; a development-time style such as layered, or may have aspects of both, such
as in a three-tiered architecture. In any case, the choice of style may introduce additional
functionality that must be placed into the functional groups.

6.3.3 Allocate Functionality to Style
The choice of architectural style yields a collection of component types. The number and
function of each of these types must be determined. This is the purpose of the allocation. The
groups of functionality resulting from the decomposition of function should be allocated to
the types of components resulting from the determination of style. This involves determining
how many instances of each type of component will exist and what the functionality of each
instance will be. The components resulting from this allocation will be the candidate child
design elements for the design element being decomposed.

The conceptual interface for each design element is also identified. The interface consists of
both the information that the design element needs and produces (identified during the func-
tional decomposition) and the data and control flow information needed by each component
type within the defined architectural style.

It is in the iteration of these three steps (divide functionality, choose style, and allocate func-
tionality to style) that tradeoffs are made among the various quality attributes. The designer
must determine whether the compromises that have been made are adequate. The validation
steps that follow the definition of the logical view provide concrete evidence of these com-
promises.

6.3.4 Refine Templates
The design element being decomposed has a collection of templates that pertain to it. These
are inherited from its parents up the hierarchy. At the initiation of the method, the system has
no template. Responsibilities are added to the templates as they are refined. These responsi-
bilities must be implemented by a concrete component at some point in the design process.

CMU/SEI-2000-TR-001 27

Thus, one step in exiting the ABD method is to assign responsibilities in the template either
to concrete components or to classes that are inherited by concrete components.

For each responsibility in the existing templates, the following questions are asked:

• Are there aspects of this responsibility that are handled by the child design elements or
should this responsibility remain in its current location? There are two possible answers:

1. The responsibility should remain in its current location. In this case, nothing is done.

2. The responsibility will be divided between those aspects that are satisfied at the cur-
rent location and those that will be assumed by the child level design elements. The
appropriate templates are updated to reflect this division.

The responsibilities of the child design elements are also examined to determine which
should be added to the template. These are

• those responsibilities that can be shared across some subset of the child design elements
rather than locally within each child, or

• responsibilities that every child must manage in some fashion such as error handling,
logging of activities, or providing test points for external diagnostics.

Finally, the responsibilities of the templates are examined to determine whether any addi-
tional responsibilities need to be added to any of the design elements anywhere in the system.
That is, identify any crosscutting services that exist at this level. The templates contain both
what it means for a design element to be a good citizen (e.g., log certain type of information)
as well as those responsibilities that should be shared rather than handled locally. Each type
of responsibility may require additional support functionality, (e.g., having the actual writing
to a log be a responsibility of a particular design element). This support functionality, once it
has been identified, must be allocated.

6.3.5 Verify Functionality
The use cases are exercised to verify that they can be achieved through the proposed struc-
ture. Additional responsibilities for the child design elements will likely be determined
through the exercise of use cases. However, if use cases were used extensively in the func-
tional decomposition, then very few additional responsibilities might be found.

Change scenarios are also exercised at this point since the difficulty of performing a change
is based on the division of functionality.

From this type of verification, the design is shown to cover the requirements (through the use
cases) and support the modifications (through the change scenarios).

28 CMU/SEI-2000-TR-001

6.3.6 Generate Concurrency View
Thus far we’ve considered the logical view of the child design elements. The concurrency
view also must be considered. The purpose of examining the concurrency view is to deter-
mine what activities might be carried on in parallel. These activities must be identified and
points of spawning new threads, synchronization and resource contention discovered.

The examination of the concurrency view is in terms of virtual threads. A virtual thread is a
single path of execution through a program, a dynamic model, or some other representation
of control flow [OMG 99]. This should not be confused with the operating system thread that
includes additional implications of address space and scheduling strategy. An operating sys-
tem thread is the conjunction of several virtual threads, but every virtual thread is not neces-
sarily an operating system thread. Virtual threads are used to describe a sequence of activities
and so synchronization or resource contention will be between multiple virtual threads.

Use cases which examine the effects of having two users, the effects of parallelism on the
activities of one user, or the effects of start-up and shutdown, are useful in thinking about the
concurrency view.

Discovery of points of synchronization and resource contention may add new functionality.
For example, a resource manager may be needed to manage contention. In such cases, the
new functionality must be allocated as a responsibility to a design element.

6.3.7 Generate Deployment View
If multiple processors are used in the system, then issues arise from deploying design ele-
ments to separate processors. These issues are examined using the deployment view. We ex-
amine the effect of the network on the virtual threads. A virtual thread may travel via the
network from one processor to another. We use the term physical thread to describe the
threads that exist on a particular processor. That is, a virtual thread is composed of the con-
catenation of physical threads. Through this view, we may discover requirements for syn-
chronizing physical threads on a single processor and for handing off a virtual thread from
one processor to another.

Questions should be asked during the generation of the deployment view about the impact of
the network on data transmission, latencies, and on the synchronization of activities.

We use the concept of unit of deployment within the deployment view. A unit of deployment
is the smallest design element that can be allocated to a processor. Exactly what this means
depends on the granularity of the design elements. A decision must be made as to which level
of design element constitutes a unit of deployment. That is, what is the coarsest design ele-
ment that will not be allocated or split among different processors? If the design elements are
coarser than the smallest unit of deployment, then the design element may be split across two

CMU/SEI-2000-TR-001 29

processors. In this case, it may imply a division of functionality or it may imply multiple in-
stances of the design element.

If the design element is a unit of deployment or a refinement of a unit of deployment then
generating the deployment view means that decisions must be made about deployment, al-
though not necessarily about packaging in processes.

6.3.8 Verify Quality Scenarios
Once the three views are available, the quality scenarios should be applied to the children
design elements being generated. For each quality scenario, ask whether it is still possible to
satisfy the scenario. Each quality scenario includes a quality attribute stimulus and a desired
response. Consider the decisions made so far in the design and determine whether it is still
possible to achieve the quality scenario.

In the event of a negative answer, then either the decisions that have been made should be
reconsidered, or the architect must accept the failure to realize one of the quality scenarios.
The rationale for accepting a failure to realize one of the quality scenarios should be re-
corded.

6.3.9 Verify Constraints
The final step is to verify that none of the constraints have been violated by the decisions
made in this step. That is, for each constraint, ask the question “is the achievement of this
constraint still possible?”

A negative answer is treated in the same fashion as a negative achievement of a quality sce-
nario. The rationale must be documented and the decisions that led to the constraint being
imposed must be re-examined.

6.4 Next Steps
The process we have described is applied to produce a collection of design elements accord-
ing to the sequence determined as being appropriate for the project under consideration. The
ABD method is used to generate the high-level architecture. Once commitments begin to be
made to concrete components, to process and thread allocations, and to specific deployments,
then decisions such as class and object structure, data types, and interface specifications must
be made. The ABD method has no features that pertain to this class of decisions. Another
method should be used that addresses these issues. The outputs of the ABD method that
should be considered during more detailed design are the design elements, the templates, the
quality requirements, the quality scenarios, and the representation of commonalities and vari-
abilities.

The refinement of the commonalities and variabilities should continue only until decisions
can be made as to the appropriate technique for managing variation. Replacement, delegation,

30 CMU/SEI-2000-TR-001

overloading, and parameter definition are all techniques for managing variation. We will not
examine those techniques here. For a further discussion see Clements [Clements 99].

CMU/SEI-2000-TR-001 31

7 Conclusions and Further Work

In the introduction to this paper we identified certain attributes that we strive to establish in a
design method: discipline, capability to deal with uncertainty in requirements, guidance in
organizing the decisions made, and clear rationale for activities within the method. The ABD
method is our attempt to achieve these goals. The discipline emerges from both the recursive
nature of the method and the steps within each iteration. The capability for dealing with un-
certainty in requirements is achieved by isolating uncertainty to the details of the require-
ments and achieving certainty in architectural drivers and abstract functional decomposition.
The guidance in organizing the decisions and the clear rationale for activities are related, and
we hope that this exposition demonstrates that there is a rationale for each step of the method.

The ABD method grew out of earlier work in the analysis of software architecture. This work
is embodied in the Architecture Trade off Analysis Method (ATAM) [Katzman 99]. The goal
of an ATAM is first to understand the architecture and secondly to analyze, based on that un-
derstanding. The design perspective is to propose a design (or partial design) and then to
analyze based on the proposed design. The analysis portion is common to both methods. The
reader familiar with analysis techniques will recognize the use of quality scenarios. The
question then becomes: is there virtue in performing an ATAM when the architecture was
designed using the ABD method? The answer reflects the two purposes of an architecture
analysis: to view the design with fresh eyes and evaluate the design using a fixed method.
Viewing the design with fresh eyes is always appropriate, and any architecture, no matter
how designed, can benefit from being evaluated in this fashion. Since the ABD method in-
cludes mini-ATAMs at each iteration (the verification steps), there are no methodological
virtues of performing an ATAM on a design generated with the ABD method.

An Attribute Based Architecture Style (ABAS) is an architecture style with attached descrip-
tions of how to reason about an instantiation of that style [Klein 99]. ABASs (as they are de-
veloped) should clearly be incorporated into the ABD method. The step of the ABD method
that chooses an architecture style and the step that decomposes function should both be influ-
enced by the use of ABASs. The verification steps should be influenced by the reasoning as-
sociated with ABASs. We are planning some exercises where the ABD method will be used
in conjunction with ABASs that are also being developed.

The ABD method is one example of how understanding of architecture and the influences
that drive architecture design can be exploited to help the development process. There are
many other portions of the general development process that could be improved by taking
advantage of an understanding of architecture. The exciting challenge for the future is to de-

32 CMU/SEI-2000-TR-001

termine those portions of the development process and to find the right methods to exploit the
architecture understanding.

CMU/SEI-2000-TR-001 33

8 References

[Bass 98] Bass, L.; Clements, P.; & Kazman, R. Software Architecture in
Practice. Reading, MA: Addison Wesley, 1998.

[Chastek 96] Chastek, G. & Brownsword, L. A Case Study in Structural Modeling
(CMU/SEI-96-TR-035, ADA324233). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1996. Available
WWW <URL: http://www.sei.cmu.edu/publications/documents/
96.reports/96.tr.035.html

[Clements 99] Clements, P. & Northrop, L. “A Framework for Product Line Prac-
tice.” Version 2.0, July 1999. Available WWW <URL:
http://www.sei.cmu.edu/plp/frameworkv2.7.pdf

[Hofmeister 00] Hofmeister, C.; Nord, R.; & Soni, P. Applied Software Architecture.
Reading MA: Addison Wesley, 2000.

[Jacobson 99] Jacobson, I.; Booch, G.; & Rumbaugh, J. “The Unified Process.”
IEEE Software, (May/June 1999) 96-102.

[Kazman 99] Kazman, R.; Barbacci, M.; Klein, M.; Carriere, S.J.; & Woods, S.J.
“Experience with Performing Architecture Tradeoff Analysis.” 54-
63. Proceedings of ICSE99. Los Angeles, CA, May 1999.

[Klein 99] Klein, M.; Kazman, R.; Bass, L; Carriere S.J.; Barbacci, M.; & Lip-
son, H. “Attribute-Based Architectural Styles, Software Architec-
ture.” 225-243. Proceedings of the First Working IFIP Conference
on Software Architecture (WICSA1), San Antonio, TX, February
1999.

[Kruchten 95] Kruchten, P. “The 4+1 View Model of Architecture.” IEEE Soft-
ware 12,6 (1995): 42-50.

[OMG 99] Object Management Group. “OMG Unified Modeling Language
Specification” (draft) Version1.3 alpha R2, Framingham, MA:
January 1999.

34 CMU/SEI-2000-TR-001

CMU/SEI-2000-TR-001 35

Appendix A - Rose Model of an Example

The previous section describes the process of generating and refining design elements. Re-
cording the decisions made during architecture design is critical because of the sheer number
of these decisions. In this section we describe our use of the Rational Rose ’98 modeling tool
to perform this recording. We describe the directory structure for the recording, the stereo-
types we used, how traceability was maintained, and, in general, how Rose can be used to
support this design effort. No commercial tool supports the concepts necessary to perform the
method we have described but we include this section to show that commercial tools can be
used, even if the use is with a certain amount of force fitting. We make no claim that Rose is
the best tool for our use or that we made the best use of Rose, but only that such a tool can be
used to support the ABD method.

We begin this section by discussing the concepts available in Rational Rose. We next discuss
how the concepts of the ABD method are mapped to the available concepts. Then we discuss
the directory structure we used.

A.1 Rose Constructs
Rose has five fundamental constructs that appear to be relevant to its use for the ABD
method. In fact, only four of these constructs were actually used. The five constructs are
components, classes, associations, stereotypes, and packages. Beside these, Rose offers a va-
riety of diagrams that can be used to show various aspects of the system.

The component construction is intended for describing language-specific elements such as
header files. Since the ABD method terminates prior to the introduction of language ele-
ments, we did not use this construction at all.

We used the class construction to capture the concepts in the ABD method that consist of
textual descriptions. These concepts included design elements, interfaces for design elements,
both conceptual and concrete requirements, constraints, and architecture options.

We used the association construct to represent different types of relationships between
classes. Each association was given a name that was descriptive of its purpose.

We used the stereotype construct to identify types of classes or associations. Thus, a class
might have a name such as “operating system” and a stereotype such as “conceptual subsys-
tem.”

36 CMU/SEI-2000-TR-001

Finally, the package construct can be decomposed. That is, a package can have sub-packages
and so forth. We used the package construct to contain our directory structure.

A.2 Directory Structure
Rose pre-specifies the initial level of the directory structure using the name “View.” At this
initial level, the system provides the following choices:

• Use Case View

• Logical View

• Component View

• Deployment View

There is no “Process View.”

The Component View and the Deployment View are restricted to contain the Rose construct
“components.” Since we did not use the component construct, we did not use the Component
View or the Deployment View.

Our basic directory structure (with the exception of use cases) consisted of packages within
the logical view. Figure 7 gives the top level of our structure.

Figure 7: Top Level Package Structure

Of these four sub-packages, the issues/decisions and the constraints packages contain textual
lists. That is, within the issue/decisions and the constraint sub-packages are named classes

Logica
l v

ie
w

Iss
ues

/d
ec

isi
ons

Req
uire

m
en

ts

Const
ra

in
ts

Arc
hite

ct
ure

CMU/SEI-2000-TR-001 37

that represent one item on the list (such as a constraint). Within the class is text that describes
that item on the list.

The issues/decision list is not mentioned in our description of the ABD method since it isn’t
properly a portion of the method. This list was used to maintain issues that arose and also
global decisions that were made that were not specific to one or several design elements. Ex-
amples include a decision concerning a minimum legal configuration within the product line,
and an issue regarding whether a bus of a particular type has the capacity to support a par-
ticular protocol. Decisions include a rationale, and both decisions and issues are stereotyped
classes (<<Decision>>, <<Issue>>) linked using associations (<<requires>>) to the design
elements that either generate the issues or that resolve them. Decisions can have dependency
relations (<<DependsOn>>) among each other. To illustrate those associations, diagrams that
show important aspects may be included in the issues/decision package.

Items on the constraints list are also linked to the design elements where the constraints are
satisfied. Issues also can depend on each other. This is documented by using a dependency
relation (<<DependsOn>>). To illustrate important aspects of constraints and their relations,
diagrams may be included in the constraints package.

When the number of elements in the lists is large, the issues/decisions and the constraints
packages may be further structured using packages.

Figure 8 shows the directory sub-structure under the requirements package.

38 CMU/SEI-2000-TR-001

Figure 8: Requirement Sub-Structure

The manner in which the conceptual functional requirements are recorded depends on how
they are represented. We assume that the sub-packages abstract functional and abstract qual-
ity have a list of packages, each named with the name of the requirement/quality. Every pack-
age includes at least a class with the name of the requirement/quality. The description of this
class is the description of the requirement. The package may include diagrams to show more
complex information. That information could be an enumeration of architectural components
or a pattern that could be used to support a requirement/quality.

The classes in the sub-packages of the abstract functional packages that hold the description
of the requirement have the stereotype <<Requirement>>. Diagrams included in sub-
packages can be enumerations of architectural components or patterns that could be used to
support the requirement.

The sub-packages of the Abstract Quality package also contain at least a class (<<Quality>>),
named with the name of the quality and a more detailed description of that quality. The sub-

Abst
ra

ct
 fu

nct
io

nal

Abst
ra

ct
 q

ual
ity

Quali
ty

 sc
en

ar
io

s

Logica
l v

ie
w

Iss
ues

/d
ec

isi
ons

Req
uire

m
en

ts

Const
ra

in
ts

Arc
hite

ct
ure

CMU/SEI-2000-TR-001 39

package may contain diagrams illustrating possible architectural options, which are a collec-
tion of components and/or pattern of interaction.

The sub-package Quality Scenarios contains a list of use cases (<<Quality Scenario>>), each
named with the name of the scenario, and also includes the description of that scenario. Each
use case can have a diagram attached to it that shows particular architectural components that
are affected by the specific scenario. Those diagrams normally are created later in the devel-
opment process. At the time when quality scenarios are created, not a lot of information about
architectural components is available; information is added to this package as the scenarios
are applied to various design elements.

Use cases, which describe functional requirements in a more concrete way, would logically
fit into this structure, but we used the Use Case View (at the top level) to maintain use cases.
Each use case is in a package, and contains a use case diagram that represents classes of vari-
ous types linked together with associations. The classes that appear in a use case diagram are
either design elements or a representation of external entities such as actors.

Figure 9 shows the first level of the structure of the architecture section of this directory.
There is a package for each of the conceptual subsystems, a package for the templates gener-
ated during the decomposition into conceptual subsystems, a package for the concurrency
view, and a package for the deployment view.

Inside the package for each of the conceptual subsystems is a class (<<Subsystem Represen-
tative>>) that enumerates the subsystem’s responsibilities and conceptual interface (class
diagram that shows the usage) and a package for each of the children of that conceptual sub-
system.

Inside the template package is a set of classes that enumerates the responsibilities of the tem-
plate and a diagram that shows the relations between those classes. Classes that symbolize
patterns have the stereotype <<Pattern>>. The template package also includes sub-packages
for each child of that template.

Inside the concurrency view package is a collection of concurrency use cases for the con-
ceptual subsystems. The diagrams attached to those use cases show threads and their interac-
tions and synchronization points. Threads are modeled as stereotyped use cases
(<<Thread>>) and synchronization points are stereotyped classes (<<Synchronization>>).

Inside the deployment view package, are use case diagrams showing possible scenarios of the
deployment view, as well as a collection of deployment use cases. The diagrams show possi-
ble deployments. They include nodes (stereotyped classes <<Node>>) and their connections
with each other. The assignment of elements described in the conceptual subsystems to the
nodes is described by using the realize relation stereotyped with <<deployed>>.

40 CMU/SEI-2000-TR-001

Figure 9: Subdirectory Structure for the Architecture Directory

Logica
l v

ie
w

Is
su

es
/d

ec
is

io
ns

Req
uire

m
en

ts

Const
ra

in
ts

Arc
hite

ct
ure

Conce
ptu

al

su
bsy

st
em

s
1-

N

Conce
ptu

al
 su

bsy
st

em

te
m

plat
e(

s)

Concu
rre

ncy
 vi

ew

fo
r s

ubsy
st

em
s

Dep
lo

ym
en

t v
iew

fo
r s

ubsy
st

em
s

CMU/SEI-2000-TR-001 41

Appendix B - Example

This appendix provides an example of the interaction of the three views that the ABD method
uses: the logical, the concurrency and the deployment.

B.1 Logical View
We now describe the notation that we use for the logical view. A rectangle is used to represent
the design elements of conceptual subsystem or conceptual component. We use ovals to refer
to specific responsibilities that are contained within the design element. The specific respon-
sibilities are just identified within the design element and do not actually emerge as Rose en-
tities (unless they become design elements in a further decomposition). These responsibilities
are very important in reasoning about the design elements, however, and we explicitly iden-
tify them for this discussion.

We assume the logical view shown in Figure 10, organized as layers. Within Rose, nested
icons such as those presented here are not possible, and so the nesting is accomplished
through the use of sub-packages.

Figure 10: Example Subsytem Structure

UI Subsystem

UI Page
Service 1

UI Page
Service 2

Service 1
Subsystem

Service 2
Subsystem

Operating System Subsystem

Network
Subsystem

Data flow

Key

42 CMU/SEI-2000-TR-001

In Figure 10, we identify four conceptual subsystems: UI, Service 1, Service 2 and Operating
System. Within two of these subsystems (the UI and the Operating System Subsystems),
there are smaller components. Each of the conceptual subsystems and conceptual components
has an enumerated list of responsibilities. This list, initially, is based on the functional re-
quirements and the functional use cases.

B.2 Concurrency View
Once the initial logical view has been defined, the concurrency view is examined through use
cases. Figure 11 shows a use case for initialization that identifies several specific responsi-
bilities that must occur during initialization. The arrows in Figure 11 represent threads.

Figure 11: Thread View During Initialization

We assume that products, after the start-up, go through an initialization phase in which some
background activities, such as the Timer Service and Diagnosis, are started. We assume, as
well, that the user interfaces must be ready to get input from the users. We also assumed that
two different—independent and running in parallel—interfaces are active. The last assump-

In
iti

ali
za

tio
n

Start Tim
er

 se
rv

ice

Diag
nosis

 ro
utin

es

Use
r i

nte
rfa

ce

han
dlin

g (s
er

vic
e 2

)

Com
m

an
ds s

er
vic

e 2

Use
r i

nte
rfa

ce

han
dlin

g (s
er

vic
e 1

)

Com
m

an
ds s

er
vic

e 1

Threads of control

Key

CMU/SEI-2000-TR-001 43

tion is that the user interfaces must be always ready to get input from the outside. This means
the user interfaces must run in parallel with any commands previously executed.

The ovals, as we said, represent specific responsibilities that were identified during the analy-
sis of this use case. Three of these responsibilities (timer, diagnosis, and initialization) were
not previously identified (in our hypothetical development of responsibilities) as responsi-
bilities of the any design element. We add these responsibilities to those of the operating sys-
tem.

Notice that the concurrency view depicts various threads of control through the design ele-
ments. That is, the design elements and their responsibilities are the basis of each view. Rea-
soning about the view will result in adding responsibilities to the design elements.

B.3 Deployment View
We use the notation of a diamond to represent a unit of deployment and the notation of a line
with rectangles above it to represent a processor configuration.

Now assume that the following Units of Deployment have been identified:

• UI Page Service 1

• UI Page Service 2

• Service 1

• Service 2

• Operating System

Although this is a direct mapping of the logical view, in general, direct mapping will not be
the case. It could be that instances of a particular element of the logical view would each be
deployed to different processors. It also could be that elements of the logical view would
need to be decomposed before units of deployment of are identified.

Figure 12 shows how the various design elements are mapped to the units of deployment.

44 CMU/SEI-2000-TR-001

Figure 12: Mapping of Design Elements to Units of Deployment

For the remainder of this example, we will suppose that two products must be generated. The
two products provide the same functionalities and should use the same software but they have
to run on different hardware platforms. The node structures for the products are shown in
Figure 13. The symbology indicates that the two processors in Node Structure 1 are equiva-
lent. In Node Structure 2, there are two equivalent processors and one smaller processor.

UI Page
Service 1

Operating System Subsystem

Network
Subsystem

UI Page
Service 2

Service 1
Subsystem

Service 2
Subsystem

UI Page Service 1

UI Page Service 2

Service 1

Service 2

Operating System

Conceptual subsystems

Units of deployment

Threads of control

Key

CMU/SEI-2000-TR-001 45

Figure 13: Alternative Node Structures

Figure 14 shows an allocation of the units of deployment onto the nodes in Node Structure 1
and Figure 15 shows an allocation onto the nodes in Node Structure 2.

Figure 14: Distribution of the Units of Distribution and Processes for the Product
Based on Node Structure 1

Node 1 Node 2 Node 1 Node 2 Node 3

Node Structure 1 Node Structure 2

P1 P2S1 S2

OS

Process 1

Process 2
Process 3

Node 1 Node 2

OS

Process 4

Process 5

Product 1

P1 UI Page service 1
P2 UI Page service 2
S1 Service 1
S2 Service 2
OS Operating system

Key

46 CMU/SEI-2000-TR-001

Figure 15: Distribution of the Units of Distribution and Processes for the Product
Based on Node Structure 2

The next step is to understand how physically the Units of Distribution will communicate. In
some cases (e.g., Unit of Deployment Service 1 uses functions from the Unit of Deployment
Service 2) the communication mechanisms must be used to guarantee the cooperation of the
Units of Deployment residing on a single Node. This is desirable so that the units of deploy-
ment do not need to be modified to reflect their current assignment to a node. We show this
for Product 1 Figure 16 and for Product 2 in Figure 17.

P1

P2

S1 S2

OS

Process 1

Process 2
Process 3

Node 1 Node 2

OS

Process 4
Process 5

Product 2

P1 UI Page service 1
P2 UI Page service 2
S1 Service 1
S2 Service 2
OS Operating system

Key

Node 3

OS

Process 6

Process 7

CMU/SEI-2000-TR-001 47

Figure 16: Communication Mechanisms for the Product Based on Node Structure 1

Figure 17: Communication Mechanisms for the Product Based on Node Structure 2

P2

S1 S2

Node 1 Node 2

Product 2

P2 UI Page service 2
S1 Service 1
S2 Service 2
OS Operating system
PS2 Proxy Service 2
SS2 Stub Service 2

Key

Node 3

PS2SS2PS2

Network
communication

Network
communication

P1 P2S1 S2

Node 1 Node 2

Method call

Product 1

P1 UI Page service 1
P2 UI Page service 2
S1 Service 1
S2 Service 2
PS2 Proxy service 2
SS2 Stub service 2

Key

PS2

Interprocess
communication

SS2

Network
communication

48 CMU/SEI-2000-TR-001

We have seen that the Virtual Thread Command Service 1 is used both in the Unit of De-
ployment Service 1 and in the Unit of Deployment Service 2. The Unit of Deployment UI
Page Service 2 and The Unit of Deployment Service 2 must similarly cooperate, but only in
the product based on the Node Structure 2. Because in both cases the two Units of Deploy-
ment reside on different nodes we introduced a mechanism to allow the information to flow
through the network.

Two new types of threads have been introduced in order to allow the threads or, more pre-
cisely, the communication between threads, to cross the network boundary. These are the
“proxy” and the “stub” threads. The proxy thread is started as soon as an attempt to give
control to an external component is made. The proxy thread handles the network communi-
cation on the sender side. The stub thread receives the necessary information from the proxy
thread and translates it back to the requested call at the component.

It’s logical to assume that beneath this mechanism is also a mechanism to name and to re-
trieve objects in a distributed environment.

The proxy-stub mechanisms for the product base on the Node Structure 2 is described in Fig-
ure 18.

CMU/SEI-2000-TR-001 49

Figure 18 Virtual Threads vs. Physical Threads

In
iti

ali
za

tio
n

Start Tim
er

 s
er

vi
ce

Use
r i

nte
rfa

ce

han
dlin

g (s
er

vi
ce

 1)

Com
m

an
ds s

er
vi

ce
 1

Pro
xy

se
rv

ic
e

2

Diag
nosi

s

Rout
in

es

In
iti

ali
za

tio
n

Start Tim
er

 s
er

vi
ce

Com
m

an
ds s

er
vi

ce
 2

Stu
b se

rv
ic

e 2

Diag
nosi

s

Rout
in

es

In
iti

ali
za

tio
n

Start Tim
er

 se
rv

ic
e

Use
r i

nte
rfa

ce

han
dlin

g (s
er

vi
ce

 2)

Pro
xy

 s
er

vi
ce

 2

Diag
nosis

Rout
in

es

Physical thread

Network communication

Key

50 CMU/SEI-2000-TR-001

In the last step we consider the possibility of conflicts between threads running in parallel.
Assuming that the originating Use Cases applied to the communication between the Func-
tional Structure are shown in Figure 19, and the level of concurrency shown is chosen (i.e.,
Threads Command Service 1 and Commands Service 2), we are able to discover a possible
conflict in the Unit of Deployment Service 2.

Figure 19: Use Case Mapping

The situation can get more complicated if the degree of parallelism of the system is even
higher, because, for example, we can have more instances of the Use Cases running in parallel.

P2S1

P1 UI Page service 1
P2 UI Page service 2
S1 Service 1
S2 Service 2
OS Operating system
UC1 Use case 1
UC2 Use case 2

Threads of control

Key

S2

H1H1 CS2

UC2UC1

CS1

P2

Possible conflict situation

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY
(LEAVE BLANK)

2. REPORT DATE

January 2000
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

The Architecture Based Design Method
5. FUNDING NUMBERS

C — F19628-95-C-0003
6. AUTHOR(S)

Felix Bachmann, Len Bass, Gary Chastek, Patrick
Donohoe, Fabio Peruzzi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2000-TR-001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2000-001

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This paper presents the Architecture Based Design (ABD) method for designing the high-
level software architecture for a product line or long-lived system. Designing an architec-
ture for a product line or long-lived system is difficult because detailed requirements are
not known in advance. The ABD method fulfills functional, quality, and business require-
ments at al level of abstraction that allows for the necessary variation when producing
specific products. Its application relies on an understanding of the architectural mecha-
nisms used to achieve this fulfillment.

The method provides a series of steps for designing the conceptual software architecture. The
conceptual software architecture provides organization of function, identification of synchroni-
zation points for independent threads of control, and allocation of function to processors. The
method ends when commitments to classes, processes and operating system threads begin
to be made. In addition, one output of the method is a collection of software templates that
constrain the implementation of components of different types. The software templates in-
clude a description of how components interact with shared services and also include “citi-
zenship” responsibilities for components.

14. SUBJECT TERMS

Architecture-based design method, software archi-
tecture, software design, quality-based design
method, designing for quality

15. NUMBER OF PAGES

56

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY
CLASSIFICATION OF
THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

