
HKSQA Guidebook Software Testing

Version 1.0 1 of 21 July 1999

ST.A Document Template for Software Verification and Validation
Plan (SVVP) with Test Specifications

ST.A 1 Purpose of the plan
Example - testing: To prescribe the approach, resources and schedule of
the testing activities for a level of testing. To identify the items being
tested, the testing tasks to be performed and the personnel responsible for
each task.

ST.A.2 Reference documents

ST.A.3 Definitions

ST.A.4 Verification and validation overview

ST.A.4.1 Organisation
Describe SVV roles, responsibilities and reporting lines.

ST.A.4.2 Master schedule
Summarize when SVV activities will be done.

ST.A.4.3 Resources summary
Describe who and what is required to do SVV.

ST.A.4.4 Responsibilities
List the people who will perform the roles described in 4.1.

ST.A.4.5 Tools, techniques and methods
Describe the tools, techniques and methods used for SVV.

ST.A.5 Verification and validation of administrative procedures (for large projects
only)

ST.A.5.1 Anomaly reporting and resolution
Describe or reference the problem reporting procedures,
ie, what reporting procedures are followed when problems
are encountered.
Define the problem severity levels, eg, 3 – highly critical,
2-critical and 1-not critical.

ST.A.5.2 Control procedures
Describe or reference how SVV outputs will be controlled,
eg, proper labelling of test results.

ST.A.5.3 Standards, practices and conventions
Describe any external policies, directives and procedures.

HKSQA Guidebook Software Testing

Version 1.0 2 of 21 July 1999

ST.A.6 Verification and validation activities (for large projects only)

ST.A.6.1 Formal proofs
Show how the correctness of the phase outputs will be
shown, eg, correctness review signature.

ST.A.6.2 Reviews
Describe the inspection, walkthrough, technical review and
audit procedures, ie, for untestable requirements.

ST.A.7 Acceptance Test Specification (Note: Same Structure for Systems,
Integration and Unit Test Specifications)

ST.A.7.1 Test Plan

a) Introduction
Summarize the software items and features to be
tested.

b) Test items
List the items to be tested.

c) Features to be tested
List the features to be tested.

d) Features not to be tested
List the features not to be tested.

e) Approach
Outline how the tests will be done.

f) Item pass/fail criteria
Specify the criteria for passing or failing a test.

g) Suspension criteria and resumption requirements
Specify the criteria for stopping or resuming a test.

h) Test deliverables
List the items that must be delivered before testing
starts.
List the items that must be delivered when testing ends.

i) Testing tasks
Describe the tasks needed to prepare for and carry out
the tests.

j) Environmental needs

HKSQA Guidebook Software Testing

Version 1.0 3 of 21 July 1999

Describe the resources & facilities required of the test
environment.

k) Responsibilities
Describe who will:
Authorize testing is ready to start;
Perform the tests;
Check the results;
Authorize testing is complete.

l) Staffing and training needs
Describe test staffing needs by skill level;
Identify training requirements for the necessary skills.

m) Schedule
Summarize when test activities will be done.

n) Risks and contingencies
Identify the high-risk assumptions of this plan;

Describe the contingency plan for each.

o) Approvals
Specify who must approve this plan.

ST.A.7.2 Test Designs (repeat for each test design ..)

a) Test design identifier
Give a unique identifier for the test design.

b) Features to be tested
List the features to be tested.

c) Approach refinements
Describe how the tests will be done.

d) Test case identification
List the specific test cases.

e) Feature pass/fail criteria
Specify the criteria for passing or failing a test.

ST.A.7.3 Test Case Specifications (repeat for each test case ..)

a) Test case identifier
Give a unique identifier for the test case.

b) Test items
List the items to be tested.

HKSQA Guidebook Software Testing

Version 1.0 4 of 21 July 1999

c) Input specifications
Describe the input for the test case.

d) Output specifications
Describe the output required from the test case.

e) Environmental needs
Describe the test environment.

f) Special procedural requirements
Describe any special constraints on this test.

g) Test case dependencies
List the test cases that must precede this test case.

ST.A.7.4 Test Procedures (repeat for each test case ..)

a) Test procedure identifier
Give a unique identifier for the test procedure.

b) Purpose
Describe the purpose of the procedure.
List the test cases this procedure executes.

c) Special requirements
Describe any special constraints on this test.

d) Procedure steps
Describe how to log, setup, start, proceed, measure,
shut down, restart, stop, wrap the test, and how to
handle contingencies.

ST.A.7.5 Test Reports (repeat for each execution of a test procedure
..)

a) Test report identifier
Give a unique identifier for the test report.

b) Description
List the items being tested.

c) Activity and event entries
Identify the test procedure;
Say when the test was done, who did it;
What happened (overall test results, eg, passed, passed
with minor defects, failed with one or more major
problems, aborted with reason);

HKSQA Guidebook Software Testing

Version 1.0 5 of 21 July 1999

Describe where the outputs of the test procedure are
kept.

ST.B Sample Test Specifications

HKSQA Guidebook Software Testing

Version 1.0 6 of 21 July 1999

ST.C Document Template for Software Transfer (STD)

ST.C.1 Introduction

ST.C.1.1 Purpose of the document

ST.C.1.2 Scope of the software

ST.C.1.3 Definitions, acronyms and abbreviations

ST.C.1.4 References

ST.C.1.5 Overview of the document

ST.C.2 Installation Procedures
Describe how to get the software up and running on the target machine.

ST.C.3 Build Procedures
Describe how to build the software from source code.

ST.C.4 Configuration Item List
List all the deliverable configuration items. Each configuration item
should be expanded to include details where appropriate, eg,
Media to be delivered;
Licence no.;
Serial no.:
Version no. etc.

ST.C.5 Acceptance Test Report Summary
For each acceptance test, give the:
User requirement identifier and summary
Test report identifier in the AcceptanceTest Reports
Test result summary

ST.C.6 Software Problem Reports (SPR)
List the SPRs raised during the Acceptance phase and their status.

ST.C.7 Software Change Requests (SCR)
List the SCRs raised during the Acceptance phase and their status.

ST.C.8 Software Modification Reports (SMR)
List the SMRs completed during the Acceptance phase.

HKSQA Guidebook Software Testing

Version 1.0 7 of 21 July 1999

ST.D Form Template for Reporting Software problems (SPR)

SPR No.:Originator:

Date:

1. Software Item Title:

2. Software Item Version/Release No.:

3. Priority: Critical/Urgent/Routine (underline choice)

4. Problem Description:

5. Description of Environment:

6. Recommended Solution (include date):

7. Review Decision: Close/Update/Action/Reject (underline choice)

8. Attachments:

HKSQA Guidebook Software Testing

Version 1.0 8 of 21 July 1999

ST.E System Test Approach Discussion

ST.E.1 System Test Planning

The first step in system testing is to construct a system test plan and
document it in the SVVP (Appendix 6.1). This plan is defined in the
analysis phase and should describe the scope, approach, resources and
schedule of the intended system tests. The scope of system testing is to
verify compliance with the system objectives stated during the analysis
phase. System testing must continue until readiness for user acceptance
can be demonstrated.

The amount of testing required is dictated by the need to cover all the
software requirements. A test should be defined for every essential
software requirement, and for every desirable requirement that has been
implemented.

ST.E.2 System Test Design

The next step in system testing is system test design. This and subsequent
steps are performed in the design phase, although system test design may
be attempted in the analysis phase. System test designs should specify the
details of the test approach for each software requirement specified, and
identify the associated test cases and test procedures. The description of
the test approach should state the types of tests necessary (e.g. function
test, stress test etc).

Knowledge of the internal workings of the software should not be
required for system testing, and so white-box tests should be avoided.
Black-box and other types of test should be used wherever possible. When
a test of a requirement is not possible, an alternative method of
verification should be used (e.g. inspection), to qualify/quantify the
acceptance.

System testing tools can often be used for problem investigation. Effort
invested in producing efficient easy-to-use diagnostic tools at this stage of
development is often worthwhile.

If an incremental delivery or evolutionary development approach is being
used, system tests of each release of the system should include regression
tests of software requirements verified in earlier releases.

There are several types of requirements, each of which needs a distinct
test approach. The following subsections discuss possible approaches.

ST.E.2.1 Function tests

HKSQA Guidebook Software Testing

Version 1.0 9 of 21 July 1999

System test design should begin by designing black-box
tests to verify each functional requirement. Working from
the functional requirements, techniques such as decision
tables, state-transition tables and error guessing are used to
design function tests.

ST.E.2.2 Performance tests

Performance requirements should contain quantitative
statements about system performance. They may be
specified by stating the:
l worst case that is acceptable;
l nominal value, to be used for design;
l best case value, to show where growth potential is

needed.

System test cases should be designed to verify:
l that all worst case performance targets have been met;
l that nominal performance targets are usually achieved;
l whether any best-case performance targets have been

met.

In addition, stress tests (see Section 6.5.2.13) should be
designed to measure the absolute limits of performance.

ST.E.2.3 Interface tests

System tests should be designed to verify conformance to
external interface requirements. Simulators and other test
tools will be necessary if the software cannot be tested in
the operational environment.

Tools (not debuggers) should be provided to:
l convert data flows into a form readable by human

operators;
l edit the contents of data stores.

ST.E.2.4 Operations tests

Operations tests include all tests of the user interface, man
machine interface, or human computer interaction
requirements. They also cover the logistical and
organizational requirements. These are essential before the
software is delivered to the users.

Operations tests should be designed to show up
deficiencies in usability such as:
l instructions that are difficult to follow;

HKSQA Guidebook Software Testing

Version 1.0 10 of 21 July 1999

l screens that are difficult to read;
l commonly-used operations with too many steps;
l meaningless error messages.

The operational requirements may have defined the time
required to learn and operate the software. Such
requirements can be made the basis of straightforward tests.
For example, a test of usability might be to measure the
time an operator with average skills takes to learn how to
restart the system.

Other kinds of tests may be run throughout the system-
testing period, for example:
l do all warning messages have a red background?
l is there help on this command?

If there is a help system, every topic should be
systematically inspected for accuracy and appropriateness.

Response times should normally be specified in the
performance requirements (as opposed to operational
requirements). Even so, system tests should verify that the
response time is short enough to make the system usable.

ST.E.2.5 Resource tests

Requirements for the usage of resources such as CPU time,
storage space and memory may have been set as software
requirements. The best way to test for compliance to these
requirements is to allocate these resources and no more, so
that a failure occurs if a resource is exhausted. If this is not
suitable (e.g. it is usually not possible to specify the
maximum size of a particular file), alternative approaches
are to:
l use a system monitoring tool to collect statistics on

resource consumption;
l check directories for file space used.

ST.E.2.6 Security tests

Security tests should check that the system is protected
against threats to confidentiality, integrity and availability.

Tests should be designed to verify that basic security
mechanisms specified as software requirements have been
provided, for example:
l password protection;
l resource locking.

HKSQA Guidebook Software Testing

Version 1.0 11 of 21 July 1999

Deliberate attempts to break the security mechanisms are
an effective way of detecting security errors. Possible tests
are attempts to:
l access the files of another user;
l break into the system authorization files;
l access a resource when it is locked;
l stop processes being run by other users.

Security problems can often arise when users are granted
system privileges unnecessarily. The Software User
Manual should clearly state the privileges required to run
the software.

Experience of past security problems should be used to
check new systems. Security loopholes often recur.

ST.E.2.7 Portability tests

Portability requirements may require the software to be run
in a variety of environments. Attempts should be made to
verify portability by running a representative selection of
system tests in all the required environments. If this is not
possible, indirect techniques may be attempted. For
example if a program is supposed to run on two different
platforms, a programming language standard (e.g. ANSI C)
might be specified and a static analyser tool used to check
conformance to the standard. Successfully executing the
program on one platform and passing the static analysis
checks might be adequate proof that the software will run
on the other platform.

ST.E.2.8 Reliability tests

Reliability requirements should define the Mean Time
Between Failure (MTBF) of the software. Separate MTBF
values may have been specified for different parts of the
software.

Reliability can be estimated from the software problems
reported during system testing. Tests designed to measure
the performance limits should be excluded from the counts,
and test case failures should be categorised (e.g. critical,
non-critical). The mean time between failures can then be
estimated by dividing the system testing time by the
number of critical failures.

ST.E.2.9 Maintainability tests

HKSQA Guidebook Software Testing

Version 1.0 12 of 21 July 1999

Maintainability requirements should define the Mean Time
to Repair (MTTR) of the software. Separate MTTR values
may have been specified for different parts of the software.

Maintainability should be estimated by averaging the
difference between the dates of Software Problem Reports
(SPRs) reporting critical failures that occur during system
testing, and the corresponding Software Modification
Reports (SMRs) reporting the completion of the repairs.

Maintainability requirements may have included
restrictions on the size and complexity of modules, or even
the use of the programming language. These should be
tested by means of a static analysis tool. If a static analysis
tool is not available, samples of the code should be
manually inspected.

ST.E.2.10 Safety tests

Safety requirements may specify that the software must
avoid injury to people, or damage to property, when it fails.
Compliance to safety requirements can be tested by:
l deliberately causing problems under controlled

conditions and observing the system behaviour (e.g.
disconnecting the power during system operations);

l observing system behaviour when faults occur during
tests. Simulators may have to be built to perform safety
tests.

Safety analysis classifies events and states according to
how much of a hazard they cause to people or property.
Hazards may be catastrophic (i.e. life-threatening), critical,
marginal or negligible. Safety requirements may identify
functions whose failure may cause a catastrophic or critical
hazard. Safety tests may require exhaustive testing of these
functions to establish their reliability.

ST.E.2.11 Miscellaneous tests

Some software requirements may specify the need for:
l documentation (particularly the Software User Manual

or SUM);
l verification;
l acceptance testing;
l quality, other than reliability, maintainability and safety.

HKSQA Guidebook Software Testing

Version 1.0 13 of 21 July 1999

It is usually not possible to test for compliance to these
requirements, and they are normally verified by inspection.

ST.E.2.12 Regression tests

Regression testing is ‘selective retesting of a system or
component, to verify that modifications have not caused
unintended effects, and that the system or component still
complies with its specified requirements’

Regression tests should be performed before every release
of the software in the implementation phase. If an
incremental delivery or evolutionary development approach
is being used, regression tests should be performed to
verify that the capabilities of earlier releases are
unchanged.

Traditionally, regression testing often requires much effort,
increasing the cost of change and reducing its speed. Test
tools that automate regression testing are now widely
available and can greatly increase the speed and accuracy
of regression testing. Careful selection of test cases also
reduces the cost of regression testing, and increases its
effectiveness.

ST.E.2.13 Stress tests

Stress tests ‘evaluate a system or software component at or
beyond the limits of its specified requirements’. The most
common kind of stress test is to measure the maximum
load the software can sustain for a time, for example the:
l maximum number of activities that can be supported

simultaneously;
l maximum quantity of data that can be processed in a

given time.

Another kind of stress test, sometimes called a ‘volume
test’, exercises the software with an abnormally large
quantity of input data. For example a compiler might be fed
a source file with very many lines of code, or a database
management system with a file containing very many
records. Time is not of the essence in a volume test.

Most software has capacity limits. Testers should examine
the software documentation for statements about the
amount of input the software can accept, and design tests to
check that the stated capacity is provided. In addition,

HKSQA Guidebook Software Testing

Version 1.0 14 of 21 July 1999

testers should look for inputs that have no constraints on
capacity, and design tests to check whether undocumented
constraints do exist.

HKSQA Guidebook Software Testing

Version 1.0 15 of 21 July 1999

ST.F Example of How the Integration Sequence could be
Determined

During integration test design performed at the design phase, details of the test
approach for each software component defined during design are specified along with
identification of the associated test cases and test procedures.

The description of the test approach should state the:
l integration sequence for constructing the system;
l types of tests necessary for individual components (e.g. white-box, black-box).

With the function-by-function method, the system grows during integration testing
from the kernel units that depend upon a few other units, but are depended upon by
many other units. The early availability of these kernel units eases subsequent testing.

For incremental delivery, the delivery plan will normally specify what functions are
required in each delivery. Even so, the number of dependencies can be used to decide
the order of integration of components in each delivery.

 control flow
 control flow

 control flow
0 dependencies

data flow

 1 dependency
 data flow

 2 dependencies

data flow

 3 dependencies

The above diagram shows a system composed of four programs P1, P2, P3 and P4. P1
is the ‘program manager’, providing the user interface and controlling the other
programs. Program P2 supplies data to P3, and both P2 and P3 supply data to P4.
User inputs are ignored. P1 has zero dependencies, P2 has one, P3 has two and P4 has
three. The integration sequence is therefore P1, P2, P3 and then P4.

P1

P2

P3

P4

HKSQA Guidebook Software Testing

Version 1.0 16 of 21 July 1999

ST.G A Discussion of White-box, Black-box Integration and
Performance Tests

ST.G.1 White-box Integration Tests

For file interfaces, test programs that print the contents of the files provide
the visibility required. With real-time systems, facilities for trapping
messages and copying them to a log file can be employed. Debuggers that
set break points at interfaces can also be useful. When control or data flow
traverses an interface where a break point is set, control is passed to the
debugger, enabling inspection and logging of the flow.

The Structured Integration Testing method is the best known method for
white-box integration testing. The integration complexity value gives the
number of control flow paths that must be executed, and the ‘design
integration testing method’ is used to define the control flow paths. The
function-by-function integration method (see Appendix 6.6) can be used
to define the order of testing the required control flow paths.

The addition of new components to a system often introduces new
execution paths through it. Integration test design should identify paths
suitable for testing and define test cases to check them. This type of path
testing is sometimes called ‘thread testing’. All new control flows should
be tested.

ST.G.2 Black-box Integration Tests

Black-box integration tests should be used to fully exercise the functions
of each component specified during design. Black-box tests may also be
used to verify that data exchanged across an interface agree with the data
structure specifications in the design.

ST.G.3 Performance Tests

During software design, resource constraints on the performance of a
software unit may be imposed. For example a program may have to
respond to user input within a specified elapsed time, or process a defined
number of records within a specified CPU time, or occupy less than a
specified amount of disk space or memory. Compliance with these
constraints should be tested as directly as possible, for example by means
of:

l performance analysis tools
l diagnostic code
l system monitoring tools.

HKSQA Guidebook Software Testing

Version 1.0 17 of 21 July 1999

ST.H Example of Incremental Assembly of Modules

The three rules of incremental assembly are:

l assemble the software units incrementally, module-by-module if possible,
because problems that arise in a unit test are most likely to be related to the
module that has just been added;

l introduce producer modules before consumer modules, because the former can
provide control and data flows required by the latter.

l ensure that each step is reversible, so that rollback to a previous stage in the
assembly is always possible, as a requirement of configuration management.

A simple example of unit test design is shown in Figure ST.H.1 The unit U1 is a
major component of the software design. U1 is composed of modules M1, M2 and
M3. Module M1 calls M2 and then M3, as shown by the structure chart. Two possible
assembly sequences are shown. The sequence starting with M1 is ‘top-down’ and the
sequence starting with M2 is ‘bottom-up’. Figure ST.H.2 shows that data flows from
M2 to M3 under the control of M1.

Each sequence in Figure ST.H.1 requires two test modules. The top-down sequence
requires the two stub modules S2 and S3 to simulate M2 and M3. The bottom-up
sequence requires the drivers D2 and D3 to simulate M1, because each driver
simulates a different interface. If M1, M2 and M3 were tested individually before
assembly, four drivers and stubs would be required. The incremental approach only
requires two.

The rules of incremental assembly argue for top-down assembly instead of bottom-up
because the top-down sequence introduces the:

l modules one-by-one;
l producer modules before consumer modules (i.e. M1 before M2 before M3).

HKSQA Guidebook Software Testing

Version 1.0 18 of 21 July 1999

Bottom-up

Top-down

 Step 1 Step 2 Step 3

Figure ST.H.1 Example of unit test design

 control flow

 control flow

 data flow

Figure ST.H.2 Data flow dependencies between the modules of U1

U1

M2 M3

M1

D2

M2

D3

M3

M1

M2 M3

M1

S2 S3

M1

M2 S3

M1

M2 M3

M1

M2

M3

HKSQA Guidebook Software Testing

Version 1.0 19 of 21 July 1999

ST.I Unit Test Approaches

ST.I.1 White-box Unit Tests

The objective of white-box testing is to check the internal logic of the
software. White-box tests are sometimes known as ‘path tests’, ‘structure
tests’ or ‘logic tests’. A more appropriate title for this kind of test is
‘glass-box test’, as the engineer can see almost everything that the code is
doing.

White-box unit tests are designed by examining the internal logic of each
module and defining the input data sets that force the execution of
different paths through the logic. Each input data set is a test case.

Traditionally, programmers used to insert diagnostic code to follow the
internal processing (e.g. statements that print out the values of program
variables during execution). Debugging tools that allow programmers to
observe the execution of a program step-by-step in a screen display make
the insertion of diagnostic code unnecessary, unless manual control of
execution is not appropriate, such as when real-time code is tested.

When debugging tools are used for white-box testing, prior preparation of
test cases and procedures is still necessary. The Structured Testing method
is the best known method for white-box unit testing. The cyclomatic
complexity value gives the number of paths that must be executed, and the
‘baseline method’ is used to define the paths. Lastly, input values are
selected that will cause each path to be executed. This is called
’sensitising the path’.

A limitation of white-box testing is its inability to show missing logic.
Black-box tests remedy this deficiency, if the tests are carefully planned to
cascade into the missing logic of the white-box.

ST.I.2 Black-box Unit Tests

The objective of black-box tests is to verify the functionality of the
software. The tester treats the module as ‘black-box’ whose internals
cannot be seen. Black-box tests are sometimes called ‘function tests’.

Black-box unit tests are designed by examining the specification of each
module and defining input data sets that will result in different behaviour
(e.g. outputs). Each input data set is a test case.

Black-box tests should be designed to exercise the software for its whole
range of inputs. Most software items will have many possible input data
sets and using them all is impractical. Test designers should partition the
range of possible inputs into ‘equivalence classes’. For any given error,
input data sets in the same equivalence class will produce the same error.

HKSQA Guidebook Software Testing

Version 1.0 20 of 21 July 1999

-1 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure ST.I.2.1 Equivalence partitioning example

Consider a module that accepts integers in the range 1 to 10 as input, for
example. The input data can be partitioned into five equivalence classes as
shown in Figure ST.I.2.1 The five equivalence classes are the illegal
values below the lower boundary, such as 0, the lower boundary value 1,
the nominal values 2 to 9, the upper boundary value 10, and the illegal
values above the upper boundary, such as 11.

Output values can be used to generate additional equivalence classes. In
the example above, if the output of the routine generated the result TRUE
for input numbers less than or equal to 5 and FALSE for numbers greater
than 5, the nominal value equivalence class should be split into two
subclasses:
l nominal values giving a TRUE result, such as 3;
l boundary nominal value, i.e. 5;
l nominal values giving a FALSE result, such as 7.
Equivalence classes may be defined by considering all possible data types.
For example the module above accepts integers only. Test cases could be
devised using real, logical and character data.

Having defined the equivalence classes, the next step is to select suitable
input values from each equivalence class. Input values close to the
boundary values are normally selected because they are usually more
effective in causing test failures (e.g. 11 might be expected to be more
likely to produce a test failure than 99).

Although equivalence partitioning combined with boundary-value
selection is a useful technique for generating efficient input data sets, it
will not expose bugs linked to combinations of input data values.
Techniques such as decision tables [Ref 9] and cause-effect graphs [Ref
11] can be very useful for defining tests that will expose such bugs.

 nominal valuesillegal values illegal values

lower
boundary

value

upper
boundary

value

HKSQA Guidebook Software Testing

Version 1.0 21 of 21 July 1999

1 2 3 4
open_pressed TRUE TRUE FALSE FALSE
close_pressed TRUE FALSE TRUE FALSE
action ? OPEN CLOSE ?
Table ST.I.2.1: Decision table example

Table ST.I.2.1 shows the decision table for a module that has Boolean
inputs that indicate whether the OPEN or CLOSE buttons of an elevator
door have been pressed. When open_pressed is true and close_pressed is
false, the action is OPEN. When close_pressed is true and open_pressed is
false, the action is CLOSE. Table ST.I.2.1 shows that the outcomes for
when open_pressed and close_pressed are both true and both false are
undefined. Additional test cases setting open_pressed and close_pressed
both true and then both false are likely to expose problems.

A useful technique for designing tests for real-time systems is the state-
transition table. These tables define what messages can be processed in
each state. For example, sending the message ‘open doors’ to an elevator
in the state ‘moving’ should be rejected. Just as with decision tables,
undefined outcomes shown by blank table entries make good candidates
for testing.

Decision tables, cause-effect graphs and state-transition diagrams are just
three of the many analysis techniques that can be employed for test
design. After tests have been devised by means of these techniques, test
designers should examine them to see whether additional tests are needed,
their judgement being based upon their experience of similar systems or
their involvement in the development of the system. This technique, called
‘error guessing’, should be risk-driven, focusing on the parts of the design
that are novel or difficult to verify by other means, or where quality
problems have occurred before.

Test tools that allow the automatic creation of drivers, stubs and test data
sets help make black-box testing easier (see ST.H). Such tools can define
equivalence classes based upon boundary values in the input, but the
identification of more complex test cases requires knowledge on how the
software should work.

