
©2002 OMG Integrating Web Services with MDA Page 1

Using OMG’s Model Driven Architecture (MDA) to Integrate Web Services

by Jon Siegel
Vice President, Technology Transfer
Object Management Group

Since the bloom of networked computing during the last half of the 1990s, the IT industry
has seen a parade of new middleware platforms come and stay. (Support costs would be
lower if they would come and go, but this never happens.) In spite of advocates’ claims
that each one was so superior to its predecessors that it would take over the entire
middleware space, each has only been able to establish itself in the restricted segment
where it offered an advantage. As a result, today’s enterprise IT department may have to
support applications using CORBA (still the only vendor- and operating-system
independent, standardized middleware), COM/DCOM/ActiveX, Java/RMI, EJB,
XML/SOAP, and other middleware platforms. To these, we are now adding C#/.Net and
the main topic of this article, Web Services (WS). (By the way, we don’t believe that
C#/.Net and Web Services will be the last platforms that your IT department will have to
accommodate, but that is a topic for another article.)

To the enterprise supporting this complex infrastructure, there is pain at two levels: First,
building distributed applications is hard. Any of these middleware platforms is, by itself,
complex enough that programmers skilled in its practice are a scarce and valued resource,
and building and maintaining distributed applications is time-consuming and costly.
Second, integrating the multiple applications that work together to run a business is even
harder. In today’s IT environment, integration of two (or more!) programs built on
different middleware may require one of those rare programmers skilled in programming
both or, perhaps even more costly, cooperation by two teams whose skills combine to
cover the solution space.

In this white paper, we’ll show how OMG’s Model Driven Architecture (MDA) reduces
the pain at both levels: Starting with a UML model, MDA-based tools automate and
thereby simplify most of the building of distributed applications on any middleware.
Then, because every MDA-based application comprises both a UML model and a
matching implementation, developers can import the model into MDA-enabled tools
which refer to it as they design, and the tools implement, integration pathways into new
applications (or build wrappers for existing ones), even if these new applications and
wrappers are based on different middleware platforms and this interoperability requires
cross-platform invocations.

We’ll start off by examining WS, emphasizing the characteristics that make them
different from other infrastructure platforms, and then set up a B2B scenario with an
automated WS client placing orders to an automated WS server. With our problem set up,
we’ll introduce the MDA and describe how the customer company in our scenario would
use it to design and build a WS client, integrating it with the back-end legacy applications
that request items for purchase. As we work our way through, we’ll point out features of

©2002 OMG Integrating Web Services with MDA Page 2

the MDA that simplify the different parts of our scenario, and how they do it. So here we
go, with WS characteristics first:

Web Services Characteristics

Here are some of the characteristics of WS that distinguish them from other middleware,
and make them suitable for some classes of inter-application integration:

• Going beyond many RPC or distributed object or component platforms, the WS
architecture defines a comprehensive registry that potential clients can search
when they need a service. (The other architectures include a directory or naming
service, but these are rudimentary compared to a WS registry entry which
includes detailed information about the service and how to invoke it. CORBA’s
Trader is nearly the equivalent, but hasn’t achieved the industry buy-in and
support needed to flourish on the Internet.) At the largest scope, registries are
public and services are provided by vendors, for profit. WS may also be provided
within a company, perhaps from one division to another, or provided by an IT
department for use by everyone in a company.

• There is enough information in a registry entry to allow a programmer or, even
better, a suitably-programmed client, to assemble and dispatch an invocation of
the service, and properly record or deal with the returned result. The entry also
identifies the provider, the cost of using the service, and how to make payment.

• For our discussion, these capabilities and the infrastructure that results are even
more interesting than are details about the standards that make them possible.
These standards (XML to encode invocations and responses; UDDI for the
registry; SOAP over the network) are interesting in their own right, but we’ll stay
at a higher level in this paper.

• Unlike components working together in a server, WS are coarse-grained and self-
contained – you search a registry, find a WS that does what you need, invoke it,
get your response, pay, and the interaction is over. Client applications are unlikely
to build up a single service from many fine-grained WS, although they might use
two or three as they execute an extended application function.

• Loosely-coupled asynchronous invocations (assumed by the most common
Internet-based scenario, albeit not compulsory) make WS slow, at least compared
to synchronous RFP calls. In the extreme, reliable store-and-forward network
transmission allows a WS request to succeed (eventually) even if the server or
network is down when the invocation is sent. This is fine for a computerized
purchase of something you don’t need until next week or next month, but won’t
work for a telecomms giant making 25,000 invocations per second recording call
data into a transactional database.

Three Architectural Levels

In the WS world, an enterprise with an established IT department will probably have
three distinct levels of application and infrastructure:

©2002 OMG Integrating Web Services with MDA Page 3

• Monolithic legacy applications, providing basic business functionality
(accounting, sales/stock/shipping, etc.)

• Object- or component-based applications servicing browser- or computer-
equipped sales staff or customers, or possibly engineering or production facilities
and staff

• Web Services, composed from functions in the first two categories plus new
capabilities added specifically for the WS market

The legacy business applications may be mainframe-based; even if not they are likely
transactional and scale well to the needs of the enterprise after a conversion from batch to
on-line operation. This conversion probably exposes the application’s functionality to the
network through a layer of wrapper code using the middleware platform that was in
fashion when the conversion was designed (which, of course, may have been out-of-date
by the time the conversion went on-line). Internally, these applications are monolithic,
not distributed.

The object- or component-based applications likely run on one or a cluster of CPUs or
discrete computers. Handling e-business functions, these applications must scale to high
transaction rates without stumbling. Components that make up the internal structure of
these applications must be tightly coupled to meet this requirement, precluding shopping
for services in a registry via the WS model. Instead, use of established patterns for
resource allocation and reference (to components allocated using patterns named session
and entity in some component environments) allows references to be cached for instant
access. One other difference between these applications and WS: Designed, configured,
installed, and invoked by the same end-user company, these applications do not have to
deal with the metadata impedance mismatches that arise when independent enterprises try
to interoperate and discover that each defines fundamental entities such as “customer”
differently enough that software has trouble coping.

WS, unlike applications in these first two categories, are self-contained functions that are
invoked, do something useful enough to be paid for, and return the result in an atomic
interaction. (For our discussion purposes, we’ll regard such “side effects” as the shipping
of a purchased product, or streaming of a digital audio or video clip over the network to
the customer’s computer, as incidental to the computerized interaction, however
important they might be to the customer.) The invoking application must shop for the
service that it wants, possibly selecting an instance from a list returned by the registry,
and retrieve a service identifier in a preliminary step. It must then invoke the service,
typically via a loosely-coupled asynchronous transport (which may nevertheless be
reliable, if the network implements store-and-forward transmission semantics). WS are,
as we already mentioned, unsuitable for rapid multi-use services such as database
transactions, or as the internal mechanism linking parts of component-based applications.
For the typical enterprise, then, WS are an additional middleware which impose a new set
of support responsibilities as they add new capabilities.

As we write this, early adopters of WS are completing their first applications and
discovering that primitive WS security standards and implementations do not support

©2002 OMG Integrating Web Services with MDA Page 4

secure deployment across the firewall. Instead of waiting for these standards to develop,
these early adopters are building WS applications to provide services within their
enterprises, avoiding the firewall and security problems for now. Still, its registry lookup,
asynchronous communications, and verbose message format keep WS from substituting
effectively for the more mature and efficient RPC and distributed-object communications
protocols within component-based applications, so the effect of this will be only to shrink
our three-level application and infrastructure breakdown to the size of an enterprise from
its imagined extension to all of the internet.

A B2B WS Scenario

A company may be a user of WS, a provider, or both. Figure 1 shows a WS provided by
Company B, being invoked by a client in Company A. Company A’s WS client is driven
by some combination of legacy and component-based applications. You may have
thought of WS as called mainly by GUI-driven clients, but this will surely not be the
case: computer-driven clients can invoke so rapidly that their interactions will dominate
the network no matter how diligently your children and their friends spend their
allowances on WS-enabled shopping sites. Suppose that Company A runs a factory that
produces 1,000 automobiles and trucks per day (one about every 90 seconds), and that its
WS client orders parts from a supplier, Company B.

At this production rate, Company A is one of the world’s smallest automobile producers
but this is a complex scenario even so. If an automobile or truck needs only one each of
the parts that Company B supplies (such as a dashboard or steering wheel), then we will
have to order 30,000 of these each month, and each may need to be adjusted (size, color,
style) for an individual vehicle, and delivered in time to be installed as that vehicle
reaches the proper point on the assembly line. If each auto or truck needs many of each
part (such as bolts or rivets), we may not need to customize them for each vehicle but
now we may need millions of each per month, of many dozens or hundreds of sizes and
styles. It costs us money if parts are delivered too soon (if we requested delivery a week
before production “just to be sure”, we would need a warehouse big enough to store
7,000 cars, in pieces), or if they’re delivered too late (which would require shutting down
the production line until the parts arrived, and then re-starting it).

©2002 OMG Integrating Web Services with MDA Page 5

Back-end workflow applications coordinate ordering of all of the millions of parts and
other resources needed for production. In addition to these ordering details, they notify
the company’s financial applications to schedule payment precisely on the last day that
Company B will allow (it doesn’t make sense to pay any sooner; money is worth money.
But paying late may risk souring a carefully-cultivated business arrangement. Or maybe
not.). Payment, of course, goes via electronic funds transfer and is probably ordered by its
own WS but we haven’t shown it in the figure. Making payment may require borrowing
money, perhaps by invoking a WS provided by the company’s bank, but we won’t extend
this example to cover it. We’ve made our point: The world of business is complex.

On Company B’s side of the diagram, receipt of an order via its WS server triggers a
multitude of actions on its back end: A main program schedules production and shipping
of the ordered parts, presumably some time in the future. Scheduling and workflow
applications check that sufficient stock is on hand for the additional production, and order
more if necessary (probably by invoking WS on the stock producers’ servers, of course).
At the same time, Company B’s financial applications are notified to schedule AP for the
stock, and the sending of invoices for the shipped parts. If there is a gap between the time
that Company B must pay for the stock, and when it will receive payment for the parts,
then Company B’s financial application will attempt to borrow funds to cover the float
between payment of the invoice and receipt of the amount due.

Integrating WS into your Architecture

Clearly, both companies in our scenario had to overcome formidable integration
problems to implement this scenario, and most of these headaches involved back-end
applications on a plethora of (non-WS) middleware platforms. Instead of focusing in on
any one of the different integration aspects, let’s zoom out to the overall problem: What
is the best way to evaluate the overall integration problem, so that we can visualize and
design a solution? We would like to use the same set of tools for the overall problem that
we do for each individual part, even though many parts use different middleware
platforms; in addition, we need the toolset to represent and work with all of our
individual applications regardless of middleware platform.

OMG’s Model Driven Architecture (MDA), adopted as its base architecture by the group
in late 2001, can do this and it’s an industry standard implemented in multiple tools from
many vendors. Here is a high-level description of the MDA; to fill in details, read the
white papers and presentations linked on OMG’s web page www.omg.org/mda.

OMG’s Model Driven Architecture

OMG's MDA unifies and simplifies modeling, design, implementation, and integration of
applications – including large and complex ones – by defining software fundamentally at
the model level, expressed in OMG’s standard Unified Modeling Language (UML). An
MDA application's base model specifies every detail of its business functionality and
behavior in a technology-neutral way; in MDA terminology this is the application’s

©2002 OMG Integrating Web Services with MDA Page 6

Platform-Independent Model (PIM). Working from the PIM, MDA tools follow an
OMG-standard mapping to generate an intermediate model tailored to the target
middleware implementation platform. (OMG will standardize mappings to all popular
middleware platforms; several have already been adopted.) Termed a Platform-Specific
Model (PSM), this intermediate product will reflect non-business, computing-related
details (typically affecting performance and resource usage) added to the PIM by your
architects, and the version produced by the MDA tool will probably require some hand-
tuning before it can be used for the next step. (The amount of hand-tuning required will
vary depending on the sophistication of the tool, the complexity of the application, and
the maturity of the MDA in your application domain.)

Extremely detailed, the PSM contains the same information as a fully-coded application
but in the form of a UML model instead of as code. In the final development step,
working from the PSM, MDA tools generate interface definitions, application code,
makefiles, and configuration files for the PSM’s middleware platform.

Because the PIM is middleware-neutral and conversion to the PSM and then to the
implementation is mostly automatic, it is practical to produce equivalent implementations
of MDA-based applications on multiple target platforms. In addition, tools can generate
cross-platform invocations, allowing easy interworking among suites of MDA-based
applications wherever they reside. Another benefit of the MDA: because industry
standards defined as an MDA PIM are platform-independent, they can be implemented
on multiple targets and then used by every enterprise even in industries that haven't
converged on a single middleware platform.

Based on UML, automation, and sound architectural principles, the MDA supports
applications over their full lifecycle starting with design and moving on to coding,
testing, and deployment, through maintenance, and eventually to evolution to a new
platform when an application's existing platform becomes obsolete. The MDA became
the base architecture for OMG standards in September 2001.

Modeling Integration with the MDA

Represented as PIMs, the set of applications used by a company or industry can be
imported together into an MDA-based UML modeling tool and viewed as a group.
Zooming out to show the least detail about each application allows us to view and model
how they do, or could, work together. One important advantage: Modeling at this high
level allows us to focus on business functionality and behavior without worrying about
(or even seeing, on our model) technical aspects.

Let’s assume that our automobile company had already imported its production and
workflow applications, scheduling, sales, and financials as an group into an MDA
development tool to model and automate their interactions. Using this view, company
architects have analyzed all of the (sometimes labor-intensive and primitive) ways that
data produced by one program had been input to another in the “good old days” before
reliable high-speed networks became commonplace. Working in the MDA, these

©2002 OMG Integrating Web Services with MDA Page 7

architects have designed and built interfaces and wrappers that allow these legacy
applications to couple over the network, transforming a batch system into a nimble (all
things considered) suite of networked applications that has been running reliably for
some time.

Now, with the advent of WS, it’s time to interface this suite of applications to the outside
world. To the model, company architects can now add an MDA-compliant UML model
of a supplier’s WS-based stock-ordering application, either provided by the vendor
directly or built (mostly automatically albeit with some help from an architect) from the
information in the WS registry entry.

Using this comprehensive business-level view, business experts and IT architects can
analyze and design the business functionality and behavior of a WS client application that
orders parts from the supplier’s WS server. Driven by sales and production scheduling,
this application would order parts and schedule delivery, notify receiving when to expect
them (and to raise a red flag if they don’t come in), and notify the accounting application
that invoices for the amount due will have to be paid on a certain date. If a reply from the
supplier cautions that a part will not be available on time, this application is able to
reschedule production of a vehicle on a later date. If multiple companies can supply a part
(such as nuts and bolts, or rivets), the application can search the registry for the lowest
price or fastest shipping; if a preferred supplier is out of stock, the application could
select an alternate. (Once this system covers all of the significant vehicle parts, it could
be made available to dealers who could enter “what-if” queries and quote delivery dates
to customers for custom-designed vehicles.)

This model must be very detailed – middleware and networked computing technical
information will be part of the MDA tool’s database, but automobile production details
will not! It must also reflect a sound overall design: Handed a good design, an MDA tool
will produce an implementation based on best practice that will perform as well as, and
probably better than, a hand-coded version. However, faced with a poorly-designed UML
model of the same business functionality, the MDA tool will produce a poor
implementation if it is able to produce one at all. MDA development leverages the skills
of architects and designers: IT shops will be able to produce more applications quicker
with fewer skilled architects and designers, but will not be able to dispense with them
entirely.

Technical details are added to the model only after all business functionality and behavior
has been incorporated and reviewed for correctness by business experts. Application
architects mark up the PIM, adding hints about resource usage patterns and performance.
This is where you input to your MDA-based development tool that one of your back-end
legacy applications still runs on DCOM (if this information isn’t in the model of that
application already, or in the tool’s site configuration file), and couple the data in the new
WS application to your corporate database, or a selected image of the data. If you’re
using a component-based environment, you may label component types with resource-
usage patterns. (These may have generic names in your model, which will be translated to

©2002 OMG Integrating Web Services with MDA Page 8

names like session, entity, or process if the target platform is Enterprise JavaBeans or
CORBA Components.)

Using these hints, the MDA-based tool applies an OMG-standard mapping to the selected
target middleware platform to generate a PSM for the application. Because our example
application is mainly a WS client, we will probably choose WS as our target platform.
Still, our tool will have no trouble generating cross-platform invocations to the multiple
other middlewares in our execution environment. Architects examine the PSM produced
by the tool and tune it up where necessary, before it is used as the input to the next step.

Once the PSM has been examined and tuned up where necessary, our MDA-enabled
development tool uses it to generate interface files, programming language code,
configuration files, and all of the other artifacts required to produce a running application.
Compiling and linking the files produced by this step yields the deployable application.
Designed and coded by MDA-enabled tools, this Web Service client integrates smoothly
with the enterprise applications that drive it over RPC and distributed-object protocols,
while simultaneously interacting with the company’s supplier using Web Services.
Faster, better, cheaper – this is the way to build Web Services applications!

MDA architects do not expect that the first version of this or any application will be
perfect. The MDA development process assumes that developers will iterate from design
to implementation and back several times before settling on a final version. MDA
architectural specifications call for automated “round tripping”, propagating edits to the
running code back into the PSM and then the PIM. You can already buy several tools that
reverse-engineer source and even object code into UML models; the automated round-
tripping is not that much of a stretch from there. You can expect basic round-tripping
capability to be present in some early versions of MDA tools, and for this capability to
mature rapidly.

Although our discussion dealt specifically with the client side, this was mainly for
concreteness – In our automated-client system, the WS client and server play similar
roles in orchestrating and integrating the interaction among all of our enterprise
applications. (If we had used a GUI-based client for the example, with no connections to
our enterprise back end, the client and server ends would be quite different.) So, we
won’t discuss the server end separately here – it’s already done.

Conclusions

The MDA environment is extremely powerful, and broadly scoped: Per application, the
PIM isolates business functionality and behavior, allowing analysis and design of core
business aspects undistorted by technical concerns. The PIM then carries through to at
least two development pathways: First, from it MDA tools generate one or more PSMs
and an applications, on one or more middleware platforms. Second, PIMs for an
enterprise’s entire application suite can be collected into a model of its total computing
environment, allowing their combined business functionality to be viewed, modeled,
analyzed, and integrated.

©2002 OMG Integrating Web Services with MDA Page 9

Web Service applications, typically intended to interact across the firewall to an
enterprise’s customers and suppliers, are inherently multi-platform and broadly
integrated. By designing these complex applications in the MDA, and letting MDA-
enabled tools build them with help from skilled architectural and programming staff, the
computer-savvy enterprise can move into the world of Web Services better, faster, and
cheaper than by doing it any other way.

References:

For more information on the MDA, see www.omg.org/mda; for information on OMG see
www.omg.org. OMG specifications are adopted at the group’s meetings, listed up to a
year in advance at www.omg.org/news/schedule/upcoming.htm. To register for a
meeting, members may fill out the form at http://www.omg.org/registration/registration-
info.htm. Non-members may also attend; see www.omg.org/news/meetings/tc/guest.htm.
To check if your company is a member, see http://cgi.omg.org/cgi-bin/membersearch.pl.
Address other questions about OMG membership and programs to info@omg.org; send
technical questions directly to the author at siegel@omg.org.

About the Author:

Dr. Jon Siegel, OMG's Vice President of Technology Transfer, heads OMG's technology
transfer program with the goal of teaching the technical aspects and benefits of the Model
Driven Architecture (MDA) based on OMG's modeling specifications UML, the MOF,
XMI and CWM. Siegel's scope also includes OMG's industry-standard middleware, the
Common Object Request Broker Architecture (CORBA) and the Object Management
Architecture (OMA) comprised of the CORBAservices, the CORBAfacilities, and the
Domain specifications in vertical markets ranging from healthcare, life sciences, and
telecommunications to manufacturing and financial systems. In this capacity, he presents
tutorials, seminars, and company briefings around the world, and writes magazine articles
and books including the popular "CORBA 3 Fundamentals and Programming" and
"Quick CORBA 3". With OMG since 1993, Siegel previously chaired the Domain
Technology Committee responsible for OMG specifications in the vertical domains.

