Using OMG’s Model Driven Architecture (MDA) to Integrate Web Services

by Jon Segd
Vice Presdent, Technology Transfer
Object Management Group

Since the bloom of networked computing during the last hdf of the 1990s, the IT industry
has seen a parade of new middleware platforms come and stay. (Support costs would be
lower if they would come and go, but this never happens.) In spite of advocates claims
that each one was S0 superior to its predecessors that it would take over the entire
middleware space, each has only been able to establish itsdlf in the restricted segment
where it offered an advantage. As aresult, today’ s enterprise I T department may have to
support applications usng CORBA (dill the only vendor- and operating-system
independent, standardized middleware), COM/DCOM/ActiveX, JavalRMI, EJB,
XML/SOAP, and other middieware platforms. To these, we are now adding C#/.Net and
the main topic of thisarticle, Web Services (WS). (By the way, we don’'t believe that

C#/ .Net and Web Services will bethe lagt platforms that your I'T department will haveto
accommodeate, but that is atopic for another article.)

To the enterprise supporting this complex infragtructure, there is pain a two levels. Firg,
building distributed applicationsis hard. Any of these middleware platformsis, by itsdf,
complex enough that programmers skilled in its practice are a scarce and vaued resource,

and building and maintaining digtributed applications is time-consuming and coslly.

Second, integrating the multiple applications that work together to run a businessis even
harder. Intoday’sIT environment, integration of two (or more!) programs built on

different middleware may require one of those rare programmers skilled in programming

both or, perhaps even more costly, cooperation by two teams whose skills combine to

cover the solution space.

In this white paper, we' Il show how OMG’s Modd Driven Architecture (MDA) reduces
the pain at both levels Starting with a UML modd, MDA-based tools automate and
thereby smplify most of the building of distributed applications on any middieware.

Then, because every MDA -based application comprises both a UML modd and a
matching implementation, developers can import the modd into MDA-enabled tools
which refer to it as they design, and the tools implement, integration pathways into new
gpplications (or build wrappers for existing ones), even if these new gpplications and
wrappers are based on different middleware platforms and this interoperability requires
cross-platform invocations.

We Il gart off by examining WS, emphasizing the characterigtics that make them

different from other infrastructure platforms, and then set up aB2B scenario with an
automated WS client placing orders to an automated WS server. With our problem set up,
we Il introduce the MDA and describe how the customer company in our scenario would
useit to desgn and build a WS dlient, integrating it with the back-end legacy gpplications
that request items for purchase. Aswe work our way through, we' |l point out features of

©2002 OMG Integrating Web Services with MDA Page 1

the MDA that smplify the different parts of our scenario, and how they do it. So herewe
go, with WS characteridticsfirgt:

Web Services Characteristics

Here are some of the characteristics of WS that distinguish them from other middleware,
and make them suitable for some classes of inter-gpplication integration:

Going beyond many RPC or distributed object or component platforms, the WS
architecture defines a comprehengive regidry that potentia clients can search
when they need aservice. (The other architectures include a directory or naming
service, but these are rudimentary compared to a WS registry entry which
includes detailed information about the service and how to invoke it. CORBA’s
Trader is nearly the equivaent, but hasn't achieved the industry buy-in and
support needed to flourish on the Internet.) At the largest scope, registries are
public and services are provided by vendors, for profit. WS may aso be provided
within a company, perhaps from one division to another, or provided by an IT
department for use by everyone in acompany.

Thereis enough information in aregidry entry to alow a programmer or, even
better, a suitably- programmed client, to assemble and dispatch an invocation of
the service, and properly record or ded with the returned result. The entry dso
identifies the provider, the cost of using the service, and how to make payment.
For our discussion, these capabilities and the infrastructure that results are even
more interesting than are details about the standards that make them possible.
These standards (XML to encode invocations and responses; UDDI for the
registry; SOAP over the network) are interesting in their own right, but we'll stay
a ahigher leve in this paper.

Unlike components working together in a server, WS are coarse-grained and sdif-
contained — you search aregigry, find a WS that does what you need, invoke it,
get your response, pay, and the interaction is over. Client gpplications are unlikely
to build up asingle sarvice from many fine-grained WS, dthough they might use
two or three as they execute an extended application function.

L oosdly- coupled asynchronous invocations (assumed by the most common

I nternet-based scenario, abeit not compulsory) make WS dow, at least compared
to synchronous RFP cdls. In the extreme, rdigble store-and-forward network
transmission alows a WS request to succeed (eventudly) even if the server or
network is down when the invocation is sent. Thisisfine for acomputerized
purchase of something you don’t need until next week or next month, but won't
work for ateecomms giant making 25,000 invocations per second recording call
datainto atransactional database.

Three Architectural Levels

In the WS world, an enterprise with an established I'T department will probably have
three ditinct levels of application and infrastructure;

©2002 OMG Integrating Web Services with MDA Page 2

Monalithic legacy gpplications, providing basc business functiondity
(accounting, sales/'stock/shipping, €tc.)

Object- or component-based applications servicing browser- or computer-
equipped sdes saff or customers, or possibly engineering or production facilities
and gtaff

Web Services, compaosed from functionsin the first two categories plus new
capabilities added specificdly for the WS market

The legacy business applications may be mainframe-based; even if not they are likely
transactiona and scale wdll to the needs of the enterprise after a conversion from batch to
on-line operation. This conversion probably exposes the application’ s functiondity to the
network through alayer of wrapper code using the middleware platform that wasin
fashion when the conversion was designed (which, of course, may have been out-of-date
by the time the conversion went on-line). Internaly, these applications are monalithic,

not distributed.

The object- or component-based gpplications likely run on one or a cluster of CPUs or
discrete computers. Handling e-business functions, these gpplications must scale to high
transaction rates without sumbling. Components that make up theinterna structure of
these gpplications must be tightly coupled to meet this requirement, precluding shopping
for servicesin aregistry viathe WS modd. Instead, use of established patterns for
resource allocation and reference (to components allocated using patterns named session
and entity in some component environments) alows references to be cached for ingtant
access. One other difference between these gpplications and WS: Designed, configured,
ingaled, and invoked by the same end- user company, these gpplications do not have to
ded with the metadata impedance mismatches that arise when independent enterprisestry
to interoperate and discover that each defines fundamenta entities such as “customer”
differently enough that software has trouble coping.

WS, unlike gpplications in these first two categories, are self-contained functions thet are
invoked, do something useful enough to be paid for, and return the result in an atomic
interaction. (For our discussion purposes, we |l regard such “side effects’ as the shipping
of apurchased product, or streaming of adigita audio or video clip over the network to
the customer’ s computer, as incidenta to the computerized interaction, however
important they might be to the customer.) The invoking gpplication must shop for the
sarvice that it wants, possibly seecting an ingance from aligt returned by the regidtry,
and retrieve a sarvice identifier in apreiminary step. It must then invoke the service,
typicaly viaaloosdy-coupled asynchronous transport (which may nevertheless be
reliable, if the network implements store-and-forward transmission semantics). WS are,
as we dready mentioned, unsuitable for rapid multi- use services such as database
transactions, or astheinternd mechanism linking parts of component-based applications.
For the typica enterprise, then, WS are an additional middleware which impose anew set
of support responsibilities as they add new capabilities.

Aswe writethis, early adopters of WS are completing their first gpplications and
discovering that primitive WS security standards and implementations do not support

©2002 OMG Integrating Web Services with MDA Page 3

secure deployment across the firewadll. Instead of waiting for these standards to develop,
these early adopters are building WS applications to provide services within thar
enterprises, avoiding the firewall and security problems for now. Still, its registry lookup,
asynchronous communications, and verbose message format keep WS from subgtituting
effectively for the more mature and efficient RPC and distributed- object communications
protocols within component-based gpplications, so the effect of thiswill be only to shrink
our three-leve application and infrastructure breakdown to the size of an enterprise from
itsimagined extengon to dl of the internet.

A B2B WS Scenario

A company may be auser of WS, a provider, or both. Figure 1 shows a WS provided by
Company B, being invoked by a client in Company A. Company A’s WS client isdriven
by some combination of legacy and component-based gpplications. Y ou may have

thought of WS as cdled mainly by GUI-driven dlients, but thiswill surdly not be the

case: computer-driven clients can invoke so rapidly that their interactions will dominate

the network no matter how diligently your children and their friends spend their

alowances on WS-enabled shopping sites. Suppose that Company A runs a factory that
produces 1,000 automobiles and trucks per day (one about every 90 seconds), and that its
WS client orders parts from a supplier, Company B.

Legacy | Legaey
Application |~ ————————— ! oo .~ Application
| || Web Service | | | Web Service |
o Client [: Server .

Component |-~ — = | P .| Component
Application | kT i Application
Company A A G Company B
Web Service |

Registry |

At this production rate, Company A is one of the world's smalest automobile producers
but this is a complex scenario even so. If an automobile or truck needs only one each of
the parts that Company B supplies (such as a dashboard or steering whed!), then we will
have to order 30,000 of these each month, and each may need to be adjusted (size, color,
dyle) for an individua vehicle, and ddlivered in time to be indaled asthat vehicle
reaches the proper point on the assembly line. If each auto or truck needs many of each
part (such as bolts or rivets), we may not need to customize them for each vehicle but
now we may need millions of each per month, of many dozens or hundreds of Szes and
styles. It costs us money if parts are ddlivered too soon (if we requested delivery aweek
before production “just to be sure”, we would need a warehouse big enough to store
7,000 cars, in pieces), or if they’'re ddivered too late (which would require shutting down
the production line until the parts arrived, and then re-garting it).

©2002 OMG Integrating Web Services with MDA Page 4

Back-end workflow gpplications coordinate ordering of dl of the millions of partsand
other resources needed for production. In addition to these ordering details, they notify

the company’ s financia applications to schedule payment precisdy on the last day that
Company B will dlow (it does't make sense to pay any sooner; money is worth money.
But paying late may risk souring a carefully-cultivated business arrangement. Or maybe
not.). Payment, of course, goes via dectronic funds transfer and is probably ordered by its
own WS but we haven't shown it in the figure. Making payment may require borrowing
money, perhaps by invoking a WS provided by the company’ s bank, but we won't extend
this example to cover it. We ve made our point: The world of businessis complex.

On Company B’ssde of the diagram, receipt of an order viaits WS server triggers a
multitude of actions on its back end: A main program schedules production and shipping
of the ordered parts, presumably some time in the future. Scheduling and workflow
applications check that sufficient stock is on hand for the additiona production, and order
more if necessary (probably by invoking WS on the stock producers servers, of course).
At the same time, Company B’ s financid applications are notified to schedule AP for the
stock, and the sending of invoices for the shipped parts. If there is a gap between the time
that Company B must pay for the stock, and when it will receive payment for the parts,
then Company B’sfinancid gpplication will atempt to borrow funds to cover the float
between payment of the invoice and receipt of the amount due.

Integrating WSinto your Architecture

Clearly, both companiesin our scenario had to overcome formidable integration
problems to implement this scenario, and most of these headaches involved back-end
gpplications on aplethora of (non-WS) middleware platforms. Instead of focusing in on
any one of the different integration aspects, let's zoom out to the overdl problem: What
is the best way to evauate the overdl integration problem, so that we can visudize and
design a solution? We would like to use the same set of tools for the overal problem that
we do for each individua part, even though many parts use different middleware
platforms; in addition, we need the tool set to represent and work with al of our
individua applications regardless of middieware platform.

OMG’'s Modd Driven Architecture (MDA), adopted as its base architecture by the group
in late 2001, can do thisand it's an industry standard implemented in multiple tools from
many vendors. Hereisahigh-level description of the MDA,; to fill in details, read the
white papers and presentations linked on OMG’ s web page www.omg.org/mda.

OMG’'sModd Driven Architecture

OMG's MDA unifies and smplifies modeling, design, implementation, and integration of
gpplications — including large and complex ones — by defining software fundamentaly a
the modd leve, expressed in OMG'’ s standard Unified Modding Language (UML). An
MDA application's base model specifies every detall of its busness functiondity and
behavior in atechnology-neutral way; in MDA terminology thisis the gpplication’s

©2002 OMG Integrating Web Services with MDA Page 5

Platform: Independent Modd (PIM). Working from the PIM, MDA tools follow an

OM G- gtandard mapping to generate an intermediate modd tailored to the target
middleware implementation platform. (OMG will standardize mappingsto al popular
middleware platforms; several have aready been adopted.) Termed a Platform: Specific
Modd (PSM), thisintermediate product will reflect non-business, computing-rel ated
details (typicaly affecting performance and resource usage) added to the PIM by your
architects, and the version produced by the MDA tool will probably require some hand-
tuning before it can be used for the next step. (The amount of hand-tuning required will
vary depending on the sophistication of the tool, the complexity of the gpplication, and
the maturity of the MDA in your gpplication domain.)

Extremely detalled, the PSM contains the same information as a fully-coded application
but in the form of aUML modd ingtead of as code. In the final development step,
working from the PSM, MDA tools generate interface definitions, application code,
makefiles, and configuration files for the PSM’s middleware platform.

Because the PIM is middleware-neutra and conversion to the PSM and then to the
implementation is mogtly automatic, it is practica to produce equivdent implementations
of MDA-based gpplications on multiple target platforms. In addition, tools can generate
cross-platform invocations, dlowing easy interworking among suites of MDA-based
gpplications wherever they reside. Another benefit of the MDA : because industry
standards defined as an MDA PIM are platform-independent, they can be implemented
on multiple targets and then used by every enterprise even in indudtries that haventt
converged on asingle middieware platform.

Based on UML, automation, and sound architectura principles, the MDA supports
goplications over ther full lifecyde garting with design and moving on to coding,
testing, and deployment, through maintenance, and eventudly to evolution to anew
platform when an gpplication's existing platform becomes obsolete. The MDA became
the base architecture for OMG standards in September 2001.

Modeing I ntegration with the MDA

Represented as PIM s, the set of applications used by a company or industry can be
imported together into an MDA-based UML modding tool and viewed as a group.
Zooming out to show the least detail about each application alows usto view and modd
how they do, or could, work together. One important advantage: Modeling at this high
leve dlows us to focus on business functiondity and behavior without worrying about
(or even seeing, on our model) technical aspects.

Let's assume that our automobile company had aready imported its production and
workflow gpplications, scheduling, sdes, and financids as an group into an MDA
development tool to mode and automate their interactions. Using this view, company
architects have andyzed dl of the (sometimes labor-intensive and primitive) ways that
data produced by one program had been input to another in the “good old days’ before
reliable high-speed networks became commonplace. Working in the MDA, these

©2002 OMG Integrating Web Services with MDA

architects have designed and built interfaces and wrappers that alow these legacy
gpplications to couple over the network, transforming a batch system into animble (all
things considered) suite of networked applications that has been running rdligbly for
sometime.

Now, with the advent of WS, it’ stime to interface this suite of gpplications to the outsde
world. To the mode, company architects can now add an MDA-compliant UML mode
of asupplier sWS-based stock-ordering application, either provided by the vendor
directly or built (mostly autometically abeit with some help from an architect) from the
information in the WS registry entry.

Using this comprehensve business-leve view, business expertsand I T architects can
andyze and design the business functiondity and behavior of a WS client application that
orders parts from the supplier’ s WS server. Driven by sales and production scheduling,
this application would order parts and schedule delivery, notify receiving when to expect
them (and to raise ared flag if they don’t comein), and notify the accounting gpplication
that invoices for the amount due will have to be paid on acertain date. If areply from the
supplier cautions that a part will not be available on time, this agpplication is adle to
reschedule production of avehicle on alater date. If multiple companies can supply a part
(such as nuts and bolts, or rivets), the application can search the registry for the lowest
price or fagtest shipping; if a preferred supplier is out of stock, the application could
select an dternate. (Once this system covers dl of the sgnificant vehicle parts, it could

be made available to dealers who could enter “what-if” queries and quote delivery dates
to customers for custom-designed vehicles)

Thismode must be very detalled — middlieware and networked computing technical
information will be part of the MDA tool’ s database, but automobile production details
will not! It must dso reflect a sound overdl design: Handed a good design, an MDA tool
will produce an implementation based on best practice thet will perform aswell as, and
probably better than, a hand-coded version. However, faced with a poorly-designed UML
mode of the same business functiondity, the MDA tool will produce a poor
implementation if it isable to produce one a dl. MDA development |everages the skills
of architects and designers: IT shopswill be able to produce more agpplications quicker
with fewer skilled architects and designers, but will not be able to dispense with them
entirely.

Technicdl details are added to the model only after dl business functiondity and behavior
has been incorporated and reviewed for correctness by business experts. Application
architects mark up the PIM, adding hints about resource usage patterns and performance.
Thisiswhere you input to your MDA -based devel opment tool that one of your back-end
legacy applications Hill runs on DCOM (if thisinformation is't in the mode of that
goplication dready, or in the tool’ s Ste configuration file), and couple the data in the new
WS gpplication to your corporate database, or a salected image of the data. If you're
using a component-based environment, you may label component types with resource-
usage patterns. (These may have generic names in your model, which will be trandated to

©2002 OMG Integrating Web Services with MDA Page 7

names like session, entity, or processiif the target platform is Enterprise JavaBeans or
CORBA Components.)

Using these hints, the MDA -based tool applies an OMG-standard mapping to the selected
target middleware platform to generate a PSM for the application. Because our example
goplication ismainly aWS client, we will probably choose WS as our target platform.

Stll, our tool will have no trouble generating cross-platform invocations to the multiple
other middiewares in our execution environment. Architects examine the PSM produced
by the tool and tune it up where necessary, before it is used as the input to the next step.

Once the PSM has been examined and tuned up where necessary, our MDA-enabled
development tool usesit to generate interface files, programming language code,
configuration files, and al of the other artifacts required to produce a running application.
Compiling and linking the files produced by this step yields the deployable application.
Designed and coded by MDA -enabled toals, this Web Service client integrates smoothly
with the enterprise gpplications that drive it over RPC and distributed-object protocols,
while smultaneoudy interacting with the company’s supplier usng Web Services.

Faster, better, cheaper — thisisthe way to build Web Services applicaiond

MDA architects do not expect that the first version of this or any application will be
perfect. The MDA development process assumes that devel opers will iterate from design
to implementation and back severd times before settling on afind verson. MDA
architectura specifications call for automated “round tripping”, propageting edits to the
running code back into the PSM and then the PIM. Y ou can dready buy severd tools that
reverse-engineer source and even object code into UML models; the automated round-
tripping is not that much of a stretch from there. Y ou can expect basic round-tripping
capability to be present in some early versons of MDA tools, and for this capability to
mature rapidly.

Although our discusson dedlt specificaly with the client Side, thiswas mainly for
concreteness — In our automated- client system, the WS dlient and server play smilar
rolesin orchestrating and integrating the interaction among dl of our enterprise
applications. (If we had used a GUI-based client for the example, with no connections to
our enterprise back end, the client and server ends would be quite different.) So, we
won't discuss the server end separately here — it’ s already done.

Conclusions

The MDA environment is extremely powerful, and broadly scoped: Per application, the
PIM isolates business functiondity and behavior, dlowing analysis and design of core
business aspects undistorted by technical concerns. The PIM then carries through to at
least two development pathways. Firgt, from it MDA tools generate one or more PSMs
and an gpplications, on one or more middleware platforms. Second, PIMsfor an
enterprise’ s entire application suite can be collected into amodd of itstotal computing
environment, alowing their combined business functiondity to be viewed, modeled,
andyzed, and integrated.

©2002 OMG Integrating Web Services with MDA Page 8

Web Service gpplications, typicaly intended to interact across the firewdl to an
enterprise’ s customers and suppliers, are inherently multi- platform and broadly
integrated. By designing these complex gpplicationsin the MDA, and letting MDA -
enabled tools build them with help from skilled architectural and programming saff, the
computer-savvy enterprise can move into the world of Web Services better, faster, and

chegper than by doing it any other way.

References:

For more information on the MDA, see www.omg.org/mda; for information on OMG see
www.omg.org. OM G specifications are adopted at the group’s mestings, listed up to a
year in advance at www.omg.org/news/schedule/upcoming.htm. To register for a

meseting, members may fill out the form at http:/mww.omg.org/registration/registration
info.htm. Nort members may aso attend; see www.omg.org/news/meetings'tc/guest.htm.
To check if your company is amember, see http://cgi.omg.org/cgi- bin/membersearch.pl.
Address other questions about OMG membership and programs to info@omg.org; send
technical questions directly to the author at siegel @omg.org.

About the Author:

Dr. Jon Siegel, OMG's Vice President of Technology Transfer, heads OMG's technol ogy
transfer program with the god of teaching the technica aspects and benefits of the Modd
Driven Architecture (MDA) based on OMG's modding specifications UML, the MOF,
XMI and CWM. Siegel's scope aso includes OMG's industry-standard middleware, the
Common Object Request Broker Architecture (CORBA) and the Object Management
Architecture (OMA) comprised of the CORBAsarvices, the CORBAfacilities, and the
Domain specifications in vertica markets ranging from hedthcare, life sciences, and
telecommunications to manufacturing and financia systems. In this cgpacity, he presents
tutorids, seminars, and company briefings around the world, and writes magazine articles
and books including the popular "CORBA 3 Fundamentals and Programming” and
"Quick CORBA 3". With OMG since 1993, Siegel previoudy chaired the Domain
Technology Committee responsible for OMG specificationsin the verticd domains.

©2002 OMG Integrating Web Services with MDA Page 9

